Uniqueness of Meromorphic Functions Concerning Differential Monomials*

Hui Huang, Bin Huang
College of Mathematics, Changsha University of Science and Technology, Changsha, China
E-mail: huang.liuyuan@163.com
Received October 21, 2010; revised December 6, 2010; accepted December 11, 2010

Abstract

Considering the uniqueness of meromorphic functions concerning differential monomials ,we obtain that, if two non-constant meromorphic functions $f(z)$ and $g(z)$ satisfy $E_{k}\left(1, f^{n} f^{\prime}\right)=E_{k}\left(1, g^{n} g^{\prime}\right)$, where k and n are tow positive integers satisfying $k \geq 3$ and $n \geq 11$, then either $f_{(z)}=c_{1} e^{c z}, g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f=t g$ for a constant t such that $t^{n+1}=1$.

Keywords: Meromorphic Function, Sharing Value, Uniqueness

1. Introduction and Main Results

In this paper we use the standard notations and terms in the value distribution theory [1].

Let $f(z)$ be a nonconstant meromorophic function on the complex plane C. Define $E(a, f)=\{z \mid f(z)-a=0\}$, where a zero point with multiplicity m is counted m times in the set. If these zero points are only counted once, then we denote the set by $\bar{E}(a, f)$. Let k a positive integer. Define
$E_{k}(a, f)=\left\{z \mid f(z)-a=0, \exists i, 1 \leq i \leq k\right.$, st. $\left.f^{(i)}(z) \neq 0\right\}$, where a zero point whit multiplicity m is counted m times in the set.

Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions. If $E(a, f)=E(a, g)$, then we say that $\underline{f}(z)$ and $_g(z)$ share the value $\mathbf{C M}$; if
$\bar{E}(a, f)=\bar{E}(a, g)$, then we say that $f(z)$ and $g(z)$ share the value IM.

Additional, we denote by $N_{k}(r, f)$ the counting function for poles of $f(z)$ with multiplicity $\leq k$, and by $\overline{N_{k)}}$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r, f)$ be the counting function for poles of $f(z)$ with multiplicity $\geq k$, and by $\bar{N}_{k}(r, f)$ the corresponding one for which multiplicity is not counted. Set
$N_{k}(r, f)=\bar{N}(r, f)+\bar{N}_{(2}+\cdots+\bar{N}_{(k}(r, f)$, Similary, we
*This work is supported by the National Natural Science Foundation of China (Grant No. 11071064) and Hunan Provincial Department of Education, P.R. of China (No. 05C268).
have the notation: $N_{k)}\left(r, \frac{1}{f}\right), \bar{N}_{k)}\left(r, \frac{1}{f}\right), N_{(k}\left(r, \frac{1}{f}\right)$, $\bar{N}_{(k}\left(r, \frac{1}{f}\right), \quad N_{k}\left(r, \frac{1}{f}\right)$. If $\bar{E}(1, f)=\bar{E}(1, g)$, we denote by $N_{11}\left(r, \frac{1}{f-1}\right)$ the counting function for common simple 1-points of both $f(z)$ and $g(z)$ where multiplicity is not counted.

In 1998, Wang and Fang [2] (cf. [3]) proved the following therem.

Theorem A Let $f(z)$ be a transcendental meromorphic function, and n, k be tow positive integers with $n \geq k+1$. Then $\left(f^{n}\right)^{(k)}-1$ has infinitely many zeros.

It is interesting to establish the unicity theorem corresponding to the above result. In 2002, Fang [4] obtained the following result.

Theorem B Let f, g be tow nonconstant entire function, and n, k be tow positive integers with $n(\geq 2 k+4)$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share 1 CM , then either $f_{(z)}=c_{1} e^{c z}, g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n} c^{2 k}=1$, or $f=\operatorname{tg}$ for a constant t such that $t^{n}=1$.

Recently, Bhoosnurmath and Dyavanal [5] extended Theorem B to the meromorphic case, as follows.

Theorem C Let f, g be tow nonconstant meromor-
phic function, and n, k be tow positive integers with $n(\geq 3 k+8)$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share 1 CM , then either $f_{(z)}=c_{1} e^{c z}, g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n} c^{2 k}=1$, or $f=\operatorname{tg}$ for a constant t such that $t^{n}=1$.

Let $k=1, f=(n+1)^{-\frac{1}{n+1}} F$ and $g=(n+1)^{-\frac{1}{n+1}} G$ in Theorem C. Then $\left[f^{n+1}\right]^{\prime}=F^{n} F^{\prime}$ and $G\left[g^{n+1}\right]^{\prime}=G^{n} G^{\prime}$. We see that the following result, which is proved by Yang and Hua [6], is a direct consequence of Theorem C.

Theorem D Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, and $n \geq 11$ an integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share 1 CM , then either $f_{(z)}=c_{1} e^{c z}$, $g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f=t g$ for a constant t such that $t^{n+1}=1$.

In this paper, we will extend the above result as follows.

Theorem 1 Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, $k(\geq 3), n(\geq 11)$ be tow positive integers. If $E_{k}\left(1, f^{n} f^{\prime}\right)=E_{k}\left(1, g^{n} g^{\prime}\right)$, then either $f_{(z)}=c_{1} e^{c z}, g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f=\operatorname{tg}$ for a constant t such that $t_{n+1}=1$.

Theorem 2 Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, $n(\geq 13)$ be a positive in-
teger. If $E_{2}\left(1, f^{n} f^{\prime}\right)=E_{2}\left(1, g^{n} g^{\prime}\right)$, then the conclusion of Theorem 1 holds.

Theorem 3 Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, $n(\geq 19)$ be a positive integer. If $E_{1}\left(1, f^{n} f^{\prime}\right)=E_{1}\left(1, g^{n} g^{\prime}\right)$, then the conclusion of Theorem 1 holds.

2. Some Lemmas

For the proof of our results, we need the following lemmas.

Lemma 1 [7]. Let f be a nonconstant meromorphic function, and let $a_{0}, a_{1}, \cdots, a_{n}$ be finite complex numbers such that $a_{n} \neq 0$. Then

$$
\begin{aligned}
& T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f^{1}+a_{0}\right) \\
& =n T(r, f)+S(r, f)
\end{aligned}
$$

Lemma 2 [6]. Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, $n(\geq 6)$ be a positive integer, if $f^{n} f^{\prime} g^{n} g^{\prime}=1$ then either $f_{(z)}=c_{1} e^{c z}$, $g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

Lemma 3 [8]. Let f be a nonconstant meromorphic function, k a positive integer, then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 4 [9]. Let f and g be two nonconstant meromorphic functions, and let k be a positive integer. If $E_{k}(1, f)=E_{k}(1, g)$, then one of the following cases must occur:

$$
\begin{gather*}
T(r, f)+T(r, g) \leq \bar{N}_{2}(r, f)+\bar{N}_{2}\left(r, \frac{1}{f}\right)+\bar{N}_{2}(r, g)+\bar{N}_{2}\left(r, \frac{1}{g}\right)+\bar{N}_{2}\left(r, \frac{1}{f-1}\right)+\bar{N}_{2}\left(r, \frac{1}{g-1}\right) \tag{1}\\
-N_{11}\left(r, \frac{1}{f-1}\right)+N_{(k+1}\left(r, \frac{1}{f-1}\right)+N_{(k+1}\left(r, \frac{1}{f-1}\right)+S(r, f)+S(r, g) \\
f=\frac{(b+1) g+(a-b-1)}{b g+(a-b)}, \text { where } a(\neq 0), b \text { are tow constants. } \tag{2}
\end{gather*}
$$

Lemma 5. Let f and g be two nonconstant meromorphic functions, $n(\geq 6)$ be a positive integer, set $F=f^{n} f^{\prime}, \quad G=g^{n} g^{\prime}$, if

$$
\begin{align*}
& F=\frac{(b+1) G+(a-b-1)}{b G+(a-b)} \quad \begin{array}{c}
\text { (2.1) } \quad \begin{array}{c}
\text { tying }\left(c_{1} c_{2}\right) \\
\text { that } t^{n+1}=1 . \\
\text { Proof. By Lemma 1, we get }
\end{array} \\
T(r, F)=T\left(r, f^{n} f^{\prime}\right) \leq T\left(r, f^{n}\right)+T\left(r, f^{\prime}\right) \leq n T(r, f)+2 T(r, f)+S(r, f) \\
\\
=(n+2) T(r, f)+S(r, f)
\end{array} \tag{2.1}
\end{align*}
$$

where $a(\neq 0) b$ are two constants, then either $f_{(z)}=c_{1} e^{c z}$, $g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f=t g$ for a constant t such

$$
\begin{align*}
n T(r, f) & =T\left(r, f^{n}\right)+S(r, f)=N\left(r, f^{n}\right)+m\left(r, f^{n}\right)+S(r, f) \\
& \leq N\left(r, f^{n} f^{\prime}\right)-N\left(r, f^{\prime}\right)+m\left(r, f^{n} f^{\prime}\right)+m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
& \leq T\left(r, f^{n} f^{\prime}\right)+T\left(r, f^{\prime}\right)-N\left(r, f^{\prime}\right)-N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{2.3}\\
& \leq T(r, F)+T(r, f)-N(r, f)-N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)
\end{align*}
$$

So,

$$
\begin{equation*}
T(r, F) \geq(n-1) T(r, f)+N(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{2.4}
\end{equation*}
$$

Thus, by (2.2) and (2.3), we get $S(r, F)=S(r, f)$.
Similarly, we get

$$
\begin{align*}
T(r, G) & \geq(n-1) T(r, g)+N(r, g) \\
+ & N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g) \tag{2.5}\\
& S(r, G)=S(r, g)
\end{align*}
$$

It is clear that the inequality $T(r, f) \leq T(r, g)$ or $T(r, g) \leq T(r, f)$ holds for a set of infinite measure of r.
Without loss of generality, we may suppose that
$T(r, f) \leq T(r, g)$, holds for $r \in I$, where I is a set with infinite measure. Next we consider five cases.

Case 1. $a \neq b, b \neq 0,-1$,
If $a-b-1 \neq 0$, then by the 2.1 we known:

$$
\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{G+\frac{(a-b-1)}{b+1}}\right)
$$

By the Nevalinna second fundamental theorem and lemma 3, we have

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G+\frac{(a-b-1)}{b+1}}\right)+S(r, G) \\
& =\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, g) \\
& \leq \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, g) \\
& \leq \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+N(r, f)+2 N\left(r, \frac{1}{f}\right)+S(r, g) \\
& \leq T(r, g)+\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+3 T(r, f)+S(r, g) \\
& \leq 4 T(r, g)+\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)
\end{aligned}
$$

By $n \geq 6$ and (2.5), we get $T(r, g) \leq S(r, g)$, for $r \in I$, a contradiction.
If $a-b-1=0$, by (2.1) we can obtain:

$$
F=\frac{(b+1) G}{b G+1}
$$

We see that:

$$
\bar{N}(r, F)=\bar{N}\left(r, \frac{1}{G+\frac{1}{b}}\right)
$$

Combining the Nevalinna second fundamental theorem and lemma 3, we have

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G+\frac{1}{b}}\right)+S(r, G) \\
& =\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+S(r, g) \\
& \leq \bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, g) \\
& \leq T(r, g)+\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+T(r, f)+S(r, g) \\
& \leq 2 T(r, g)+\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)
\end{aligned}
$$

By $n \geq 6$ and (2.5), we get $T(r, g) \leq S(r, g), r \in I$, a contradiction.

Case 2. $a \neq b, b=-1$, So $F=\frac{a}{(a+1)-G}$
We can get $\bar{N}(r, F)=\bar{N}\left(r, \frac{1}{G-(a+1)}\right)$, similarly as

Case 1, it is impossible.

Case 3. $a \neq b, b=0$, So $F=\frac{G+(a-1)}{a}$.
If $a-1=0$, then $F \equiv G$, so $f^{n} f^{\prime} \equiv g^{n} g^{\prime}$.
It follows that:
$f^{n} f^{\prime} \equiv g^{n} g^{\prime} F_{1}=\frac{f^{n+1}}{n+1}=\frac{g^{n+1}}{n+1}+C=G_{1}+C$, where C is a constant.

We state that C is zero. If not, one we can get that from the Nevalinna second fundamental theorem and lemma 1.

$$
\begin{aligned}
(n+1) & T(r, g)=T\left(r, G_{1}\right)+S(r, g) \\
& \leq \bar{N}\left(r, G_{1}\right)+\bar{N}\left(r, \frac{1}{G_{1}}\right)+\bar{N}\left(r, \frac{1}{G_{1}+1}\right)+S(r, g) \\
& =\bar{N}\left(r, G_{1}\right)+\bar{N}\left(r, \frac{1}{G_{1}}\right)+\bar{N}\left(r, \frac{1}{F_{1}}\right)+S(r, g) \\
& =\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, g) \\
& \leq 3 T(r, g)+S(r, g)
\end{aligned}
$$

Because $n \geq 6$, we can get $T(r, g) \leq S(r, g)$, for
$r \in I$, which is impossible. So C is zore.
Then $F_{1} \equiv G_{1}$, it gives that $f^{n+1}=g^{n+1}$, so $f=t g$, where t is constant satisfying $t^{n+1}=1$.

Case 4. $a=b, b \neq 0,-1$, from (2.1) we can get
$F=\frac{(b+1) G-1}{b G} \bar{N}(r, F)=\bar{N}\left(r, \frac{1}{G}\right)$, similarly as Case 1 , it is impossible.

Since $a \neq 0$, now we consider the following case.
Case 6. $a=b=-1$
It yields $F G \equiv 1$, that is: $f^{n} f^{\prime} g^{n} g^{\prime}=1$. By the Lemma 2, we can get $f_{(z)}=c_{1} e^{c z}, g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

Now the proof of Lemma 5 is completed.

3. Proof of Theorems

Proof of theorem 1:

Noticing that $k \geq 3$, we have

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{11}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{(k+1}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(k+1}\left(r, \frac{1}{G-1}\right) \\
& \leq \frac{1}{2} N\left(r, \frac{1}{F-1}\right)+\frac{1}{2} N\left(r, \frac{1}{G-1}\right) \\
& \leq \frac{1}{2} T(r, F)+\frac{1}{2} T(r, G)+O(1)
\end{aligned}
$$

By lemma 4, we can get

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\}+S(r, F)+S(r, G) \tag{3.1}\\
& =2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\}+S(r, f)+S(r, g)
\end{align*}
$$

Because:

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)=N_{2}\left(r, \frac{1}{f^{n} f^{\prime}}\right)+N_{2}\left(r, f^{n} f^{\prime}\right) \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}(r, f) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G) \leq 2 \bar{N}\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+2 \bar{N}(r, g) \tag{3.3}
\end{equation*}
$$

By (3.1)-(3.3) and lemma 3, we can get:

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 2\left[2 \bar{N}\left(r, \frac{1}{f}\right)+2 \bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}\left(r, \frac{1}{g}\right)+2 \bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)\right]+S(r, f)+S(r, g) \\
& =4 \bar{N}\left(r, \frac{1}{f}\right)+4 \bar{N}(r, f)+2 N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+4 \bar{N}\left(r, \frac{1}{g}\right)+4 \bar{N}(r, g)+2 N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g) \tag{3.4}\\
& \leq 5 N\left(r, \frac{1}{f}\right)+5 \bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+5 N\left(r, \frac{1}{g}\right)+5 \bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g) \\
& \leq 9 T(r, f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+9 T(r, g)+\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)
\end{align*}
$$

By $n \geq 9$ and (2.4), (2.5) we obtain
$T(r, f)+T(r, g) \leq S(r, f)+S(r, g)$, which is impossible.

Therefore, by lemma $4 f=\frac{(b+1) g+(a-b-1)}{b g+(a-b)}$, where $a(\neq 0), \quad b$ are tow constants, it follows by lemma 5
then either $f_{(z)}=c_{1} e^{c z}, g_{(z)}=c_{2} e^{-c z}$ where c_{1}, c_{2}, c are three constants, satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f=t g$ for a constant t such that $t^{n+1}=1$.

The proof of Theorem 1 is complete.

Proof of theorem 2:

We can see clearly:

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{11}\left(r, \frac{1}{F-1}\right)+\frac{1}{2} \bar{N}_{(3}\left(r, \frac{1}{F-1}\right)+\frac{1}{2} \bar{N}_{(3}\left(r, \frac{1}{G-1}\right) \\
& \leq \frac{1}{2} N\left(r, \frac{1}{F-1}\right)+\frac{1}{2} N\left(r, \frac{1}{G-1}\right) \leq \frac{1}{2} T(r, F)+\frac{1}{2} T(r, G)+S(r, f)+S(r, g)
\end{aligned}
$$

By lemma 4, we can get:

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 2\left[N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right] \tag{3.5}\\
& +\bar{N}_{(3}\left(r, \frac{1}{F-1}\right) \bar{N}_{(3}\left(r, \frac{1}{G-1}\right)+S(r, f)+S(r, g)
\end{align*}
$$

Considering

$$
\begin{align*}
\bar{N}_{(3}\left(r, \frac{1}{F-1}\right) & \leq \frac{1}{2} N\left(r, \frac{F}{F^{\prime}}\right)=\frac{1}{2} N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \leq \frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right)+\frac{1}{2} \bar{N}(r, F)+S(r, f) \\
& \leq \frac{1}{2}\left[\bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}(r, f)\right]+S(r, f) \leq 2 T(r, f)+S(r, f) \tag{3.6}
\end{align*}
$$

Similarly, we can get

$$
\begin{equation*}
\bar{N}_{(3}\left(r, \frac{1}{G-1}\right) \leq 2 T(r, g)+S(r, g) \tag{3.7}
\end{equation*}
$$

By from (3.4)-(3.7), we can get

$$
T(r, F)+T(r, G) \leq 11 T(r, f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+11 T(r, g)+\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)
$$

Since $n \geq 13$ and (2.4), (2.5), we can get $T(r, f)+T(r, g) \leq S(r, f)+S(r, g)$ impossible The proof of Theorem 2 is complete.

Proof of theorem 3:

Since:

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{11}\left(r, \frac{1}{F-1}\right) \leq \frac{1}{2} N\left(r, \frac{1}{F-1}\right) \\
& +\frac{1}{2} N\left(r, \frac{1}{G-1}\right) \leq \frac{1}{2} T(r, F)+\frac{1}{2} T(r, G)+S(r, f)+S(r, g)
\end{aligned}
$$

We can see clearly from lemma 4 that:

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{G-1}\right)\right\} \\
& +S(r, F)+S(r, G) \\
& =2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)+\bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{G-1}\right)\right\} \tag{3.8}\\
& +S(r, f)+S(r, g)
\end{align*}
$$

Considering

$$
\begin{align*}
\bar{N}_{(2}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{F}{F^{\prime}}\right)=N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}(r, f)+S(r, f) \leq 4 T(r, f)+S(r, f) \tag{3.9}
\end{align*}
$$

Similarly, we can get

$$
\begin{equation*}
\bar{N}_{(2}\left(r, \frac{1}{G-1}\right) \leq 4 T(r, g)+S(r, g) \tag{3.10}
\end{equation*}
$$

By from (3.8)-(3.10), we can get

$$
T(r, F)+T(r, G) \leq 17 T(r . f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)+17 T(r . g)+\bar{N}(r, g)+N\left(r, \frac{1}{g^{\prime}}\right)+S(r, g)
$$

Since $n \geq 19$ and (2.4), (2.5), we can get $T(r, f)+T(r, g) \leq S(r, f)+S(r, g)$, impossible The proof of Theorem 3 is complete.

4. References

[1] L. Yang, "Value Distribution Theory," Springer-Verlag, Berlin, 1993.
[2] Y. F. Wang and M. L. Fang, "Picard Values and Normal Families of Meromorphic Functions with Multiple Zeros," Acta Mathematica Sinica (N.S), Vol. 14, No. 1, 1998, pp. 17-26.
[3] H. H. Chen, "Yosida Function and Picard Values of Integral Functions and Their Derivatives," Bulletin of the Australian Mathematical Society, Vol. 54, 1996, pp. 373-381. doi:10.1017/S000497270002178X
[4] M. L. Fang, "Uniqueness and Value-Sharing of Entire Functions," Computers \& Mathematics with Applications,

Vol. 44, 2002, pp. 823-831. doi:10.1016/S0898-1221(02)00194-3
[5] S. S. Bhoosnurmath and R. S. Dyavanal, "Uniqueness and Value-Sharing of Meromorphic Functions," Applied Mathematics, Vol. 53, 2007, pp. 1191-1205.
[6] C. C. Yang and X. H. Hua, "Uniqueness and ValueSharing of Meromorphic Functions," Annales Academice Scientiarum Fennicce Mathematica, Vol. 22 , No. 2, 1997, p. 395.
[7] C. C. Yang, "On Deficiencies of Differential Polynomials," Mathematische Zeitschrift, Vol. 125, No. 2, 1972, pp. 107-112. doi:10.1007/BF01110921
[8] H. X. Yi and C. C. Yang, "Uniqueness Theory of Meromorphic Functions," Science Press, Beijing, 1995.
[9] C. Y. Fang and M. L. Fang, "Uniqueness Theory of Mer morphic Functions and Differential Polynomials," Computers and Mathematics with Applications, Vol. 44, 2002, pp. 607-617. doi:10.1016/S0898-1221(02)00175-X

