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Abstract 
 
Matrix Padé approximation is a widely used method for computing matrix functions. In this paper, we apply 
matrix Padé-type approximation instead of typical Padé approximation to computing the matrix exponential. 
In our approach the scaling and squaring method is also used to make the approximant more accurate. We 
present two algorithms for computing Ae  and for computing Ate  with many 0t   respectively. Numeri-
cal experiments comparing the proposed method with other existing methods which are MATLAB’s func-
tions expm and funm show that our approach is also very effective and reliable for computing the matrix ex-
ponential Ae . Moreover, there are two main advantages of our approach. One is that there is no inverse of a 
matrix required in this method. The other is that this method is more convenient when computing Ate  for a 
fixed matrix A with many 0t  . 
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1. Introduction 
 
The matrix exponential is the most studied and the most 
widely used matrix function. It plays a fundamental role 
in the solution of differential equations in many applica- 
tion problems such as nuclear magnetic resonance spec- 
troscopy, Markov models, and Control theory. These 
problems often require the computation of Ate  for a 
fixed matrix and many 0t   

For example, with some suitable assumptions on the 
smooth of a function f , the solution to the inhomoge- 
neous system 

   , , 0 , , ,n n ndy
Ay f t y y c y A

dt
       

is 

     
0

, .
t A t sAty t e c e f s y ds    

A great number of methods for computing the matrix 
exponential have been proposed in the past decades. 
Moler and Van Loan’s classic papers [1,2], studied nine- 
teen dubious methods for computing the matrix expo- 
nential. Higham [3] which improved the traditional scal- 
ing and squaring method by a new backward error analy- 
sis is by far one of the most effective methods for com-

puting the matrix exponential and his method has been 
implemented in MATLAB’s expm function. A revisited 
version can be seen in [4]. In Higham’s method and 
many other methods, Padé approximation is used to eva-
luate the matrix exponential because of its high accu- 
racy. 

In this paper we present a new approach to compute 
the matrix exponential. On one hand, we use the matrix 
Padé-type approximation given by Gu [5] instead of the 
typical Padé approximation to evaluate the matrix expo- 
nential. Padé-type approximation was first proposed by 
Brezinski [6,7] in the scalar case. Draux [8] explored this 
method for the case of matrix-valued function and pro- 
posed a matrix Padé-type approximation. On the other 
hand, the powerful scaling and squaring method is also 
applied in our approach. This method exploits the rela-  

tion  2
2

s
sA Ae e . Thus we need to evaluate 2sAe at 

first and then take squarings for s times to obtain the 
evaluation of Ae . In the spirit of [3], the scaling number 
s is determined by backward error analysis. Besides, the 
problem of overscaling is also considered in our ap- 
proach. 

We briefly introduce the definition and basic property 
of the matrix Padé-type approximation in Section 2. 
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Then we develop a specific analysis for our approach in 
Section 3. In Section 4, two algorithms and some nu-
merical experiments compared with other existing me-
thods are presented. Conclusions are made in Section 5. 
 
2. Matrix Padé-Type Approximation 
 
In this section, we give a brief introduction about Matrix 
Padé-type approximation or MPTA for short. There are 
various definitions for MPTA. We are concerned with 
those based on Brezinski [6,7] and Gu [5]. 

Let ( )f z  be a given power series with n n  ma- 
trix coefficients, i.e., 

  0
, , .i n n

i ii
f z C z C z

 


      

Let : n nP    be a generalized linear function on 
a polynomial space P , defined by 

  , 0,1,l
lx C l     

Let mv be a scalar polynomial of degree m  

0
( )

m j
m jj

v z b z


              (2.1) 

and assume that the coefficient 1mb  . Then we define 

     1 1

,
k m k m

m m
k

x v x z v z
W z

x z


    
    

    (2.2) 

   1 ,m
m mv z z v z            (2.3) 

   1 .k
k kW z z W z            (2.4) 

 
Definition 1 Let  kW z  and  mv z  be defined by 

(2.4) and (2.3) respectively. Then 

     km k mR z W z v z    

is called a matrix Padé-type approximation to  f z  

and is denoted by    .f
k m z  

The approximant    .f
k m z satisfies the error for- 

mula 

       1 .k

f
f z k m z O z          (2.5) 

In fact, from (2.1)-(2.4), we have 

  0

m m j
m jj

v z b z 


            (2.6) 

and 

   0 0

0 0
.

m k m j k m j i i
k jj i

m k m j k m j i
j ij i

W z b x z

b C z

     
 

    
 





 

 
      (2.7) 

Then 

  0 0

0 0
.

m k m j m j i
k j ij i

m k m jm j i
j ij i

W z b C z

b z C z

   
 

 
 





 
 


        (2.8) 

It follows from (2.6)-(2.8) that 

        1
10 0

.
m k i

m j k m j ii j
v z f z W z b C z

  
    

     

(2.9) 

Under the normalization condition  0 1,m mv b   we 
obtain (2.5). Note that the numerator  kW z  is a ma- 
trix-valued polynomial and the denominator  mv z  is a 
scalar polynomial. For more theories on matrix Padé 
approximation and matrix Padé-type approximation see 
[5-10]. 
 
3. MPTA for the Matrix Exponential 
 
Let f be a function having the Taylor series expansion 
with the radius of convergence r of the form, 

   ( )

0
! , .i i

i
f z f i z z r




         (3.1) 

It follows from Higham [11] that for any n nA   
and z  with ( )Az r  , where  represents the 
spectral radius of a matrix, 

    ( )
0

! .
ii

i
f Az f i Az




   

According to (2.8) and (2.9) in the previous section, 
the [k/m] matrix Padé-type approximant to ( )f Az  can 
be expressed by the form 

     km km kmR Az P Az q Az , 

where 

   0
, 1,

m m j
km j km mj

q Az b z q z b


      (3.2) 

and 

    ( )
0 0

! .
im k m jm j i

km jj i
P Az b z f i Az

 
 

    (3.3) 

In fact, the difference between the matrix Padé-type 
approximants and the typical matrix Padé approximants 
is that the denominator of the former is a scalar polyno- 
mial, as denoted by  kmq z  in (3.2). 

In the case of the matrix exponential, Ate  can be de- 
fined as follows 

2
2

2!
At A

e I At t     

By (3.2) and (3.3), we immediately obtain the [k/m] 
matrix Padé-type approximant to Ate as follows, 

      ,km km kmR At P At q t  

where 

  0
, 1,

m m j
km j mj

q t b t b


          (3.4) 
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and 

   0 0
( !) .

m k m jm j i i
km jj i

P At b t t i A
 

 
       (3.5) 

Now we give an error expression in the following 
theorem. 

Theorem 1 Let kmq  and kmP  be expressed as (3.4) 
and (3.5) respectively, then 

 
     

1 1

0 0

.
1 !

k k m i jm
km At i

j
i jkm km

P At t A
e t b

q t q t k m i j

    

 

 
        

   

(3.6) 

Proof: Take !i
iC A i in (2.9). 

So far, the coefficients of the denominator kmq  are 
arbitrary. These coefficients may affect the accuracy of 
the approximant. Sidi [12] proposed three procedures to 
choose these coefficients in the case of vector-valued 
rational approximation. We can generalize his proce- 
dures to the matrix case. We only introduce one proce- 
dure, which is called SMPE based on minimal polyno- 
mial extrapolation. In the spirit of SMPE in [12], we aim 
to minimize the norm of the coefficient of the first term 
of the numerator, i.e., the 0i   term in the error ex- 
pression (3.6). Since this term can be viewed as the ma- 
jor part of the error. Under the condition 1mb  , other 
coefficients of kmq are the solution to the following mi-
nimization problem 

 0

1

, , 0

min ,
1 !m

k m jm

j
b b j

A
b

k m j

  

   


         (3.7) 

where we choose the Frobenius norm. The corresponding 
inner product of two matrices A  and B  is defined by 

    1 1
, .

n nH
ji jii j

A B tr A B A B
 

         (3.8) 

The next lemma can transform the minimization prob- 
lem (3.7) into the solution of a linear system. 

Lemma 1 The minimization problem (3.7) is equiva- 
lent to the following linear system 

 
 

1

1 10

1 1

,

, , 0, , 1,

m

k m i k m j jj

k m i k

D D b

D D i m


     

      




     (3.9) 

where !l
lD A l . 

Proof: See Sidi [12]. 
Different from the series form error expression in (3.6), 

we present another form of error bound based on Taylor 
series truncation error in the following theorem. 

Theorem 2 Suppose f has the Taylor series expansion 
of the form as in (3.1) with radius of convergence r. Let 

     km km kmR Az P Az q z  be the matrix Padé-type 
approximant to ( ),f Az  where ,n nA z   with 

( )Az r   and kmq  and kmP have the form (3.2) and 
(3.3) respectively. If kmq  is a real coefficient polynomial 

and 
1

0
1 0,

m m j
jj

b z
 


   

then for any matrix norm, it follows that 

 
   

1
1 1

0

0

( ) ( )

1 !
,

1

km

k m j
k m k m j

j jj

m m j
jj

f Az R Az

A
z b f Az

k m j

b z


  

   







  








(3.10) 

where , 0, ,j j m    are some real constants in (0,1). 
Proof: The result follows from a similar analysis used 

in [13]. 
Corollary 1 Let      km km kmR Az P Az q z  be the 

matrix Padé-type approximant to the matrix exponential 
Ate , where ,n nA t    and kmq  and kmP  have 

the form (3.4) and (3.5) respectively and kmq  is a real 
coefficient polynomial. If 

1

0
1 0,

m m j
jj

b z
 


   

then 

 

 
1

1

0

0

1 !
,

1

j

At
km

k m j
k m At

jj

m m j
jj

e R At

A
t b e

k m j

b t


  










  








     (3.11) 

where , 0, ,j j m    are some real constants in (0,1). 
Proof: The result follows directly from Theorem 2. 
The result of corollary 1 shows that the MPTA to 

Ate is feasible. In fact, we do not have to worry about the 
denominator of the right side in (3.11) since our numeri- 
cal experiments in the next section show that all jb  are 
much smaller than 1. 

Now we turn to the implementation of the scaling and 
squaring method of our approach. If the norm of the ma- 
trix At is not small enough, we use the scaling and 
squaring technique which computes the matrix exponent- 
tial indirectly. We want to reduce the norm of At to a 
sufficiently small number because the function can be 
well approximated near the origin. Thus we need to 
compute  2s

kmR At  and then take 

  2

2 .
s

At s
kme R At  

The scaling and squaring method goes back at least to 
Lawson [14]. 

The scaling integer s should be carefully determined. 
We choose this number based on the error analysis. Hig-
ham [3] explored a new backward error analysis of the 
matrix exponential. According to the analysis in [3], we 
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give the following lemma. 
Lemma 2 If the approximant kmR  satisfies 

 2 2 ,
s At s

kme R At I G
     

where 1G   and the norm is any consistent matrix 
norm, then 

 2
2 ,

s
s At E

kmR At e   

where E commutes with A and 

 log 1
.

2 s

GE

At At

 
         (3.12) 

Proof: See the proof in [3]. 
The result of (3.12) shows, as Higham [3] points out, 

that the truncation error E in the approximant to Ate  as 
equivalent to a perturbation in the original matrix At. So 
it is a backward error analysis. If we define 

  22 ,
ss At

kmR At e
    

then 2 s AtG e
  . In order to obtain a clear error analy- 

sis for the perturbation E, we should give a practical es- 
timation for  . Though (3.11) gives an upper bound for 
 , it is a rough estimation for us rather than a practical 
one. Let 

  2
0

2 !
sik s At

T i
A At i e




   

be the Taylor series truncation error of 2 s Ate


. In terms 
of [11] or [13], the norm of T  is bounded by the in-
equality 

 
 

1 22
.

1 !

sk Ats

T

At e

k



 


       (3.13) 

Actually, according to the choice of jb according to 
the minimization problem (3.7), we can assume that 

.T    

It therefore follows from (3.13) that 

 

121
2 2 (2 )

.
1 !

s

s s
Ats k

At At
T

At e
G e e

k

 
 

 
     


 

(3.14) 

We want to choose such s that the backward relative 
error E At  does not exceed 161.1 10u   , which 
is the unit roundoff in IEEE double precision arithmetic. 
To this end, in accordance with (3.12), we require the 
following inequality hold, 

 log 1 2 ,sG At u    

that is, 

2 1.
s At uG e

             (3.15) 

Then (3.14) implies that 

 
 

11 2

2
2

1
1 !

s

s

k Ats

At u
At e

e
k

 




 


      (3.16) 

is a sufficient condition for (3.15). 
If we denote 2 s At  , then (3.16) can be rewrit-

ten as follows 

 
1 2

1.
1 !

k
ue

e
k


 
 


 

Since 1ue u    , finally we obtain 

   
2

: .
1 !

k

k

e
g u

k

  


         (3.17) 

Then we define this value   max : .kg u    Thus 

E u At if s satisfies max2 s At   , which means we 

choose 

 2 maxlog .s At            (3.18) 

However, in practice, the choice of s in (3.18) may 
lead to overscaling, so we need to take measures to re- 
duce the effect caused by overscaling. Therefore the me-
thod in Al-Mohy and Higham [15] can be applied. 

Lemma 3 Define ( ) j
l jj l

h x a x



   with the radius 

of convergence r and  

  j
l jj l

h x a x



   

and suppose  A r  and p . Then if  1l p p  , 

   1 1 ( 1)1max , .
p pp p

l lh A h A A
   

 
  

Proof: See [15]. 
Note that 

     
2

.
! 1 !

j k
j

k j k
g x

j k k








   

Then according to lemma 3, we have    16 16g g  , 
where 

     
1 4 1 3 1 54 3 5

max 2 ,min 2 , 2 .s s sAt At At         
   

 

(3.19) 

So s is chosen so that max 0.744   . 
For the numerator degree k, we have no clear theore- 

tical analysis or strategy for the best choice. Based on 
our numerical experiments, we find 16k   may be a 
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good choice and correspondingly have max 0.744  . 
Since if k is too small, a large s is required which is po- 
tentially dangerous and if k is too large, evaluating ma- 
trix multiplications may require excessive computations 
and storages. 

Now we need to consider the total computational cost. 
The computation of choosing jb  consists of two parts. 
One part is computing the inner products in the above 
linear system (3.9). It needs k  matrix multiplications to 
obtain 1 1, ,k m kA A    and  1m m   computations of 
those inner products. Each inner product defined by (3.8) 
costs 22n  flops. So the cost of computing inner prod- 
ucts is   22 1m m n  flops. We choose 1/2m n  to 
make the cost do not exceed  3O n . The other part is 
solving the m m  linear system (3.9) to obtain the co- 
efficients jb . It costs 32m  flops which is not expensive 
since m is much smaller than n. When we evaluate 

 kmP At , we rewrite (3.5) as the following form 

 
 0 max ,0

,
!

jk m
m i j

km i
j i j k m

t
P At b t A

j


   

 
   

 
      (3.20) 

where the powers of A  have already been obtained in 
the previous steps. So there are no extra matrix multipli- 
cations. Finally, we should take s matrix multiplications 
for squaring which costs 32sn  flops. 
 
4. Algorithms and Numerical Experiments 
 
Based on the analysis above, we present the following 
algorithm for computing the matrix Padé-type approxi- 
mation to the matrix exponential. 

Algorithm 1 This algorithm evaluates the matrix ex- 
ponential using Padé-type approximation together with 
scaling and squaring method. The algorithm is intended 
for IEEE double precision arithmetic. 

1) Compute and Store 2 3 17, , ,A A A . 
2) Repeat scaling 2sA A  until s satisfies 0.744  , 

where   is defined by (3.19) with 1-norm. 

3) Set  1/2
0min ,m m n    . 

4) Compute the inner products in (3.9) via (3.8). 
5) Solve (3.9) to obtain the coefficients of kmq . 
6) Compute kmq  via (3.4).  
7) Compute kmP  via (3.20).  
8) km km kmR P q . 

9)  2s

km kmR R . 

Note that the m m  linear system in (3.9) maybe 
ill-conditioned. To avoid this difficulty, we can use a fast 
and stable iterative method to solve it. The iteration will 
stop if it fails to converge after the maximum number of 
iterations. We can also modify the algorithm by resetting 

jb or choosing 1, 0, 0, , 1,m jb b j m     when the 

system is ill-conditioned. The latter case is actually a 
truncated Taylor series. 

Now we present some numerical experiments that 
compare the accuracy of three methods for computing 
the matrix exponential. 

First we took 53 test matrices obtained from MAT- 
LAB R2009b’s gallery function in the Matrix Computa- 
tion Toolbox and most of them are real and 8 8 . Fig- 
ure 1 shows the relative error in the Frobenius-norm of 
expmpt (Algorithm 1) and MATLAB R2009b’s functions 
expm and funm. For details about expm and funm or other 
algorithms for computing the matrix exponential see [12]. 
The exact matrix exponential Ae  is obtained by compu-
ting a 150 order Taylor polynomial using MATLAB’s 
Symbolic Math Toolbox. We can make the observations 
from Figure 1 as follows. 
 MATLAB’s function expm is still the best code in 

general. 
 The proposed algorithm expmpt is also very effect- 

tive. Precisely, expmpt is more accurate than expm 
in 16 examples. 

 Both expm and expmpt are more reliable than funm 
in general. 

Second we concentrate on a class of 2 2  matrix of 
the following form 

,
0

a b
A

c

 
  
 

 

where a, c is generated randomly from (–1, –0.5) and b  
is generated randomly from (–1000, –500). We tested 20 
matrices of this form and plotted the results in Figure 2. 
We can make the observations from Figure 2 as follows. 
 Algorithm 1 and MATLAB’s function funm perform 

similarly in most examples. 
 

 
Figure 1. Normwise relative errors for MATLAB’s expm, 
funm and Algorithm 1 on testing matrices from MATLAB’s 
gallery function. 
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Figure 2. Normwise relative errors for MATLAB’s expm, 
funm and Algorithm 1 on testing 2/times 2 matrices descri- 
bed above. 
 
 MATLAB’s function expm is less reliable than the 

other two methods. 
Therefore we can conclude from our experiments that 

the proposed method has certain value in practice. 
Compared with typical Padé approximation which is 

used in traditional methods for the matrix exponential, 
Padé-type approximation we used in this paper has both 
some advantages and disadvantages. 

Recall that the [k/m] Padé approximation, denoted by 
     km km kmr x p x q x , to the function f is defined by 

the properties that that kmp  and kmq  are polynomials 
of degrees k and m, respectively, and that 

     1 .k m
kmf x r x O x     

Replacing x  with A , we have 

     1 .k m
kmf A r A O A            (4.1) 

So Padé-type approximation requires a polynomial of 
higher degree to achieve the same accuracy as Padé ap- 
proximation does. Another disadvantage of our approach 
is that each , 2, ,jA j k   has to be evaluated in our 
approach because we need them to determine the coeffi- 
cients jb . In [10], Paterson-Stockmeyer (PS) method 
was used to evaluate the matrix polynomials. For exam- 
ple, a the matrix polynomial such as 

  15
15 15 1 0 ,p A b A b A b I          (4.2) 

can be evaluated by only 7 matrix multiplications. There- 
fore, our approach costs more than expm if we only com- 
pute Ate  for one or few t. 

But in another point of view, our method has some 

advantages. Real problems usually require Ate for many 
0t  , where t represents time. For example, these t are 
 0,1 , 1, , ,it i r    where r is not a small number. We 

should first divide these t into different intervals accord- 
ing to the criterion that points in the same interval have 
the same scaling integer. According to (3.20), when 
computing  kmP At  for t in the same interval, we only 
evaluate , 2, ,jA j k   for one time. However, using 
PS method to evaluate a matrix polynomial such 
as 15 ( )p At  needs to update these powers of matrix At  

       2 4 6 8
, , , ,At At At At At  and take three extra ma-  

trix multiplications for each t. Therefore, when the num- 
ber of t is very large, PS method may be worthless. 
Moreover, in our method kmq  is a scalar polynomial and 
therefore no matrix division is required except for solv- 
ing the m m  linear system with m much smaller than 
n . Nevertheless, Padé approximation requires the matrix 
division    1

km kmq At p At  for each t. Matrix division 
with large dimension is not what we expect. 

In the end of this section, we present a modified ver- 
sion of Algorithm 1 to compute Ate  for many 0t  . 
Note that in the following algorithm, we preprocessed 
the given matrix A by the Schur decomposition to reduce 
the computational cost since only triangle matrices are 
involved after the decomposition. 

Algorithm 2 This algorithm based on Algorithm 1 
evaluates Ate  for 10 rt t   . The algorithm is in-
tended for IEEE double precision arithmetic. 

1) Schur decomposition: HA QTQ , where Q is un-
itary and T is upper triangular.  

2) Compute and store 2 3 17, , ,T T T . 
3) Divide all of the points it  into several intervals 

which are 0 1, , , wU U U . The corresponding scaling 
integer is is . 

4) Set  1/2
0min ,m m n     with some positive in-

teger 0m . 
5) For 0 :i w  

2 isT T . 
Compute inner products in (3.9) via (3.8). 
Solve (3.9) to obtain the coefficient of kmq . 
For j it U  

Compute kmq via (3.4). 
Compute kmP  via (3.20) where A is re-
placed by T. 

km km kmR P q . 
2( )

si

km kmR R . 
H

km kmR QR Q . 
    end 
end 

Note that the purposes of algorithm 1 and of algorithm 
2 are different. Algorithm 2 aims to computing Ate  for 
many different t and algorithm 1 is designed to compute 

Ae  only. But we emphasize here that in each inner loop, 
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algorithm uses the same approach as algorithm 1 to com- 
pute each Ate . In addition, only Schur decomposition is 
added at the beginning of the algorithm to reduce the 
computational cost when the number t is very much. 
Therefore, we do not present any numerical results of al- 
gorithm 2. 
 
5. Conclusions 
 
In this paper, we develop a new approach based on ma- 
trix Padé-type approximation mixed with the scaling and 
squaring method to compute the matrix exponential in- 
stead of typical Padé approximation. Two numerical al- 
gorithms for computing Ae  and for Ate with many 

0t   respectively are proposed. Our approach is estab- 
lished closely relative to the backward error analysis and 
computational considerations. Numerical results com- 
paring the proposed algorithm with existing functions 
expm and funm in MATLAB have shown the proposed 
algorithm is effective and reliable for computing the ma- 
trix exponential. Compared with typical Padé approxi- 
mation, the most significant advantages of matrix Padé- 
type approximation lie in two aspects. One is the con-
venience for computing Ate  for a large amount of t. The 
other is its avoiding n n  matrix divisions, where n is 
the size of the given matrix A. 
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