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Abstract 
 
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary di-
rection of modern science. The main goal of the article is to describe two modern scientific discoveries–New 
Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyper-
bolic Fibonacci and Lucas Functions and “Golden” Fibonacci  -Goniometry (     is a given positive real 
number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), 
however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced 
by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by 
Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the 
“Mathematics of Harmony”, which originates from Euclid’s Elements. 
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1. Omnipresent Phyllotaxis 
 
1.1. Examples of Phyllotaxis Objects 
 
Everything in Nature is subordinated to stringent mathe- 
matical laws. Prove to be that leaf’s disposition on plant’s 
stems also has stringent mathematical regularity and this 
phenomenon is called phyllotaxis in botany. An essence 
of phyllotaxis consists in a spiral disposition of leaves on 
plant’s stems of trees, petals in flower baskets, seeds in 
pine cone and sunflower head etc. This phenomenon, 
known already to Kepler, was a subject of discussion of 
many scientists, including Leonardo da Vinci, Turing, Veil 
and so on. In phyllotaxis phenomenon more complex 
concepts of symmetry, in particular, a concept of helical 
symmetry, are used.  

The phyllotaxis phenomenon reveals itself especially 
brightly in inflorescences and densely packed botanical 
structures such, as pine cones, pineapples, cacti, heads of 

sunflower and cauliflower and many other objects (Fig-
ure 1). 

On the surfaces of such objects their bio-organs (seeds 
on the disks of sunflower heads and pine cones etc.) are 
placed in the form of the left-twisted and right-twisted 
spirals. For such phyllotaxis objects, it is used usually the 
number ratios of the left-hand and right-hand spirals ob-
served on the surface of the phyllotaxis objects. Botanists 
proved that these ratios are equal to the ratios of the ad-
jacent Fibonacci numbers, that is, 
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The ratios (2.1) are called phyllotaxis orders. They are 
different for different phyllotaxis objects. For example, a 
head of sunflower can have the phyllotaxis orders given  

by Fibonacci’s ratios 
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(a)                             (b)                           (c) 

 

 
(d)                             (e)                             (f) 

Figure 1. Phyllotaxis structures: (а) cactus; (b) head of sunflower; (c) coneflower; (d) romanescue cauhflower; (e) pineapple; 
(f) pinecone. 
 

Geometric models of phyllotaxis structures in Figure 
2 give more clear representation about this unique bo-
tanical phenomenon. 
 
1.2. Puzzle of Phyllotaxis 
 
By observing the subjects of phyllotaxis in the completed 
form and by enjoying the well organized picture on its 
surface, we always ask a question: how are Fibonacci’s 
spirals forming on its surface during its growth? It is pro- 
ved that a majority of bio-forms changes their phyllo-
taxis orders during their growth. It is known, for example, 
that sunflower disks located on the different levels of the 
same stalk have the different phyllotaxis orders; more-
over, the more an age of the disk, the more its phyllotaxis 
order. This means that during the growth of the phyllo-
taxis subject, a natural modification (an increase) of sym- 
metry happens and this modification of symmetry obeys 
the law: 

2 3 5 8 13 21

1 2 3 5 8 13
           (2.2) 

The modification of the phyllotaxis orders according 
to (2.2) is named dynamic symmetry [1]. All the above 
data are the essence of the well known “puzzle of phyllo-
taxis”. Many scientists, who investigated this problem, 

did believe what the phenomenon of the dynamical sym- 
metry (2.2) is of fundamental interdisciplinary impor-
tance. In opinion of Vladimir Vernadsky, the famous 
Russian scientist-encyclopedist, a problem of biological 
symmetry is the key problem of biology.  

Thus, the phenomenon of the dynamic symmetry (2.2) 
plays a special role in the geometric problem of phyllo-
taxis. One may assume that the numerical regularity (2.2) 
reflects some general geometric laws, which hide a secret 
of the dynamic mechanism of phyllotaxis, and their un-
covering would be of great importance for understanding 
the phyllotaxis phenomenon in the whole.  

A new geometric theory of phyllotaxis was developed 
recently by Ukrainian architect Oleg Bodnar. This origi-
nal theory is stated in Bodnar’s book [1]. 
 
2. Bodnar’s Geometry 
 
2.1. Structural-Numerical Analysis of  

Phyllotaxis Lattices 
 
Let’s consider the basic ideas and concepts of Bodnar’s 
geometry [1]. We can see in Figure 3(a) a cedar cone as 
characteristic example of phyllotaxis subject. 

On the surface of the cedar cone its each seed is blocked 
with the adjacent seeds in three directions. As the outcome   
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Figure 2. Geometric models of phyllotaxis structures: (а) pineapple; (b) pine cone; (c) head of sunflower. 
 
we can see the picture, which consists of three types of 
spirals; their numbers are equal to the Fibonacci numbers: 
3, 5, 8. With the purpose of the simplification of the 
geometric model of the phyllotaxis object in a Figures 
3(a) and (b), we will represent the phyllotaxis object in 
the cylindrical form (Figure 3(c)). If we cut the surface 
of the cylinder in Figure 3(c) by the vertical straight line 

and then unroll the cylinder on a plane (Figure 3(d)), we 
will get a fragment of the phyllotaxis lattice bounded by 
the two parallel straight lines, which are traces of the 
cutting line. We can see that the three groups of parallel 
straight lines in Figure 3(d), namely, the three straight 
lines 0-21, 1-16, 2-8 with the right-hand small declina-
tion; the five straight lines 3-8, 1-16, 4-19, 7-27, 0-30 
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with the left-hand declination; and the eight straight lines 
0-24, 3-27, 6-30, 1-25, 4-25, 7-28, 2-18, 5-21 with the 
right-hand abrupt declination, correspond to three types 
of spirals on the surface of the cylinder in Figure 3(c).  

We will use the following method of numbering the 
lattice nodes in Figure 3(d). We will introduce now the 
following system of coordinates. We will use the direct 
line OO  as the abscissa axis and the vertical trace, 
which passes through the point O, as the ordinate axis. 
We will take now the ordinate of the point 1 as the length 
unit, then the number, ascribed to some point of the lat-
tice, will be equal to its ordinate. The lattice, numbered 
by the indicated method, has a few characteristic proper-
ties. Any pair of the points gives a certain direction in the 
lattice system and, finally, the set of the three parallel 
directions of the phyllotaxis lattice. We can see that the 
lattice in Figure 3(d) consists of triangles. The vertices 
of the triangles are numbered by the numbers a, b, c. It is 
clear that the lattice in Figure 3(d) consists of the set 
triangles of the kind {c, b, a}, for example, {0, 3, 8}, {3, 
6, 11}, {3, 8, 11}, {6, 11, 14} an so on. It is important to 
note that the sides of the triangle {c, b, a} are equal to 

the remainders between the numbers a, b, c of the trian-
gle {a, b, c} and are the adjacent Fibonacci numbers: 3, 5, 
8. For example, for the triangle {0, 3, 8} we have the 
following remainders: 3 – 0 = 3, 8 – 3 = 5, 8 – 0 = 8. 
This means that the sides of the triangle {0, 3, 8} are 
equal respectively 3, 5, 8. For the triangle {3, 6, 11} we 
have: 6 – 3 = 3, 11 – 6 = 5, 11 – 3 = 8. This means that 
its sides are equal 3, 5, 8, respectively. Here each side of 
the triangle defines one of three declinations of the strai- 
ght lines, which make the lattice in Figure 3(d). In parti- 
cular, the side of the length 3 defines the right-hand small 
declination, the side of the length 5 defines the left-hand 
declination and the side of the length 8 defines the right- 
hand abrupt declination. Thus, Fibonacci numbers 3, 5, 8 
determines a structure of the phyllotaxis lattice in Figure 
3(d).  

The second property of the lattice in Figure 3(d) is the 
following. The line segment OO  can be considered as 
a diagonal of the parallelogram constructed on the basis 
of the straight lines corresponding to the left-hand decli- 
nation and the right-hand small declination. Thus, the 
given parallelogram allows to evaluate symmetry of the  

 

 
(a)                                               (b) 

 

 
(c)                                               (d) 

Figure 3. Analysis of structure-numerical properties of the phyllotaxis lattice.  
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lattice without the use of digital numbering. We will 
name this parallelogram by coordinate parallelogram. 
Note that the coordinate parallelograms of different sizes 
correspond to the lattices with different symmetry. 
 
2.2. Dynamic Symmetry of the Phyllotaxis Object 
 
We will start the analysis of the phenomenon of dynamic 
symmetry. The idea of the analysis consists of the com-
parison of the series of the phyllotaxis lattices (the unrol-
ling of the cylindrical lattice) with different symmetry 
(Figure 4).  

In Figure 4 the variant of Fibonacci’s phyllotaxis is 
illustrated, when we observe the following modification 
of the dynamic symmetry of the phyllotaxis object dur-
ing its growth:  

1: 2 :1 2 : 3 :1 2 : 5 : 3 5 : 8 : 3 5 :13 : 8.     

Note that the lattices, represented in Figure 4, are con- 
sidered as the sequential stages (5 stages) of the trans- 
formation of one and the same phyllotaxis object during 
its grows. There is a question: how are carrying out the 
transformations of the lattices, that is, which geometric 
movement can be used to provide the sequential passing 
all the illustrated stages of the phyllotaxis lattice? 

 
2.3. The Key Idea of Bodnar’s Geometry  
 
We will not go deep into Bodnar’s original reasoning’s, 
which resulted him in a new geometrical theory of phyl- 

lotaxis, and we send the readers to the remarkable Bod-
nar’s book [1] for more detailed acquaintance with his 
original geometry. We will turn our attention only to two 
key ideas, which underlie this geometry.  

Now we will begin from the analysis of the phenome-
non of dynamic symmetry. The idea of the analysis con-
sists of the comparison of the series of the phyllotaxis 
lattices of different symmetry (Figure 4). We will start 
from the comparison of the stages I and II. At these sta- 
ges the lattice can be transformed by the compression of 
the plane along the direction 0-3 up to the position, when 
the line segment 0-3 attains the edge of the lattice. Si-
multaneously the expansion of the plane in the direction 
1-2, perpendicular to the compression direction, should 
happen. At the passing on from the stage II to the stage 
III, the compression should be made along the direction 
О-5 and the expansion along the perpendicular direction 
2-3. The next passage is accompanied by the similar de-
formations of the plane in the direction О-8 (compres-
sion) and in the perpendicular direction 3-5 (expansion).  
But we know that the compression of a plane to any 
straight line with the coefficient k and the simultaneous 
expansion of a plane in the perpendicular direction with 
the same coefficient k are nothing as hyperbolic rotation 
[2]. A scheme of hyperbolic transformation of the lattice 
fragment is presented in Figure 5. The scheme corres- 
ponds to the stage II of Figure 4. Note that the hyperbola 
of the first quadrant has the equation xy = 1, and the hy-
perbola of the fourth quadrant has the equation xy = –1.  

 

 

Figure 4. Analysis of the dynamic symmetry of phyllotaxis object.   
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It follows from this consideration the first key idea of 
Bodnar’s geometry: the transformation of the phyllotaxis 
lattice in the process of its growth is carried out by means 
of the hyperbolic rotation, the main geometric transfor-
mation of hyperbolic geometry.  

This transformation is accompanied by a modification 
of dynamic symmetry, which can be simulated by the se- 
quential passage from the object with the smaller sym-
metry order to the object with the larger symmetry order. 

However, this idea does not give the answer to the 
question: why the phyllotaxis lattices in Figure 4 are 
based on Fibonacci numbers? 
 
2.4. The “Golden” Hyperbolic Functions 
 
For more detail study of the metric properties of the lat-
tice in Figure 5 we will consider its fragment repre-
sented in Figure 6. Here the disposition of the points is 
similar to Figure 5.  

Let us note the basic peculiarities of the disposition of 
the points in Figure 6: 

1) the points М1 and М2 are symmetrical regarding to 
the bisector of the right angle YOX;  

2) the geometric figures OM1M2N1, OM2N2N1, OM2M3N2 
are parallelograms;  

3) the point А is the vertex of the hyperbola yx = 1, 
that is, xA = 1, yA = 1, therefore 2OA  . 

Let us evaluate the abscissa of point M2 denoted 

2Mx x . Taking into consideration a symmetry of the 
points M1 and M2, we can write: 

1

1
Mx x . It follows 

from the symmetry condition of these points what the 
line segment M1M2 is tilted to the coordinate axises un-
der the angle of 45˚. The line segment M1M2 is parallel to 
the line segment ОN1; this means that the line segment 
ОN1 is tilted to the coordinate axises under the angle of 
45˚. Therefore, the point N1 is a top of the lower branch 
of the hyperbola; here 

1
1Nx  , 

1
1Ny  , 1 2ON OA  .  

It is clear that 1 1 2 2ON M M  . And now it is ob-
vious, what the remainder between the abscissas of the 
points M1 and M2 is equal to 1.  

These considerations resulted us in the following equ-
ation for the calculation of the abscissa of the point M2, 
that is, 

2Mx x : 
1 21 or 1 0,x x x x              (2.3) 

This means that the abscissa 
2Mx x  is a positive  

root of the famous “golden” algebraic equation:  

2

1 5

2Mx


   .              (2.4) 

Thus, a study of the metric properties of the phyllo- 
taxis lattice in Figures 5 and 6 unexpectedly resulted in  

 

Figure 5. A general scheme of the phyllotaxis lattice trans-
formation in the system of the equatorial hyperboles. 
 

 

2

2

 

Figure 6. The analysis of the metric properties of the phyl-
lotaxis lattice. 
 
the golden mean. And this fact is the second key outcome 
of Bodnar’s geometry. This result was used by Bodnar 
for the detailed study of phyllotaxis phenomenon. By 
developing this idea, Bodnar concluded that for the ma-
thematical simulation of phyllotaxis phenomenon we 
need to use a special class of the hyperbolic functions, 
named “golden” hyperbolic functions [1]:  
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The “golden” hyperbolic sine 

2

n n

Gshn
 

             (2.5) 

The “golden” hyperbolic cosine 

2

n n

Gchn
 

             (2.6) 

In further, Bodnar found a fundamental connection of 
the “golden” hyperbolic functions with Fibonacci num-
bers:  

   2
2 1 2 1

5
F k Gch k   ;       (2.7) 

  2
2 2

5
F k Gsh k .         (2.8) 

By using the correlations (2.7), (2.8), Bodnar gave 
very simple explanation of the “puzzle of phyllotaxis”: 
why Fibonacci numbers occur with such persistent con-
stancy on the surface of phyllotaxis objects. The main 
reason consists in the fact that the geometry of the “Alive 
Nature”, in particular, geometry of phyllotaxis is a non- 
Euclidean geometry; but this geometry differs substan-
tially from Lobachevsky’s geometry and Minkovsky’s 
four-dimensional world based on the classical hyperbolic 
functions. This difference consists of the fact that the 
main correlations of this geometry are described with the 
help of the “golden” hyperbolic functions (2.5) and (2.6) 
connected with the Fibonacci numbers by the simple 
correlations (2.7) and (2.8).  

It is important to emphasize that Bodnar’s model of 
the dynamic symmetry of phyllotaxis object illustrated 
by Figure 4 is confirmed brilliantly by real phyllotaxis 
pictures of botanic objects (see, for example, Figures 1 
and 2).  
 
2.5. Connection of Bodnar’s “Golden”  

Hyperbolic Functions with the Hyperbolic 
Fibonacci and Lucas Functions 

 
By comparing the expressions for the symmetric hyper-
bolic Fibonacci and Lucas sine’s and cosines [3] given 
by the formulas 

Symmetric hyperbolic Fibonacci sine and cosine 

   ,
5 5

x x x x

sFs x cFs x
    

      (2.9) 

Symmetric hyperbolic Lucas sine and cosine  

  x xsLs x    ;   x xcLs x       (2.10) 

with the expressions for Bodnar’s “golden” hyperbolic 
functions given by the Formulas (2.5), (2.6), we can find 
the following simple correlations between the indicated 

groups of the formulas:  

 5

2
Gsh x sFs x             (2.11) 

 5

2
Gch x cFs x             (2.12) 

 2Gsh x sFs x              (2.13) 

 2Gsh x cFs x              (2.14) 

The analysis of these correlations allows to conclude 
that the “golden” hyperbolic sine and cosine introduced 
by Oleg Bodnar [1] and the symmetric hyperbolic Fibo-
nacci and Lucas sine’s and cosines, introduced by Stak-
hov and Rozin in [3], coincide within constant factors. A 
question of the use of the “golden” hyperbolic functions 
or the hyperbolic Fibonacci and Lucas functions for the 
simulation of phyllotaxis objects has not a particular sig-
nificance because the final result will be the same: al-
ways it will result in the unexpected appearance of the 
Fibonacci or Lucas numbers on the surfaces of phyllo-
taxis objects.  

Concluding Part II of this article, we emphasize a sig-
nificance of Bodnar’s geometry for modern theoretical 
natural sciences: 

1) Bodnar’s geometry discovered for us a new “hy- 
perbolic world”—the world of phyllotaxis and its geo-
metric secrets. The main feature of this world is the fact 
that the basic mathematical properties of this world are 
described with the hyperbolic Fibonacci and Lucas func-
tions, which are a reason of the appearance of Fibonacci 
and Lucas numbers on the surface of phyllotaxis objects. 

2) It is important to emphasize that the hyperbolic Fi-
bonacci and Lucas functions, introduced in [3,4], are 
“natural” functions of Nature. They show themselves in 
different botanical structures such, as pine cones, pine- 
apples, cacti, heads of sunflower and so on. 

3) As is shown in Part I, the hyperbolic Fibonacci and 
Lucas functions, based on the golden mean, are a partial 
case of more general class of hyperbolic functions–the 
hyperbolic Fibonacci and Lucas -functions ( > 0 is a 
given real number), based on the metallic means. As 
Bodnar proves in [1], the hyperbolic Fibonacci and Lu-
cas functions underlie a new “hyperbolic world”—the 
world of phyllotaxis phenomenon. In this connection, we 
can bring an attention of theoretical natural sciences to 
the question to search new hyperbolic worlds of Nature, 
based on the hyperbolic Fibonacci and Lucas -functions. 
This idea can lead to new scientific discoveries. 
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