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Abstract 
 
In this paper we propose a way to integrate data at different spatial scales using the ensemble Kalman filter 
(EnKF), such that the finest scale data is sequentially estimated, subject to the available data at the coarse 
scale (s), as an additional constraint. Relationship between various scales has been modeled via upscaling 
techniques. The proposed coarse-scale EnKF algorithm is recursive and easily implementable. Our numerical 
results with the coarse-scale data provide improved fine-scale field estimates when compared to the results 
with regular EnKF (which did not incorporate the coarse-scale data). We also tested our algorithm with var-
ious precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse 
scale data. As expected, the results show that higher precision in the coarse-scale data, yielded improved es-
timates. 
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1. Introduction 
 
The principal objective of data assimilation methods [1] 
is to combine the information provided by measured data 
and a (numerical) forecast model to obtain an improved 
estimate of the system state (and parameters). Unlike va- 
riational methods which require availability of complex 
adjoint models for data assimilation, the ensemble Kal-
man filter (EnKF) can be quickly implemented and one 
can also obtain uncertainty estimates via error variance- 
covariance propagation; see [2] and references therein for 
further details. The EnKF is a sequential Monte Carlo 
method based on Bayes theorem. The method is increa-
singly being used for estimating unknown model state 
and parameters in various geological and hydrological 
models [3]. 

One of the major problems in subsurface characteriza-
tion is the huge uncertainty in the knowledge of hydro-
carbon reservoir permeability and porosity. Since the 
flow of hydrocarbons such as oil and gas through the 
subsurface formation critically depends on the geological 
rock properties, it is important to accurately know these 
properties. This article focuses on methods to obtain 
more accurate quantification of the reservoir rock prop-
erties using measured data. Broadly speaking, the meas-
ured data used for description of reservoir porosity and 

permeability characterization consist of static and dyna- 
mic data. Static data such as well logs, core samples can 
resolve heterogeneity at a scale of a few inches or feet 
with high reliability. However, dynamic data such as fra- 
ctional flow (defined as the ratio of the injection fluid to 
the total fluid produced at the production wells; or water 
cut), pressure transient and tracer test data typically scan 
the length scales comparable to the inter-well distances. 
Additional dynamic data such as time-lapse seismic im-
ages [4] can provide improved spatial sampling, but at a 
lower precision. A majority of previous studies on uncer- 
tainty quantification in reservoir performance forecasting 
using EnKF have mostly dealt with integration of dy-
namic data (for e.g., [5-7]). However it is widely recog-
nized that integration of additional multiscale data could 
further reduce the uncertainty (see [8,9] and references 
therein). With that perspective, integration of data at 
coarse-and fine-scales, is an important objective and is 
addressed in this paper. We use the EnKF to estimate 
fine-scale fields for subsurface characterization. Also, 
our method could be generalized to other sequential data 
assimilation methods such as particle filtering (where, 
rather than updating the ensemble members model state, 
we update the probability assigned to each ensemble 
member based on model data misfit). The main reason 
why we used EnKF in this paper is because it requires 
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fewer ensemble members than the particle filters, see [3] 
and references therein for further details. 

In this paper, apart from the water cut data, we consi- 
der coarse-scale measured data as well. The coarse-scale 
data is assumed to be permeability at some specified lev-
el of precision. The unknown variables: permeability, at 
the fine-scale, are estimated using a modification to the 
EnKF algorithm, linking the data at different scales via 
upscaling. It is important to resolve fine-scale heteroge- 
neity for various purposes such as, enhanced oil recove- 
ry, environmental remediation, etc. The main idea behind 
upscaling is to obtain an effective coarse-scale permea-
bility which yields the same average response as that of 
the underlying fine-scale field, locally. Single phase flow 
upscaling procedures for two phase flow problem have 
been discussed by many authors; see e.g., [10,11] and 
also Section 3.1. We will refer to our proposed variant of 
EnKF as coarse-scale EnKF. Assimilation using dynam-
ic data, such as fractional flow data only, is therefore 
referred to as regular EnKF. The coarse-scale permeabil-
ity data could be obtained either from geologic consider-
ation or coarse-scale inversion of dynamic, fractional 
flow data on a coarse grid as considered in [8,12]. This 
coarse-scale, static data can be viewed as a constraint, 
which is to be satisfied up to the prescribed variance for 
obtaining the fine-scale estimates in every data assimila-
tion cycle. Upscaling methods relate the solution at the 
finescale to the coarse-scale, therefore in the Kalman 
filter context, it amounts to modeling a nonlinear obser-
vation operator. In our coarse-scale EnKF approach, we 
use the measured data in batches, such that the estimate 
with one data becomes a prior while assimilating the 
other observation (see Section 3 for further details). 
Though in this paper we used coarse-scale data at only 
one scale, our approach can be easily generalized to as-
similate data at multiple scales by appropriately model-
ing the linkage between different scales. Also, our ups-
caling method is independent of the underlying fine- 
scale field. 

For the purpose of self-contendness and notational cla- 
rity, we briefly review the governing equations, sequen-
tial data assimilation using the ensemble Kalman filter in 
Section 2, which is followed by a description of the coar- 
se-scale EnKF algorithm (Section 3). For our numerical 
results (Section 4), we consider a five-spot pattern, with 
the injection well placed in the middle of a rectangular 
domain and four production wells located at the vertices 
of the rectangle. A reference case is used to provide true 
data, which is randomly perturbed to obtain synthetic 
measurements. A comparison of the regular EnKF with 
the coarse-scale EnKF (Sections 4.1 and 4.2 respectively) 
shows that using coarse-scale permeability data (via 
coarse-scale EnKF) significantly improves the fine-scale 

estimates as well as future fractional flow prediction. 
 
2. Background 
 
2.1. Fine-Scale Model 
 
In this paper, we consider two-phase flow in a subsurface 
formation under the assumption that the displacement is 
dominated by viscous effects. For simplicity, we neglect 
the effects of gravity, compressibility, and capillary pres- 
sure, although our proposed approach is independent of 
the choice of physical mechanisms. Also, porosity will 
be considered to be constant. The two phases will be re- 
ferred to as water and oil (or a non-aqueous phase liquid), 
designated by subscripts w and o, respectively. We write 
Darcy’s law for each phase as follows: 
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The above descriptions are referred to as the fine-scale 
model of the two-phase flow problem. Here fκ  is the 
(fine-scale) permeability of the medium,  S  is the 
total mobility, j  denotes phase viscosity, pr is the 
pressure, h  is the source term,   and S denote poros-
ity and water saturation (volume fraction), respectively. 
 
2.2. Sequential Estimation using EnKF  
 
Using dynamic measured data such as water cut, we can 
sequentially estimate the unknown parameters (permea-
bility, porosity, etc.) and state variables such as pressure, 
water saturation (two-phase flow) and production data at 
well locations using the EnKF as discussed in [5,7,13]. 
Following these previous works, in this paper we assume 
that the only dynamic data available is water cut data, 
and that porosity is known. The combined state-parameter 
to be estimated are given by  = , , , .

T

f cln κ  Ψ pr S W  
Where  ln   is natural logarithm of permeability field 
and cW  denotes water cut; in order to distinguish ob-
served water cut from model predicted water cut, now 
onwards we will denote the observed water cut data o

cW , 
by y . 

The EnKF introduced in [14] is a sequential Monte 
Carlo method where an ensemble of model states evolve 
in state-space with mean as the best estimate and spread 
of the ensemble as the error covariance, as summarized 
in the following steps. Each of the ensemble members is 
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forecasted independently (in this work, we neglected mo- 
deling errors),  

   
1 = ,i i

n nF
 
 Ψ Ψ                 (3) 

where  F   is the forecast operator (Equations (1), (2)), 
superscript  i  denotes the thi  ensemble member; 
now onwards we will drop the time subscript. The en-
semble mean and covariance are defined as,  
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where       1 2' = , , , ,
NeA b b b     = ,i i b Ψ Ψ  and 

eN  is the number of ensemble members. The observa-
tion vector for each ensemble member is given by,   

   = ,i itH ν   y Ψ               (6) 

where t  H Ψ  is the observed data from the truth and 
 iν  represents observational errors, which are i.i.d. 

samples [15] from a normal distribution with zero mean 
and variance, .R  We note that if only the water cut data 
is being measured, the mapping from model-to-observa- 
tional space, H  is trivially equal to  ,0 0 0 I  since  

 = , , , .
T

cln κ  Ψ pr S W  
The forecasted ensemble (Equation (3)) is updated by 

assimilating the observed data,  

          ,i i i i     Ψ Ψ K y H Ψ          (7) 

where K is the Kalman gain, given by  

1
= .f T f T 

  K P H HP H R  

Computationally efficient implementation of the EnKF 
is discussed for e.g., in [2,16]. We use the above set of  

corrected ensemble states,    
0

eNi

i
Ψ  in the simulation  

model (Equation (3)) to predict until the next set of ob-
servational data is available. 
 
3. Coarse-Scale Constrained EnKF 
 
The EnKF presented so far, used only the dynamic, pro-
duction data (water cut) ,y  with error = tν    y H Ψ , 

 ,ν 0 R   to update the ensemble (Equation (7)). In 
addition to ,y  if we are also given static data (as men-
tioned in the Introduction), which is another set of inde-
pendently measured data, .z  Assuming that the corres-
ponding measurement error is given by  

= ,tω    z U Ψ   , ;ω 0 Q   : .U Ψ z  Its like-
lihood is given by  

       11
exp .

2

T

z

p      
 

z Ψ z U Ψ Q z U Ψ
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If this static data z, corresponds to coarse-scale per-
meability data [12,8], then  = .U 0 0 0 Where : ,f cκ κ  
is a nonlinear mapping that maps the fine-scale permea-
bility field ( fκ ) to coarse-scale field ( cκ ) via an upscal-
ing procedure (e.g., [17,18]), details are provided in Sec-
tion 3.1. Note that by definition, the errors in water-cut 
data, y  and coarse-scale permeability, cκ  data don’t 
influence each other, since they are entirely differently 
measured quantities. 

Now, our goal is to obtain an estimate which is based 
on both of the above dynamic and static data. The like-
lihood of y  is given by  
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The probability distribution function (pdf) of the pre-
dicted ensemble,  
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where Ψ  and fP  are the predicted ensemble mean 
and covariance respectively (Equations (4) and (5)). 
Then, using Bayes theorem, we obtain  
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The last term in above equation implies that the two 
independent data, y and z can be sequentially assimilated 
in the following two steps. We first assimilate observa-  

tion y to obtain an intermediate ensemble, 
  

0

eNi

i
Ψ  as  

discussed in Section 2.2.  

      exp ,f yp p y   Ψ Ψ         (9) 

This intermediate ensemble and likelihood in Equation 
(8), can then be combined to obtain the final estimate  

   
0

eNi

i

Ψ . 

      , exp ,f y zp p    Ψ Ψ z y       (10) 

Therefore, in a least-squared sense, the final estimate 
maximizes the posterior pdf  ,p z yΨ  which corres-
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ponds to the minimum of = .z y f      See Ap-
pendix A, for further details (where we show that the 
solution 

 i
Ψ  corresponds to the minimum of  , for 

any thi  ensemble member). The coarse-scale EnKF 
algorithm is detailed in Appendix B. 

 
3.1. Upscaling Methods 
 
In brief, the main idea behind upscaling of absolute 
fine-scale permeability is to obtain effective coarse-scale 
permeability for each coarse-grid block. Once the ups-
caled absolute permeability is computed, the original eq- 
uations are solved on the coarse-grid, without changing 
the form of relative permeability curves. This is an inex-
pensive calculation, since the pressure update involves 
only solving the pressure equation on the coarse-grid, 
and one can take larger time step for solving the trans-
port equation. In our numerical simulations, the fine-grid 
is coarsened 10 times in each direction. These kinds of 
upscaling techniques in conjunction with the upscaling of 
absolute permeability have been used in groundwater 
applications (see e.g., [18]). 

The link between the coarse and the fine-scale per-
meability fields is usually nontrivial because one needs 
to take into account the effects of all the scales present at 
the fine level. In the past simple arithmetic, harmonic or 
power averages have been used to link properties at var-
ious scales. These averages can be reasonable for low he- 
terogeneities or for volumetric properties such as poros-  

ity. For permeabilities, simple averaging can lead to in-
accurate and misleading results. In this paper we use the 
flow-based upscaling methods using local solutions of 
the equations [17,19]. 

First, we briefly describe flow based upscaling me-
thods. Consider the fine-scale permeability that is de-
fined in the domain with underlying fine grid as shown 
in Figure 1. On the same graph we illustrate a coarse- 
scale partition of the domain. To calculate the coarse- 
scale permeability field at this level we need to deter-
mine it for each coarse block, c . The coarse block per- 
meability can be defined both using the solutions of local 
or global problems. The main idea used to calculate the 
coarse-scale permeability is that it should deliver the 
same average response as that of the underlying fine- 
scale problem, locally. The calculation of the coarse- 
scale permeability based on local solutions is schemati-
cally depicted in Figure 1. For each coarse domain c  
we solve the local problems 

   = 0,f jκ   x              (11) 

with some coarse-scale boundary conditions. 
One of such boundary conditions is given by = 1j  

and = 0j  on the opposite sides along the direction je  
and no flow boundary conditions on all other sides, al-
ternatively, =j jx  on .c  For these boundary condi-
tions the coarse-scale permeability is given by   

 = 1 ,c j l c f j l
c

κ κ dx


   e e x e         (12) 

 
 

0 1      0div κ x  

c

 

Figure 1. Schematic illustration of upscaling (not to scale): bold lines indicate a coarse-scale partitioning, while thin lines 
show a fine-scale partitioning within coarse-grid cells. In this paper, we upscaled a 50 × 50 fine-grid to a 5 × 5 coarse-grid.  
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where j  is the solution of Equation (11) with prescri- 
bed boundary conditions. Various boundary condition can 
have some influence on the accuracy of the calculations, 
including periodic, Dirichlet, etc. These issues have been 
discussed for e.g., in [19]. In particular, for determining 
the coarse-scale permeability field one can choose local 
domains that are larger than target coarse block, c , for 
Equation (11). Further Equation (12) is used in the do-
main c , where j  are computed in the larger do-
mains with correct scaling (see [19]). This way one re-
duces the effects of the artificial boundary conditions 
imposed on c  (for details see [19]). 

The use of the local solutions Equation (11) for deter-
mining the permeability field at different scales gives 
non-explicit relation for conditional distribution. We 
denote by   the local operator that maps the local 
fine-scale permeability field fκ  into cκ , defined as 
above. For our computations we assume  

 = ,c fκ κ                 (13) 

where   are some random fluctuations that represent 
inaccuracies in the coarse-scale permeability. In reality, 
since we do not have the fine-scale field, fκ  available, 
it is difficult to characterize the exact (nature of the) er-
ror in upscaling. However, one of the sources of these 
fluctuations are the errors associated with solving inverse 
problems on the coarse grid. The other source of the in-
accuracies of measured coarse-scale permeability is due 
to the fact that the inversion on the coarse grid does not 
take into account the adequate form of the coarse-scale 
models. Here we assumed these errors to be normally 
distributed (further details follow in Section 4.2). 
 
4. Numerical Results 
 
For our numerical tests with the coarse-scale EnKF algo-
rithm, we use a 50 50  fine grid (dimensionless do-
main size 50 50 ). We consider the coarse-scale per-
meability, which could be obtained by coarse-scale in-
version of fractional flow data on a coarse grid [12,20]. 
This coarse-scale field could be thought as static data, 
which is to be honored as constraint (up to the data va-
riance) in Equation (8), hence we need to always assimi-
late it in our coarse-scale EnKF algorithm. 

An initial ensemble with different permeability reali-
zations was generated using the sequential Gaussian si-
mulation (SGSIM)1 [22]. We specified a Gaussian vario-
gram model with a correlation length of 20 gridblocks in 
the x-direction and 5 gridblocks in the y-direction; one of 

the realizations is used as the reference field (depicted in 
Figure 2). The fractional flow will be calculated based 
on the fine-scale model in Section 2.1. Porosity ( ) is 
assumed to be equal to 0.15 for all grid blocks. For sim-
plicity, relative permeabilities, rjk  are assumed to be 
linear functions of water saturation (S):   = ,rwk S S  

  = 1 .rok S S  One injection well at the center of the 
field (injection rate: 71.4 m3/day) and four producing 
wells at the four corners (all with equal rate of 17.85 
m3/day) were considered. The model equations are sol- 
ved with no flow boundary conditions, zero initial water 
saturation, and discretizing the transport equation using 
first order upwind finite volume method. In Figure 3, we 
provide the predicted fractional flow for 256 initial en-
semble members along with the true fractional flow (ob-
tained from true permeability field). 

To compare our proposed coarse-scale constrained 
EnKF results with the regular EnKF we will use the fol-
lowing mean 2L -norm error. Since we know the true 
(fine and coarse-scale) field for our synthetic problem, 
i.e., the true permeability field, denoting it by ,trueκ  the 
error for any ensemble member is  

   = , = 1,2, , .i i true
eκ κ i Ne   

Consider the 2L  norm of the error for each member,  

    2

2
= ,i i

jj
 
 e e  using which we define the mean 

2L  error as  

 
2=1

1
= ,

Ne
i

ieN
e e              (14) 

so that e  gives us an indication of the distance of entire 
ensemble from the true solution .trueκ  Since after every  
 

 

Figure 2. Natural logarithm of 50 × 50 true permeability 
field. 

1For reservoir simulation applications, the SGSIM has been used [21,
13] for generating initial ensemble members. This approach yields
independent and identically distributed multivariate normal random
fields (conditioned to well log data) 
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Figure 3. Fractional flow prediction with 256 initial ensemble members (no data assimilation); ensemble members (green 
dots), ensemble mean (blue crosses) compared with true water cut data (red open circles). 
 
observation, we have updated ensemble members, there-
fore we can monitor the variation of e  over the time of 
assimilation; the success of assimilation can therefore be 
related to the decrease in e . 
 
4.1. EnKF with Fractional Flow Data Only 
 
We start with a presentation of results with regular 
EnKF, assimilating only water cut data. Next we will 
discuss results with the coarse-scale EnKF. 

The water cut data from the reference field is assumed 
to be available every 200 days, with mean zero and 
standard deviation of 0.01 (therefore 1/2

4= 0.01 ,R I  
where 4I  is unit matrix of size 4 4,  since there are 
four producing wells). The observed data is assumed to 
be available up to 2400 days, hence we will perform as-
similation between 200 and 2400 days. A prediction 
beyond interval of data assimilation, up to 4000 days is 
also provided. We selected an ensemble of size 256 for 
presenting our data assimilation results. 

We assimilated the above described measured data, 
and using the assimilated permeability field, in Figure 4 
we plot the assimilated water cut data along with the true 
data. Comparing with the initial forecast in Figure 3, we 
observe that the assimilated ensemble better envelopes 
the true data. We compare the initial permeability field 
before assimilation (Figure 5(a)-(d)) for a few ensemble 
members with the true field in Figure 2 and with those 
obtained after assimilation in Figure 6(a)-(d); note that 
the central, South East-North West channel is prominent 
but the features at the South West and North East corners 
are not well captured. Therefore assimilation of only 
water cut data helps in identifying only some of the im-
portant features. 
 
4.2. Coarse-Scale Constrained EnKF with  

Fractional Flow and Coarse-Scale  
Permeability Data 

 
In addition to water cut production data, the coarse-scale   
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Figure 4. Water cut prediction using assimilated (regular EnKF for 2400 days) ensemble members, note the improved fit of 
ensemble when compared to that in Figure 3. 
 
permeability data, as described in Section 3.1 has been 
used as additional measured data. Flow-based upscaling 
of reference permeability field is used as a proxy for in-
verted coarse field. Following our previous notation, this 
coarse-scale permeability data will be denoted by z  
(Equation (8)). The mapping between state variables (at 
fine-scale) and observations (at coarse-scale) is given by 

 = ,U 000   , denotes flow-based upscaling. 
Exactly as in the previous section, we prescribed the 

same frequency (of availability) and precision, R for the 
fractional flow data. Since we use coarse-scale permea-
bility as additional data, it is to be assimilated whenever 
we assimilate water cut data. A 5 × 5 coarse-scale data 
with mean zero and variance, 25=Q qI  (we will present 
results with = 4,2,1,0.5q  and 0.1,) so that we can con-
sider the impact of coarse-scale data precision. In Figure 
7 we plot the variation of mean 2L  error, e  (Equation 
(14)) with observation time, at the coarse-scale for dif-
ferent values of .q  Figures 8(a) and (b) depict the cor-
relation between coarse-scale ensemble mean and true 

fields for q = 4 and 0.1, respectively. As the precision of 
coarse-scale data is increased, i.e., for smaller variance, 
we observe a larger decrease in coarse-scale mean 2L  
error and higher correlation with true coarse-scale field 
(correlation coefficient for = 4,2,1,0.1q  respectively 
are 0.976, 0.992, 0.995, 0.999), because smaller variance 
Q  implies more stricter coarse-scale data constraint in 
Equation (8). Figure 9(a)-(d) depict the fractional flow 
using the final permeability field after assimilation, for 
different coarse-scale data precisions. Figures 7 and 
8(a)-(b) show that the coarse-scale data is being more 
accurately assimilated as it is made more precise. Also, 
notice the improved fit of ensemble prediction to the true 
data, for more precise coarse-scale data; also when com-
pared to the regular EnKF results in Figure 4. 

Now we discuss the results regarding fine-scale field. 
In Figure 10 we plot the fine-scale mean 2L  error for 
different values of ;q  the coarse-scale EnKF yields 
much lesser error than regular EnKF which assimilated 
only fractional flow data. The correlation coefficient   
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(a)                                              (b) 

      
(c)                                               (d) 

Figure 5. Log permeabilities of a few i-th. initial ensemble members (before data assimilation); left-right, (a) i = 50, (b) 100, (c) 
150, (d) 200. 

      
(a)                                               (b) 

      
(c)                                               (d) 

Figure 6. Same as above, but after assimilating water cut data with regular EnKF. 
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Figure 7. Decrease in e  computed at coarse-scale, as data (fractional flow and 5 × 5 coarse-scale permeability data at variance, 
Q = Iq ) is assimilated using the coarse-scale EnKF algorithm. 

 

 

Figure 8. Correlation between coarse-scale ensemble mean and true permeability after assimilation for low and high preci-
sion in coarse data; (a) and (b): q = 4, 0.1. 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 9. Same as in Figure 4, but using coarse-scale EnKF for data assimilation; clockwise, (a)-(d): q = 4, 2, 1, 0.1. 



S. R. AKELLA 
 

Copyright © 2011 SciRes.                                                                                  AM 

176 

 

Figure 10. Same as in Figure 7, but at fine-scale, also shown is the error obtained with assimilation of fractional flow data only. 
 
between fine-scale ensemble mean and true fields, after 
assimilating using regular EnKF is equal to 0.409, while 
with the coarse-scale EnKF for = 4,2,1,0.1,q  in that 
order were 0.644, 0.652, 0.638 and 0.626; note higher 
correlation with the coarse-scale EnKF. We observe that 
higher precision, i.e., lower q does not necessarily imply 
least e  or highest correlation, since highly precise 
coarse-scale data is relatively more weighted than the 
fractional flow data. Optimal value for the coarse-scale 
data variance can be obtained by prior calculation, which 
will be addressed in a future study. 

The final permeability field, for a few ensemble mem- 
bers after assimilating with coarse-scale EnKF, for 

= 1q  is shown in Figure 11(a)-(d); all shown samples 
seem to be more closer to the true field (Figure 2) than 
those obtained with regular EnKF (Figure 6(a)-(d)). In 
particular note that the low permeability region at the 
North East and high permeability at the South West cor-
ners are well captured. 
 
5 Conclusions 
 
The EnKF is increasingly being used for subsurface cha-

racterization in various geological and groundwater ap-
plications to identify fine-scale state and parameters. So 
far, various implementations have been based on using 
dynamic, production data, such as water cut, well pres-
sures, etc, for sequential data assimilation. Only recently 
dynamic data other than production data has been consi-
dered in the EnKF context ([23,24]), nevertheless the 
observed data to be assimilated was assumed to be at the 
finest scale. For a number of reasons, it is widely recog-
nized that usage of additional multiscale data could fur-
ther reduce the uncertainty at the fine scale. This is fur-
ther motivated by the increasing popularity of coarse- 
scale modeling. In this light, here we proposed assimila-
tion of coarse-scale data along with water cut, production 
data using coarse-scale EnKF. The modification to the 
regular EnKF (assimilation of only water cut data) is 
completely recursive and easily implementable. The re-
lation between fine and coarse scales has been modeled 
via physics based upscaling, which could be thought of 
as a nonlinear observation operator linking the coarse- 
scale data to the unknown fine-scale variables. In addi-
tion, the proposed methodology could be used in any 
other sequential data assimilation method as well and also  
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(a)                                               (b) 
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Figure 11. Same as in Figure 6, but assimilated using coarse-scale EnKF with q=1 for the variance of coarse-scale permeabil-
ity data. 
 
also with any other upscaling method. 

The coarse-scale EnKF was tested and compared with 
the regular EnKF for a 2D synthetic 50 50  heteroge-
nuous true field. We considered coarse-scale permeabil-
ity data as additional data on a 5 5  coarse grid. This 
coarse-scale data was always assimilated along with wa-
ter cut data. The data variance was varied from low to 
high, to study its impact on assimilated results. In all 
cases, we observed that the assimilated, ensemble mean 
coarse-scale field for all variances was highly correlated 
to the true coarse-scale field. In addition, lower variance 
in the coarse-scale data yielded higher correlation. The 
water cut data was better honored, both for higher preci-
sion of coarse data, and when compared with regular 
EnKF. As for the fine-scale permeability field, the 
coarse-scale EnKF yielded lesser error in an averaged 

2L  norm, error taken w.r.t. the reference field. In addi-
tion, a few individual samples were picked to compare 
the assimilated fields with different EnKF procedures; 
experiment with coarse-scale permeability data provided 
final samples which captured most closely the features in 
the reference fine-scale field. 

Though in our current paper we used only one coarse- 
scale, the proposed method can be easily implemented to 
integrate as many scales as required by the available data 

and is independent of the underlying fine-scale field. 
Based on our results we conclude that there could be a 
singinificant improvement in subsurface characterization 
if accurate and additional data at coarse-scales is availa-
ble. In future we plan to study the nature of errors in-
volved in coarse-scale data and upscaling and in-turn 
their influence on the proposed coarse-scale EnKF. 
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Appendix A: Two Step Coarse-Scale  
Constrained Kalman Filter Estimate 
 
From Section 3,  

     11
= ,

2

T
f

f


 Ψ Ψ P Ψ Ψ  

and  

     11
= .

2

T

y
 y H Ψ R y H Ψ  

For notational simplicity we will denote Ψμ  as μ  
and denote fP  by .B  

Step 1 (minimize f y  ):  
First we minimize the sum, 1 = .f y    The gra-

dient2 of above quadratic cost functional with respect to 
(w.r.t.) Ψ  is given by  

    1 1
1 = .T    Ψ B Ψ H R y H Ψ μ  

Then the minimizer μ , of 1  satisfies (we assume 
H  to be linear)  

   1 1 = 0.T   B H R y H μ μ μ  

Rearranging the above equation we get,   
1 1 1 1= .T T      B H R H B H R yμ μ     (15) 

Note that the Hessian of 1  w.r.t. Ψ  is given by 
1 1T B H R H  and for linear quadratic cost functionals, 

the Hessian inverse is equal to the error covariance ma-
trix. Therefore the error covariance matrix, B  for μ  
is given by  

11 1 .T     B B H R H          (16) 

Step 2 (minimize g z  ):  
We use ,μ  B  in  

     
11

.
2

T

g


  Ψ B Ψ  μ μ  

     11
= .

2

T

z Q z U Ψ z U Ψ  

Therefore the minimum ,μ  of g z   satisfies  

   1 1
1 1ˆ .T T

 
      

B U Q U B U Q z  μ μ  

Using Equations (16) and (15) we can rewrite above as  
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1 1 1
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It is trivial to show that μ̂  also satisfies  

= 0.f y z    Ψ     

Therefore the two step method to obtain the final es-
timate μ̂ , gives the same results as a one shot approach 
of minimizing f y z    . 
 
Appendix B: The Coarse-Scale EnKF  
Algorithm 
 
Run the simulation model up to a particular observation 
time for entire ensemble to get predicted samples:  

  
=1

,
Nei

i
Ψ        1 2= , , , .

NeA Ψ Ψ Ψ  

1) Step 1: Using measured water cut data y with vari-  

ance ,R  get updated ensemble:    
=1

,
Nei

i

Ψ  

 Step 1.1 Find ensemble mean (Equation (4)), .Ψ  
 Step 1.2 Subtract deviation from mean  

      1 2' = , , , ,
NeA b b b     = .i i b Ψ Ψ  

 Step 1.3 Apply H  to each column of 'A  to get 
= '.S HA  i.e., simply pick the water cut deviations 

in 'A . 
 Step 1.4 for = 1, 2, , ,ei N  

     Sample    
i.i.d.

, .iν 0 R    

        = ,i iνy y   

           1 21 2 = , , , ,
Neν ν νR   

           1 2= , , , ,
NeD d d d       = ;i i i

cd y W   i
cW  

is predicted water cut for each ensemble member.  
end for 

 Step 1.5 Compute SVD 1/2 = .L R   S R X X  
Get ̂  retaining first few singular values which 
explain most variability in ,  corresponding left 
singular vectors: .LX  

 Step 1.6 Update ensemble: Eqnuation (7),  

          1 2
, , , eN

A Ψ Ψ Ψ , 

 2ˆ ˆˆ .T T
L L   A A A S X X D  

2) Step 2: Using coarse-scale data z with variance Q,  

get updated ensemble:    
=1

.
Nei

i

Ψ  

 Step 2.1 Compute coarse-scale ensemble prediction: 
    

, 1, 2, , .
ii

ei N u UΨ   

 Step 2.2 Coarse-scale mean:  
=1

1
' = .

N ie
i

eN
 uμ  

 Step 2.3 Coarse-scale deviations:  
      1 2' = , , , ,

NeS s s s     = '.i i s u μ  

 Step 2.4 Repeat Step 1.4, using coarse-scale mea-

2We note in passing that B and R are covariance matrices and are posi-
tive definite by construction, and hence for our derivation purposes, are
formally invertible. 
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surement. for = 1,2, , ,ei N  

      Sample    
i.i.d.

, .iω 0 R    
         = ,i iωz z   

            1 21/2 = , , , ,
Neω ω ωQ   

            1 2' = , , , ,
NeD d d d       = .i i id z u   

end for 
 Step 2.5 Compute SVD 1/2' = .L R   S Q X X  

Get ̂  and LX  as in step 1.5 
 Step 2.6 Compute fine-scale mean:  

 
=1

1
' = .

N ie
i

eN
μ Ψ  

 Step 2.7 Compute fine-scale deviations:  
      1 2= , , , ,

NeA b b b     i i b Ψ μ . 
 Step 2.8 Update ensemble:  

         1 2
, , , ,

Ne   
 

A Ψ Ψ Ψ   

     2ˆ ˆˆT T
L L     A A A S X X D . 

 
Remark 1: 
 
Note that steps 2.6 and 2.7 in above algorithm approx-
imate the intermediate fine-scale error covariance  

  1
.

1
Tf

eN
 


P A A  

 
Remark 2: 
 
Steps 2.1-2.3 accomplish3  

' = .S UA  

Note that the above algorithm is independent of the 
choice of upscaling procedure and also, we can use the 
same algorithm for different kinds of coarse-scale ob-
served data (if available). 
 
Remark 3: 
 
Note that the above coarse-scale constrained EnKF algo-
rithm can be readily extended to incorporate data at mul-
tiple coarse scales, with appropriate upscaling procedure 
in .U  To elaborate, if we had another independent data 
at a scale different from ,z  we use the estimates  

( 
  

=1

.
Nei

i

Ψ ) obtained using ,z  as intermediate solution,  

repeat Step 2 to assimilate the data at another scale. 

 

3As noted in [2], this approach of accounting for nonlinear observations 
operator U, works well, as long as U is weakly nonlinear and a mono-
tonic function of model variables Ψ . 


