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Abstract

Considering the unigueness of meromorphic functions concerning differential monomials ,we obtain that, if
two non-constant meromorphic functions f(z) and g(z) satisfy E, (1, f”f’)z E, (1,g”g’), where k

and n are tow positive integers satisfying k>3 and n>11, then either f(z) =ce

¢, C,, C arethree constants, satisfying (clcz)r”lc

“.9(,) =Ce " where

-1 or f =tg foraconstanttsuchthat t~ =1,
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1. Introduction and Main Results

In this paper we use the standard notations and terms in
the value distribution theory [1].

Let f(z) be anonconstant meromorophic function on
the complex plane C. Define E(a, f)= {z| f(z)-a= 0},
where a zero point with multiplicity m is counted m
times in the set. If these zero points are only counted
once, then we denote the setby E(a, f). Let k apos-
itive integer. Define
E.(a f)={7f(z)-a=0,3i1<i <k, st.f"(z) =0} ,
where a zero point whit multiplicity m is counted m
times in the set.

Let f(z) and g(z) be two nonconstant meromor-
phic functions. If E(a, f)=E(a,g), then we say that
f(z) and_g(z)share the value CM; if
E(a, f)=E(a,g), then we say that f(z) and g(z)
share the value IM.

Additional, we denote by N, (r,f) the counting
function for poles of f(z) with multiplicity <k, and
by Ny, the corresponding one for which multiplicity is
not counted. Let N, (r, f) be the counting function for
poles of f(z) with multiplicity >k , and by
N (r, f) the corresponding one for which multiplicity
is not counted. Set B
N (r, f)=N(r, f)+N@+---+Nu(r, f), Similary, we
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have the notation: Nk)(r,%} Nk)(f;%], N(k(r,%}

W(k(r,%} Nk(r,%) If E(Lf)=E(Lg), we de-

note by Nn(r,ﬁ] the counting function for com-

mon simple 1-points of both f(z) and g(z) where
multiplicity is not counted.

In 1998, Wang and Fang [2] (cf. [3]) proved the fol-
lowing therem.

Theorem A Let f(z) be a transcendental mero-
morphic function, and n, k be tow positive integers

with n>k+1. Then (f”)(k)—l has infinitely many

zeros.
It is interesting to establish the unicity theorem cor-
responding to the above result. In 2002, Fang [4] ob-
tained the following result.
Theorem B Let f,g be tow nonconstant entire
function, and n, k be tow positive integers with

n(=2k+4). If (f”)(k) and (g”)(k) share 1 CM, then

~% where ¢ ,c,,c are

either f, =ce”, g, =c,e
"c* =1 0r f=tg

three constants, satisfying (—1)k (cc,)

for a constant t such that t" =1.
Recently, Bhoosnurmath and Dyavanal [5] extended

Theorem B to the meromorphic case, as follows.
Theorem C Let f,g be tow nonconstant meromor-
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phic function, and n, k be tow positive integers with
n\() n\(K)
n(=3k+8). If (f ) and (g ) share 1 CM, then

—Cz

either f(z) = cle“,g(z) =c,e’” where c,c,,care three

constants, satisfying (—1)k (cc,) c® =1,0r f=tg for
a constant t such that t" =1.

1 1
Let k=1, f=(n+1)n1F and g=(n+1)1G in

Theorem C. Then [f"ﬂ' =F"F’ and G[g”*l] =G"G'.

We see that the following result, which is proved by
Yang and Hua [6], is a direct consequence of Theorem
C.

Theorem D Let f(z) and g(z) be two noncons-
tant meromorphic functions, and n>11 an integer. If
f"f’and g"g’share 1 CM, then either f(z)zcle“,
90 =ce ™ vlvhere c,,C,,C are three constants, satis-
fying (cc,)" ¢®=-1 or f =tg for a constant t such
that t~t =1.

In this paper, we will extend the above result as fol-
lows.

Theorem 1 Let f(z) and g(z) be two noncons-
tant meromorphic functions, k(>3), n(>11) be tow

positive integers. If E, (1f"f')=E (Lg"g'), then ei-

—Cz

ther f, =ce” g, =c,e™ where c,c,,c are three

n+l 2o

constants, satisfying (c.c,) ¢*=-1 or f=tg for a
constant t such that t ,, =1.

Theorem 2 Let f(z) and g(z) be two noncons-
tant meromorphic functions, n(>13) be a positive in-

T(r £)+T(r.g)<Na(r, f)+N{r,%}+m(rv9)+ﬁ2(“%)J’Nz[r’ﬁ}rm[r’ﬁj

1 1 1
_Nn[r,a}r N(kﬂ(r,mh N(m[r,aj+8(r, f)+S(r.9)

(b+1)g+(a—-b-1)

teger. If E,(Lf"f')=E,(1g"g’), then the conclusion
of Theorem 1 holds.

Theorem 3 Let f(z) and g(z) be two noncons-
tant meromorphic functions, n(>19) be a positive in-
teger. If E (L f"f')=E,(1g"g’), then the conclusion
of Theorem 1 holds.

2. Some Lemmas

For the proof of our results, we need the following lem-
mas.

Lemma 1 [7]. Let f be a nonconstant meromorphic
function,and let a,,a,,---,a, be finite complex numbers
such that a, =0 . Then

T(r,anf”+an71f”‘1+~--+a1f1+a0)
=nT(r, f)+S(r,f)

Lemma 2 [6]. Let f(z) and g(z) be two non-
constant meromorphic functions, n(>6) be a positive
integer, if f"f'g"g’'=1 then either fo) :clecz_ ,
o) =c,e™® \gvhere c,C,,C are three constants, satis-
fying (cc,) ¢ =-1.

Lemma 3 [8]. Let f be a nonconstant meromorphic
function, k a positive integer, then

N(r,%}s N(r,%)+kﬁ(r, £)+5(r, 1),

Lemma 4 [9]. Let f and g be two nonconstant
meromorphic functions,and let k be a positive integer.
If E.(1f)=E(Lg), then one of the following cases
must occur:

@)

f= , Where a(= 0), b are tow constants. 2

bg +(a—-b)

Lemma 5. Let f and g be two nonconstant me-
romorphic functions, n(>6) be a positive integer, set
F=f"f", G=g"¢',if

(b+1)G+(a—b-1)

S 0G+(ab) @1)

T(r,F):T(r,f”f')sT(r,f”)+T(r,f')snT(r,f)+2T(r,f)+S(r,f)

=(n+2)T(r, f)+S(r, f)

Copyright © 2011 SciRes.

where a(#0)b are two constants, then either f,) =c,e”,

—Cz

9, =Ce " where c,c,,c are three constants, satis-

fying (clcz)n+l c¢?=-1 or f=tg fora constantt such
that t"* =1.

Proof. By Lemma 1, we get

(2.2)
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232 H. HUANG ET AL.
T (r, f)=T(r, f")+S(r, f)=N(r, f")+m(r, £")+S(r
<SN(r, £7F)=N(r, £)+m(r, £ 1) fij
<T(r A E)4T(r )= N(r, f) [ fiJ =
<T(LF)+T(r, f)=N(r,1)- [ fij +8(r, 1)
So,
1
T(r,F)z(n—l)T(r,f)+N(r,f)+N(r,?]+S(r,f) (2.4)

Thus, by (2.2) and (2.3), we get S(r,F)=S(r, f).
Similarly, we get
T(r,G)=(n-1)T(r,g)+N(r,g)
+N(r,i'j+s(r,g) @3)
g
S(r,G)=5(r,9)

It is clear that the inequality T(r,f)<T(r,g) or
T(r,g)<T(r,f) holds for a set of infinite measure of
r.

Without loss of generality, we may suppose that

T(r,f)<T(r,g), holds for rel, where I is a set

with infinite measure. Next we consider five cases.
Casel. a#b,b#0,-1,

If a—b-1=0, then by the 2.1 we known:

N(r,%):ﬁ r,ﬁ

G+
b+1

By the Nevalinna second fundamental theorem and
lemma 3, we have

< 4T(r,g)+ﬁ(r,g)+ N (r,éj+s(r,g)

By n>6 and (25), we get T(r,g)<S(r,g), for
r e |, a contradiction.
If a—b-1=0, by (2.1) we can obtain:
(b+1)G
bG +1

We see that:

Copyright © 2011 SciRes.

Combining the Nevalinna second fundamental theo-

rem and lemma 3, we have
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= : :
il s
_T(r,g)+ﬁ(r,g)+N(r gi] T(r, f)+S(r,g)

<2T(r,0)+N(r, )+ [ gi] 5(r.g)

By n>6 and (2.5), weget T(r,g)<S(r,g), rel, r e |, which is impossible. So C is zore.

a contradiction. Then F, =G,, it gives that ™' =g"* so f =tg,
a
Case2. a#bb=-1,50 F= m where t is constant satisfying t"** =1.
Case4. a=b,b=0,-1, from (2.1) we can get

We can get N(r,F)=N [r:m]v similarly as :—(b+t1)é(3 -1 N(r,F) =N(r,é), similarly as Case

Case 1, it is impossible. 1, it is impossible.
G+(a-1) Since a =0, now we consider the following case.
Case3. a#b,b=0,So F:T' Case6. a=b=-1

Ityields FG =1, thatis: f"f'g"g’'=1. By the Lemma

If a-1=0,then F=G,s0 f'f’'=gg". 2, we can get f(z):cle“,g(z)_cze’CZ where c,,c,,C

It follows that: ey

el el are three constants, satisfying (c.c,) ¢ =-1.

[ g
F=g'gh=——="7+C=G+C, where C is a Now the proof of Lemma 5 is completed.

constant.
We state that C is zero. If not, one we can get that
from the Nevalinna second fundamental theorem and

3. Proof of Theorems

Proof of theorem 1:

Ier?rr]nfll).T( g)=T(r.G,)+S(r.9) Noticing that k >3, we have
sN(r,Gl)+N(r,Gilj+ﬁ(r,Gll+lj+5(r,g) W(r,ﬁj+ﬁ(r,i)—ml(r,ﬁj
:N(r,Gl)+N[r,Gi]+W[r,éj+S(r,g) +N(M(r’ - JJFN(M(r ﬁj

' ! 1 1 1
:W(r,g)+W[r,£j+W[r,%)+S(r,g) SEN[ F 1j+2N( ‘G 1)
_3T(r,g)+S(r,gg) S%T(f'F)%T(rlGHO(l)

Because n>6, we can get T(r,g)<S(r,g), for By lemma 4, we can get
T(rF)+T(rG)< { ( éj (,éj+Nz(r,G)}+S(r,F)+S(r,G) .
1
_ { ( é} (,é]+Nz(r,e)}+s(r,f)+s(r,g)

Copyright © 2011 SciRes. AM
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Because:

Nz(r,é}r N,(r,F)= Nz(r,ﬁ]+ Nz(r, f”f’)s 2W(r,%}+ N [r,%}rZW(r, f) (3.2)

Nz(r,éj ,(rG)<2 [réj+N(r,éj+2W(r,g) (3.3)

By (3.1)-(3.3) and lemma 3, we can get:

T(r,F)+T(r,G)< 2{2N(r,%j+2ﬁ(r, f)+N [r,%}+2ﬁ[r,éj+2ﬁ(r,g)+ N (r,&]}S(r, f)+5(r,9)

and

=4N(r,%)+4ﬁ(r, f)+2N (r,%]+8(r, f)+4ﬁ(r%j+4ﬁ(r,g)+ 2N [r-é}fs(r.g)
e S S S

<oT(r, )+ N(r, f)+N(r,%J+s(r, f)+9T(r,g)+N(r,g)+N(r,éj+8(r,g)

—Cz

By n>9and (2.4), (2.5) we obtain

then either f, =ce”, 2 = Co8
T(r, f)+T(r,g)<S(r,f)+S(r,g), which is impossi-

three constants, satlsfymg (cc,)” 'e2=-1 or f=tg

where c,,c,,c are

ble.

(b+1)g+(a—b-1)
bg +(a—-b)

a(#0), b are tow constants, it follows by lemma 5

Therefore, by lemma 4 f = , Where

for a constant t such that t"* =1.
The proof of Theorem 1 is complete.
Proof of theorem 2:
We can see clearly:

N[ %J e ) T ) R (o]
% ( j % ( jg%T(r,F)+%T(r,G)+S(r,f)+S(r,g)

By lemma 4, we can get:

(35)
+N(3(r,—_)ﬁ(3[r,%l)+s(r,f)+S(r,g)
Considering
— 1 1 F 1 F 1—( 1 1—
N(g(r,F_JSEN(r,szzN[r,?}rS(r,f)gzN(r,EJ 2N(r F)+S(r, f)
(3.6)
S%{N(r,%}+N(r,%} (rf)}s(r,f)£2T(r,f)+S(r,f)
Similarly, we can get
N(s(r, 1_1j 2T (r,g)+S(r,g) (3.7)

By from (3.4)-(3.7), we can get

T(rF)+T(rG)<10T (r, )+ N(r, f)+N(r,%j+S(r, f)+llT(r,g)+N(r,g)+N(r,&}+s(r,g)

Copyright © 2011 SciRes. AM
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Since n>13 and (2.4), (2.5), we can get
T(r,f)+T(r,g)<S(r, f)+S(r,g) impossible The proof

ET AL.
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Nr ]m( o) (e o (rel)
F-1 'G-1 F-1) 2 F-1

of Theorem 2 is complete. L1 N[ j (r, F)+1T(r G)+S(r, f)+5(r.q)
Proof of theorem 3: 2
Since: We can see clearly from lemma 4 that:
T(r,F) <29N,|r i]+N2(r,F)+N2[r,—] (r G)+N(2(I’, ! j+N(z(r Lj
F F-1 G-1
+S r,F +5(r,G
( (r.G) 38)
Z{N2 %)+ N, (r,F)+ Nz(r,éj+N (r.G)+ N(z(r,%}rﬁ(z(r,ij}
+S(r, f)+S(r,9)
Considering
N(z(r, Fl—ljg N (r,gj: N (r,FFj+S(r, f)sﬁ(r, F)+N(r,%)+8(r, f)
1 1) — 3.9)
< N[r,TJ+N(r,?j N(r, f)+S(r, f)<4T(r,f)+S(r,f)
Similarly, we can get
N(z[l’,ﬁ <4T(r,g)+S(r,9) (3.10)

By from (3.8)-(3.10), we can get

T(r,F)+T(r,G)<17T(r.f)

+W(r,f)+N[

Since n>19 and (2.4), (2.5), we can get
T(r,f)+T(r,g)<S(r,f)+S(r,g), impossible The
proof of Theorem 3 is complete. [5]
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