

Uniqueness of Meromorphic Functions Concerning Differential Monomials*

Hui Huang, Bin Huang

College of Mathematics, Changsha University of Science and Technology, Changsha, China E-mail: huang.liuyuan@163.com
Received October 21, 2010; revised December 6, 2010; accepted December 11, 2010

Abstract

Considering the uniqueness of meromorphic functions concerning differential monomials ,we obtain that, if two non-constant meromorphic functions f(z) and g(z) satisfy $E_k(1, f^n f') = E_k(1, g^n g')$, where k and n are tow positive integers satisfying $k \ge 3$ and $n \ge 11$, then either $f_{(z)} = c_1 e^{cz}$, $g_{(z)} = c_2 e^{-cz}$ where c_1 , c_2 , c_3 are three constants, satisfying $(c_1c_2)^{n+1}c^2 = -1$ or f = tg for a constant t such that $t^{n+1} = 1$.

Keywords: Meromorphic Function, Sharing Value, Uniqueness

1. Introduction and Main Results

In this paper we use the standard notations and terms in the value distribution theory [1].

Let f(z) be a nonconstant meromorphic function on the complex plane C. Define $E(a,f) = \{z \mid f(z) - a = 0\}$, where a zero point with multiplicity m is counted m times in the set. If these zero points are only counted once, then we denote the set by $\overline{E}(a,f)$. Let k a positive integer. Define

 $E_k(a, f) = \{z | f(z) - a = 0, \exists i, 1 \le i \le k, st. f^{(i)}(z) \ne 0\}$, where a zero point whit multiplicity m is counted m times in the set.

Let f(z) and g(z) be two nonconstant meromorphic functions. If E(a, f) = E(a, g), then we say that f(z) and g(z) share the value **CM**; if

E(a, f) = E(a, g), then we say that f(z) and g(z) share the value **IM**.

Additional, we denote by $N_k(r,f)$ the counting function for poles of f(z) with multiplicity $\leq k$, and by $\overline{N_k}$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r,f)$ be the counting function for poles of f(z) with multiplicity $\geq k$, and by $\overline{N_{(k)}(r,f)}$ the corresponding one for which multiplicity is not counted. Set

$$N_k(r, f) = \overline{N}(r, f) + \overline{N}_{(2} + \dots + \overline{N}_{(k}(r, f))$$
, Similary, we

have the notation:
$$N_{k)}\left(r,\frac{1}{f}\right)$$
, $\overline{N}_{k)}\left(r,\frac{1}{f}\right)$, $N_{(k)}\left(r,\frac{1}{f}\right)$, $\overline{N}_{(k)}\left(r,\frac{1}{f}\right)$, $N_{(k)}\left(r,\frac{1}{f}\right)$. If $\overline{E}\left(1,f\right)=\overline{E}\left(1,g\right)$, we denote by $N_{11}\left(r,\frac{1}{f-1}\right)$ the counting function for common simple 1-points of both $f\left(z\right)$ and $g\left(z\right)$ where multiplicity is not counted.

In 1998, Wang and Fang [2] (cf. [3]) proved the following therem.

Theorem A Let f(z) be a transcendental meromorphic function, and n, k be tow positive integers with $n \ge k+1$. Then $\left(f^n\right)^{(k)}-1$ has infinitely many zeros.

It is interesting to establish the unicity theorem corresponding to the above result. In 2002, Fang [4] obtained the following result.

Theorem B Let f,g be tow nonconstant entire function, and n, k be tow positive integers with $n(\geq 2k+4)$. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share 1 CM, then either $f_{(z)} = c_1 e^{cz}$, $g_{(z)} = c_2 e^{-cz}$ where c_1 , c_2 , c are three constants, satisfying $(-1)^k (c_1 c_2)^n c^{2k} = 1$, or f = tg for a constant t such that $t^n = 1$.

Recently, Bhoosnurmath and Dyavanal [5] extended Theorem B to the meromorphic case, as follows.

Theorem C Let f, g be tow nonconstant meromor-

Copyright © 2011 SciRes.

^{*}This work is supported by the National Natural Science Foundation of China (Grant No. 11071064) and Hunan Provincial Department of Education, P.R. of China (No. 05C268).

phic function, and n, k be tow positive integers with $n(\geq 3k+8)$. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share 1 CM, then either $f_{(z)}=c_1e^{cz}$, $g_{(z)}=c_2e^{-cz}$ where c_1 , c_2 , c are three constants, satisfying $(-1)^k(c_1c_2)^nc^{2k}=1$, or f=tg for a constant t such that $t^n=1$.

Let
$$k = 1$$
, $f = (n+1)^{-\frac{1}{n+1}}F$ and $g = (n+1)^{-\frac{1}{n+1}}G$ in Theorem C. Then $\left[f^{n+1}\right]' = F^nF'$ and $G\left[g^{n+1}\right]' = G^nG'$. We see that the following result, which is proved by Yang and Hua [6], is a direct consequence of Theorem C.

Theorem D Let f(z) and g(z) be two nonconstant meromorphic functions, and $n \ge 11$ an integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f_{(z)} = c_1 e^{cz}$, $g_{(z)} = c_2 e^{-cz}$ where c_1, c_2, c are three constants, satisfying $(c_1 c_2)^{n+1} c^2 = -1$ or f = tg for a constant t such that $t^{n+1} = 1$.

In this paper, we will extend the above result as follows.

Theorem 1 Let f(z) and g(z) be two nonconstant meromorphic functions, $k(\ge 3)$, $n(\ge 11)$ be tow positive integers. If $E_k(1, f^n f') = E_k(1, g^n g')$, then either $f_{(z)} = c_1 e^{cz}$, $g_{(z)} = c_2 e^{-cz}$ where c_1 , c_2 , c_3 are three constants, satisfying $(c_1 c_2)^{n+1} c^2 = -1$ or f = tg for a constant t such that $t_{n+1} = 1$.

Theorem 2 Let f(z) and g(z) be two nonconstant meromorphic functions, $n(\ge 13)$ be a positive in-

teger. If $E_2(1, f^n f') = E_2(1, g^n g')$, then the conclusion of Theorem 1 holds.

Theorem 3 Let f(z) and g(z) be two nonconstant meromorphic functions, $n(\ge 19)$ be a positive integer. If $E_1(1, f^n f') = E_1(1, g^n g')$, then the conclusion of Theorem 1 holds.

2. Some Lemmas

For the proof of our results, we need the following lemmas.

Lemma 1 [7]. Let f be a nonconstant meromorphic function, and let a_0,a_1,\cdots,a_n be finite complex numbers such that $a_n\neq 0$. Then

$$T(r, a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f^1 + a_0)$$

= $nT(r, f) + S(r, f)$

Lemma 2 [6]. Let f(z) and g(z) be two non-constant meromorphic functions, $n(\geq 6)$ be a positive integer, if $f^nf'g^ng'=1$ then either $f_{(z)}=c_1e^{cz}$, $g_{(z)}=c_2e^{-cz}$ where c_1 , c_2 , c_3 are three constants, satisfying $\left(c_1c_2\right)^{n+1}c^2=-1$.

Lemma 3 [8]. Let f be a nonconstant meromorphic function, k a positive integer, then

$$N\left(r,\frac{1}{f^{(k)}}\right) \le N\left(r,\frac{1}{f}\right) + k\overline{N}(r,f) + S(r,f).$$

Lemma 4 [9]. Let f and g be two nonconstant meromorphic functions, and let k be a positive integer. If $E_k(1, f) = E_k(1, g)$, then one of the following cases must occur:

$$T(r,f) + T(r,g) \le \overline{N}_{2}(r,f) + \overline{N}_{2}\left(r,\frac{1}{f}\right) + \overline{N}_{2}\left(r,g\right) + \overline{N}_{2}\left(r,\frac{1}{g}\right) + \overline{N}_{2}\left(r,\frac{1}{f-1}\right) + \overline{N}_{2}\left(r,\frac{1}{g-1}\right) - N_{11}\left(r,\frac{1}{f-1}\right) + N_{(k+1)}\left(r,\frac{1}{f-1}\right) + N_{(k+1)}\left(r,\frac{1}{f-1}\right) + S(r,f) + S(r,g)$$

$$(1)$$

$$f = \frac{(b+1)g + (a-b-1)}{bg + (a-b)}, \text{ where } a \neq 0, b \text{ are tow constants.}$$
 (2)

Lemma 5. Let f and g be two nonconstant meromorphic functions, $n(\geq 6)$ be a positive integer, set $F = f^n f'$, $G = g^n g'$, if

$$F = \frac{(b+1)G + (a-b-1)}{bG + (a-b)}$$
 (2.1)

where $a(\neq 0)b$ are two constants, then either $f_{(z)}=c_1e^{cz}$, $g_{(z)}=c_2e^{-cz}$ where c_1 , c_2 , c are three constants, satisfying $\left(c_1c_2\right)^{n+1}c^2=-1$ or f=tg for a constant t such that $t^{n+1}=1$.

Proof. By Lemma 1, we get

$$T(r,F) = T(r,f^nf') \le T(r,f^n) + T(r,f') \le nT(r,f) + 2T(r,f) + S(r,f)$$

$$= (n+2)T(r,f) + S(r,f)$$
(2.2)

Copyright © 2011 SciRes.

$$nT(r,f) = T(r,f^{n}) + S(r,f) = N(r,f^{n}) + m(r,f^{n}) + S(r,f)$$

$$\leq N(r,f^{n}f') - N(r,f') + m(r,f^{n}f') + m\left(r,\frac{1}{f'}\right) + S(r,f)$$

$$\leq T(r,f^{n}f') + T(r,f') - N(r,f') - N\left(r,\frac{1}{f'}\right) + S(r,f)$$

$$\leq T(r,F) + T(r,f) - N(r,f) - N\left(r,\frac{1}{f'}\right) + S(r,f)$$

$$(2.3)$$

So.

$$T(r,F) \ge (n-1)T(r,f) + N(r,f) + N\left(r,\frac{1}{f'}\right) + S(r,f)$$

$$(2.4)$$

Thus, by (2.2) and (2.3), we get S(r, F) = S(r, f). Similarly, we get

$$T(r,G) \ge (n-1)T(r,g) + N(r,g)$$

$$+ N\left(r, \frac{1}{g'}\right) + S(r,g)$$

$$S(r,G) = S(r,g)$$
(2.5)

It is clear that the inequality $T(r, f) \le T(r, g)$ or $T(r, g) \le T(r, f)$ holds for a set of infinite measure of r.

Without loss of generality, we may suppose that

 $T(r, f) \le T(r, g)$, holds for $r \in I$, where I is a set with infinite measure. Next we consider five cases.

Case 1. $a \neq b, b \neq 0, -1$,

If $a-b-1 \neq 0$, then by the 2.1 we known:

$$\overline{N}\left(r,\frac{1}{F}\right) = \overline{N}\left(r,\frac{1}{G + \frac{(a-b-1)}{b+1}}\right)$$

By the Nevalinna second fundamental theorem and lemma 3, we have

$$T(r,G) \leq \overline{N}(r,G) + \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{G+\frac{(a-b-1)}{b+1}}\right) + S(r,G)$$

$$= \overline{N}(r,G) + \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{F}\right) + S(r,g)$$

$$\leq \overline{N}(r,g) + \overline{N}\left(r,\frac{1}{g}\right) + N\left(r,\frac{1}{g'}\right) + \overline{N}\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f'}\right) + S(r,g)$$

$$\leq \overline{N}(r,g) + \overline{N}\left(r,\frac{1}{g}\right) + N\left(r,\frac{1}{g'}\right) + N(r,f) + 2N\left(r,\frac{1}{f}\right) + S(r,g)$$

$$\leq T(r,g) + \overline{N}(r,g) + N\left(r,\frac{1}{g'}\right) + 3T(r,f) + S(r,g)$$

$$\leq 4T(r,g) + \overline{N}(r,g) + N\left(r,\frac{1}{g'}\right) + S(r,g)$$

By $n \ge 6$ and (2.5), we get $T(r,g) \le S(r,g)$, for $r \in I$, a contradiction.

If a-b-1=0, by (2.1) we can obtain:

$$F = \frac{(b+1)G}{bG+1}$$

We see that:

$$\overline{N}(r,F) = \overline{N}\left(r,\frac{1}{G+\frac{1}{h}}\right)$$

Combining the Nevalinna second fundamental theorem and lemma 3, we have

$$T(r,G) \leq \overline{N}(r,G) + \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{G+\frac{1}{b}}\right) + S(r,G)$$

$$= \overline{N}(r,G) + \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}(r,F) + S(r,g)$$

$$\leq \overline{N}(r,g) + \overline{N}\left(r,\frac{1}{g}\right) + N\left(r,\frac{1}{g'}\right) + \overline{N}\left(r,\frac{1}{f}\right) + S(r,g)$$

$$\leq T(r,g) + \overline{N}(r,g) + N\left(r,\frac{1}{g'}\right) + T(r,f) + S(r,g)$$

$$\leq 2T(r,g) + \overline{N}(r,g) + N\left(r,\frac{1}{g'}\right) + S(r,g)$$

By $n \ge 6$ and (2.5), we get $T(r,g) \le S(r,g)$, $r \in I$, a contradiction.

Case 2.
$$a \ne b, b = -1$$
, So $F = \frac{a}{(a+1)-G}$

We can get $\overline{N}(r,F) = \overline{N}\left(r,\frac{1}{G-(a+1)}\right)$, similarly as

Case 1, it is impossible.

Case 3.
$$a \neq b, b = 0$$
, So $F = \frac{G + (a-1)}{a}$.

If a-1=0, then $F \equiv G$, so $f^n f' \equiv g^n g'$.

It follows that:

$$f^n f' \equiv g^n g' F_1 = \frac{f^{n+1}}{n+1} = \frac{g^{n+1}}{n+1} + C = G_1 + C$$
, where C is a

constant.

We state that C is zero. If not, one we can get that from the Nevalinna second fundamental theorem and lemma 1.

$$(n+1)T(r,g) = T(r,G_1) + S(r,g)$$

$$\leq \overline{N}(r,G_1) + \overline{N}\left(r,\frac{1}{G_1}\right) + \overline{N}\left(r,\frac{1}{G_1+1}\right) + S(r,g)$$

$$= \overline{N}(r,G_1) + \overline{N}\left(r,\frac{1}{G_1}\right) + \overline{N}\left(r,\frac{1}{F_1}\right) + S(r,g)$$

$$= \overline{N}(r,g) + \overline{N}\left(r,\frac{1}{g}\right) + \overline{N}\left(r,\frac{1}{f}\right) + S(r,g)$$

$$\leq 3T(r,g) + S(r,g)$$

Because $n \ge 6$, we can get $T(r,g) \le S(r,g)$, for

 $r \in I$, which is impossible. So C is zore.

Then $F_1 \equiv G_1$, it gives that $f^{n+1} = g^{n+1}$, so f = tg, where t is constant satisfying $t^{n+1} = 1$.

Case 4. $a = b, b \neq 0, -1$, from (2.1) we can get

$$F = \frac{(b+1)G-1}{bG} \quad \overline{N}(r,F) = \overline{N}(r,\frac{1}{G}), \text{ similarly as Case}$$

1, it is impossible.

Since $a \neq 0$, now we consider the following case.

Case 6. a = b = -1

It yields $FG \equiv 1$, that is: $f^n f' g^n g' = 1$. By the Lemma 2, we can get $f_{(z)} = c_1 e^{cz}$, $g_{(z)} = c_2 e^{-cz}$ where c_1 , c_2 , c_3 are three constants, satisfying $(c_1 c_2)^{n+1} c^2 = -1$.

Now the proof of Lemma 5 is completed.

3. Proof of Theorems

Proof of theorem 1:

Noticing that $k \ge 3$, we have

$$\begin{split} & \overline{N}\bigg(r,\frac{1}{F-1}\bigg) + \overline{N}\bigg(r,\frac{1}{G-1}\bigg) - N_{11}\bigg(r,\frac{1}{F-1}\bigg) \\ & + \overline{N}_{(k+1)}\bigg(r,\frac{1}{F-1}\bigg) + \overline{N}_{(k+1)}\bigg(r,\frac{1}{G-1}\bigg) \\ & \leq \frac{1}{2}N\bigg(r,\frac{1}{F-1}\bigg) + \frac{1}{2}N\bigg(r,\frac{1}{G-1}\bigg) \\ & \leq \frac{1}{2}T\bigg(r,F\bigg) + \frac{1}{2}T\bigg(r,G\bigg) + O(1) \end{split}$$

By lemma 4, we can get

$$T(r,F)+T(r,G) \le 2\left\{N_{2}\left(r,\frac{1}{F}\right)+N_{2}\left(r,F\right)+N_{2}\left(r,\frac{1}{G}\right)+N_{2}\left(r,G\right)\right\}+S(r,F)+S(r,G)$$

$$=2\left\{N_{2}\left(r,\frac{1}{F}\right)+N_{2}\left(r,F\right)+N_{2}\left(r,\frac{1}{G}\right)+N_{2}\left(r,G\right)\right\}+S(r,f)+S(r,g)$$
(3.1)

Because:

$$N_{2}\left(r,\frac{1}{F}\right)+N_{2}\left(r,F\right)=N_{2}\left(r,\frac{1}{f^{n}f'}\right)+N_{2}\left(r,f^{n}f'\right)\leq2\overline{N}\left(r,\frac{1}{f}\right)+N\left(r,\frac{1}{f'}\right)+2\overline{N}\left(r,f\right) \tag{3.2}$$

and

$$N_{2}\left(r,\frac{1}{G}\right)+N_{2}\left(r,G\right)\leq2\overline{N}\left(r,\frac{1}{g}\right)+N\left(r,\frac{1}{g'}\right)+2\overline{N}\left(r,g\right)\tag{3.3}$$

By (3.1)-(3.3) and lemma 3, we can get:

$$T(r,F)+T(r,G) \leq 2\left[2\overline{N}\left(r,\frac{1}{f}\right)+2\overline{N}\left(r,f\right)+N\left(r,\frac{1}{f'}\right)+2\overline{N}\left(r,\frac{1}{g}\right)+2\overline{N}\left(r,g\right)+N\left(r,\frac{1}{g'}\right)\right]+S(r,f)+S(r,g)$$

$$=4\overline{N}\left(r,\frac{1}{f}\right)+4\overline{N}\left(r,f\right)+2N\left(r,\frac{1}{f'}\right)+S(r,f)+4\overline{N}\left(r,\frac{1}{g}\right)+4\overline{N}\left(r,g\right)+2N\left(r,\frac{1}{g'}\right)+S(r,g)$$

$$\leq 5N\left(r,\frac{1}{f}\right)+5\overline{N}\left(r,f\right)+N\left(r,\frac{1}{f'}\right)+S(r,f)+5N\left(r,\frac{1}{g}\right)+5\overline{N}\left(r,g\right)+N\left(r,\frac{1}{g'}\right)+S(r,g)$$

$$\leq 9T\left(r,f\right)+\overline{N}\left(r,f\right)+N\left(r,\frac{1}{f'}\right)+S(r,f)+9T\left(r,g\right)+\overline{N}\left(r,g\right)+N\left(r,\frac{1}{g'}\right)+S(r,g)$$

$$\leq 9T\left(r,f\right)+\overline{N}\left(r,f\right)+N\left(r,\frac{1}{f'}\right)+S(r,f)+9T\left(r,g\right)+\overline{N}\left(r,g\right)+N\left(r,\frac{1}{g'}\right)+S(r,g)$$

By $n \ge 9$ and (2.4), (2.5) we obtain $T(r, f) + T(r, g) \le S(r, f) + S(r, g)$, which is impossible.

Therefore, by lemma 4 $f = \frac{(b+1)g + (a-b-1)}{bg + (a-b)}$, where

 $a(\neq 0)$, b are tow constants, it follows by lemma 5

then either $f_{(z)}=c_1e^{cz}$, $g_{(z)}=c_2e^{-cz}$ where c_1 , c_2 , c are three constants, satisfying $\left(c_1c_2\right)^{n+1}c^2=-1$ or f=tg for a constant t such that $t^{n+1}=1$.

The proof of Theorem 1 is complete.

Proof of theorem 2:

We can see clearly:

$$\overline{N}\left(r, \frac{1}{F-1}\right) + \overline{N}\left(r, \frac{1}{G-1}\right) - N_{11}\left(r, \frac{1}{F-1}\right) + \frac{1}{2}\overline{N}_{(3}\left(r, \frac{1}{F-1}\right) + \frac{1}{2}\overline{N}_{(3}\left(r, \frac{1}{G-1}\right) + \frac{1}{2}\overline{N}_{(3)}\left(r, \frac{1}{G-1}\right) \\
\leq \frac{1}{2}N\left(r, \frac{1}{F-1}\right) + \frac{1}{2}N\left(r, \frac{1}{G-1}\right) \leq \frac{1}{2}T\left(r, F\right) + \frac{1}{2}T\left(r, G\right) + S\left(r, f\right) + S\left(r, g\right)$$

By lemma 4, we can get:

$$T(r,F)+T(r,G) \leq 2\left[N_{2}\left(r,\frac{1}{F}\right)+N_{2}\left(r,F\right)+N_{2}\left(r,\frac{1}{G}\right)+N_{2}\left(r,G\right)\right] + \overline{N}_{(3}\left(r,\frac{1}{F-1}\right)\overline{N}_{(3}\left(r,\frac{1}{G-1}\right)+S(r,f)+S(r,g)$$

$$(3.5)$$

Considering

$$\overline{N}_{(3)}\left(r, \frac{1}{F-1}\right) \leq \frac{1}{2}N\left(r, \frac{F}{F}\right) = \frac{1}{2}N\left(r, \frac{F}{F}\right) + S\left(r, f\right) \leq \frac{1}{2}\overline{N}\left(r, \frac{1}{F}\right) + \frac{1}{2}\overline{N}\left(r, F\right) + S\left(r, f\right) \\
\leq \frac{1}{2}\left[\overline{N}\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f}\right) + \overline{N}\left(r, f\right)\right] + S\left(r, f\right) \leq 2T\left(r, f\right) + S\left(r, f\right) \tag{3.6}$$

Similarly, we can get

$$\overline{N}_{(3)}\left(r, \frac{1}{G-1}\right) \le 2T\left(r, g\right) + S\left(r, g\right) \tag{3.7}$$

By from (3.4)-(3.7), we can get

$$T(r,F) + T(r,G) \le 11T(r,f) + \overline{N}(r,f) + N\left(r,\frac{1}{f'}\right) + S(r,f) + 11T(r,g) + \overline{N}(r,g) + N\left(r,\frac{1}{g'}\right) + S(r,g)$$

Copyright © 2011 SciRes.

Since $n \ge 13$ and (2.4), (2.5), we can get $T(r, f) + T(r, g) \le S(r, f) + S(r, g)$ impossible The proof of Theorem 2 is complete.

Proof of theorem 3:

Since:

$$\begin{split} & \overline{N}\bigg(r,\frac{1}{F-1}\bigg) + \overline{N}\bigg(r,\frac{1}{G-1}\bigg) - N_{11}\bigg(r,\frac{1}{F-1}\bigg) \leq \frac{1}{2}\,N\bigg(r,\frac{1}{F-1}\bigg) \\ & + \frac{1}{2}\,N\bigg(r,\frac{1}{G-1}\bigg) \leq \frac{1}{2}\,T\left(r,F\right) + \frac{1}{2}\,T\left(r,G\right) + S\left(r,f\right) + S\left(r,g\right) \end{split}$$

We can see clearly from lemma 4 that:

$$T(r,F)+T(r,G) \leq 2\left\{N_{2}\left(r,\frac{1}{F}\right)+N_{2}\left(r,F\right)+N_{2}\left(r,\frac{1}{G}\right)+N_{2}\left(r,G\right)+\overline{N}_{(2}\left(r,\frac{1}{F-1}\right)+\overline{N}_{(2}\left(r,\frac{1}{G-1}\right)\right)\right\} \\ +S(r,F)+S(r,G) \\ =2\left\{N_{2}\left(r,\frac{1}{F}\right)+N_{2}\left(r,F\right)+N_{2}\left(r,\frac{1}{G}\right)+N_{2}\left(r,G\right)+\overline{N}_{(2}\left(r,\frac{1}{F-1}\right)+\overline{N}_{(2}\left(r,\frac{1}{G-1}\right)\right)\right\} \\ +S(r,f)+S(r,g) \tag{3.8}$$

Considering

$$\overline{N}_{(2)}\left(r, \frac{1}{F-1}\right) \leq N\left(r, \frac{F}{F'}\right) = N\left(r, \frac{F'}{F}\right) + S\left(r, f\right) \leq \overline{N}\left(r, F\right) + \overline{N}\left(r, \frac{1}{F}\right) + S\left(r, f\right)
\leq N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f'}\right) + \overline{N}\left(r, f\right) + S\left(r, f\right) \leq 4T\left(r, f\right) + S\left(r, f\right)$$
(3.9)

Similarly, we can get

$$\overline{N}_{(2)}\left(r, \frac{1}{G-1}\right) \le 4T\left(r, g\right) + S\left(r, g\right) \tag{3.10}$$

By from (3.8)-(3.10), we can get

$$T\left(r,F\right)+T\left(r,G\right)\leq 17T\left(r,f\right)+\overline{N}\left(r,f\right)+N\left(r,\frac{1}{f'}\right)+S\left(r,f\right)+17T\left(r,g\right)+\overline{N}\left(r,g\right)+N\left(r,\frac{1}{g'}\right)+S\left(r,g\right)$$

Since $n \ge 19$ and (2.4), (2.5), we can get $T(r, f) + T(r, g) \le S(r, f) + S(r, g)$, impossible The proof of Theorem 3 is complete.

4. References

- L. Yang, "Value Distribution Theory," Springer-Verlag, Berlin, 1993.
- [2] Y. F. Wang and M. L. Fang, "Picard Values and Normal Families of Meromorphic Functions with Multiple Zeros," *Acta Mathematica Sinica* (*N.S*), Vol. 14, No. 1, 1998, pp. 17-26.
- [3] H. H. Chen, "Yosida Function and Picard Values of Integral Functions and Their Derivatives," *Bulletin of the Australian Mathematical Society*, Vol. 54, 1996, pp. 373-381. doi:10.1017/S000497270002178X
- [4] M. L. Fang, "Uniqueness and Value-Sharing of Entire Functions," Computers & Mathematics with Applications,

Vol. 44, 2002, pp. 823-831. doi:10.1016/S0898-1221(02)00194-3

- [5] S. S. Bhoosnurmath and R. S. Dyavanal, "Uniqueness and Value-Sharing of Meromorphic Functions," *Applied Mathematics*, Vol. 53, 2007, pp. 1191-1205.
- [6] C. C. Yang and X. H. Hua, "Uniqueness and Value-Sharing of Meromorphic Functions," *Annales Academiæ Scientiarum Fennicæ Mathematica*, Vol. 22, No. 2, 1997, p. 395.
- [7] C. C. Yang, "On Deficiencies of Differential Polynomials," *Mathematische Zeitschrift*, Vol. 125, No. 2, 1972, pp. 107-112. doi:10.1007/BF01110921
- [8] H. X. Yi and C. C. Yang, "Uniqueness Theory of Meromorphic Functions," Science Press, Beijing, 1995.
- [9] C. Y. Fang and M. L. Fang, "Uniqueness Theory of Mer morphic Functions and Differential Polynomials," *Computers and Mathematics with Applications*, Vol. 44, 2002, pp. 607-617. doi:10.1016/S0898-1221(02)00175-X