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ABSTRACT 

The kidney plays quite an important role in the regu- 
lation of acid-base homeostasis. The dysfunction of 
renal acid-base regulation causes diseases such as 
developmental disorder, bone malformation, calcifi- 
cation of eye and brain, etc. In the kidney, this regu- 
lation is performed, to a considerable part, in the 
proximal tubule of the nephron. In the luminal side 
the key player is sodium-proton exchanger type 3 
(NHE3), whereas sodium-bicarbonate cotransporter 
(NBCe1) plays the critical role in the basolateral side. 
In the cytoplasm there is carbonic anhydrase type 2 
(CAII) that intermediates the conversion of CO2/ 

3 . Interestingly, in human, mutations have been 
found in NBCe1 and CAII but not in NHE3 so far. 
Mutations of NBCe1 lead to severe proximal renal 
tubular acidosis (pRTA) and other systemic manifes- 
tations. In animal model studies, however, the relative 
contribution of NHE3 to proximal tubule functions 
remains controversial. Recently, V-ATPase with renal 
specific subunits is suggested to have some roles in the 
regulation of proximal tubule functions. In this re- 
view, we will discuss the regulation of acid-base trans- 
port in the proximal tubule and the updates.  

HCO−
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1. THE LUMINAL SIDE: NHES AND 
RENAL LUMINAL PROTON  
TRANSPORT 

The Na+/H+ exchangers, NHEs mediate counter-transport, 
which translocate Na+ and H+ across the cell membrane 
[1-4]. In human there are ten NHEs, NHE1 to 9 and 
sperm-specific NHE [3,5].  

The existence of NHEs in the kidney was first pre- 
dicted by Pitts et al. [6,7]. Later Murer [8], Kinsella and 

Aronson [9] demonstrated the NHE activity by func- 
tional studies using brush border membrane vesicles. The 
first mammalian NHE, NHE1 was cloned by Sardet et al. 
in 1989 [10]. 

There are NHE3 and NHE8 in the luminal side of the 
proximal tubule [2,11-16]. In the mammal NHE3 exists 
not only in the apical side of renal proximal tubule and 
thick ascending limb, but also in the gastrointestinal tract, 
gall bladder, epididymis, and brain [2]. NHE3 consists of 
834 amino acids and is thought to have twelve trans- 
membrane domains and long C-terminal intracellular 
domain [17]. This is similar to other transporters, like 
Na+-glucose cotransporter and Na+, K+-2Cl− cotrans- 
porter. 

About two-thirds of filtered NaCl and water are reab- 
sorbed via NHEs in the luminal side of the proximal tu- 
bule [2]. NHEs play an important role in the reabsorption 
of bicarbonate as well, because they provide proton into 
the lumen, which is titrated with bicarbonate by carbonic 
anhydrase in the lumen then comes into the proximal 
tubular cell in the form of CO2. CO2 is again transformed 
to bicarbonate by intracellular carbonic anhydrase and 
reabsorbed via the basolateral membrane by Na+-  
cotransporter (NBCe1). 

3HCO−

2. STUDIES IN NHE3−/− MICE: WHICH IS 
THE MAJOR PLAYER? 

NHE3 and NHE8 exist predominantly in the luminal side 
of the renal proximal tubule. In neonatal mice and rats 
NHE8 is dominant. After weaning, NHE3 dominates in 
the proximal tubule instead of NHE8 [16,18]. It is still 
controversial about how much NHE3 contributes to api-
cal H+ secretion, as NHE3 deficiency has not been found 
in human and the studies using NHE3−/− mice have 
shown the controversial results. 

The first NHE3−/− mice was generated by Schultheis et 
al. [19]. The NHE3 null mice had only a mild metabolic 
acidosis of 3 to 5 mEq/l less than that of wild type mice. 
Wang et al. investigated the function of proximal convo- *Corresponding author. 
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luted tubules in NHE3−/− mice by in vivo microperfusion 
[20]. In wild-type mice the addition of 100 µM 5-(N- 
Ethyl-N-isopropyl) amiloride (EIPA), which should in- 
hibit both NHE3 and NHE8 activities [21], reduced 

3HCO  (rate of net 3  absorption) by approximately 
50%. In NHE3 null mice, by contrast, the addition of 
EIPA did not reduce 

3HCO  and Jv (rate of net fluid ab- 
sorption). On the other hand, the addition of bafilomycin, 
a V-ATPase inhibitor, reduced 

3HCO  significantly (51.2 
to 21.1 pmol/ min/mm) in these mice. However it did not 
affect Jv in both wild-type and NHE3 null mice. From 
these results, they concluded that NHE3 is largely, if not 
completely, responsible for the EIPA-sensitive NHE ac- 
tivity in the luminal side of the proximal tubules. These 
results further indicated that V-ATPase mediates a signi- 
ficant component of  reabsorption in the proxi- 
mal tubule. 

J HCO−

J

HCO

J

3
−

On the other hand, Baum et al. used NHE3−/−/NHE2−/− 
mice [22,23] to investigate the role of NHE3 in the 
proximal tubule. In in vitro microperfusion study, the 
luminal NHE activity in the proximal tubule of the 
NHE3−/− mice was about 50% of the wild-type, and most 
of the residual NHE activity was inhibited by 100 µM 
EIPA. The addition of 50 µM HOE694, which should 
suppress the NHE2 activity, had no effect, suggesting 
that NHE2 did not have a significant role in proximal 
tubule acidification. They speculated that there may be 
some residual apical EIPA-sensitive NHE activity. An- 
other interpretation would be that EIPA, an inhibitor of 
NHEs, might inhibit Na+-  cotransport activity. 3

Recently, Baum et al. investigated whether NHE8 can 
compensate for the absence of NHE3 in mice [24]. 
NHE8 is shown to exist in the intestine, mediating the 
salt reabsorption in the intestine of the neonatal mice [17, 
25]. In NHE3−/− mice the expression of NHE8 protein in 
the renal cortex and cortical brush border membrane was 
higher than that of wild type mice. The luminal NHE 
activity in the proximal tubule of NHE3+/+NHE8−/− mice 
was similar to that in wild-type mice. However, it was 
about 50% of wild-type in NHE3−/−NHE8+/+ mice, and 
about 10% of wild-type in NHE3−/−NHE8−/− mice. These 
results indicate that while NHE3 is the predominant 
NHE isoform in the luminal side of the proximal tubule, 
NHE8 can also contribute to the luminal NHE activity, 
especially in the absence of NHE3. 

HCO−

At present, the reason why Wang et al. failed to detect 
the EIPA-sensitive component in 

3HCO  in NHE3−/− 
mice remains speculative, but the methodological differ- 
ence may be responsible. Furthermore, the reason why 
NHE3−/−NHE8−/− mice showed only a mild acidosis simi- 
lar to that in NHE3−/− mice remains unknown. Probably, 
future studies are required to definitely determine the 
relative contributions of NHE3, NHE8, and V-ATPase to 
the net proximal bicarbonate absorption. 

J

3. THE BASOLATERAL SIDE: NBCe1 

There are a number of acid-base transporters in the ba- 
solateral side of the proximal tubule, among them 
NBCe1 plays a major role in the absorption of bicarbon- 
ate coupled with sodium [26]. NBCe1 was first cloned 
from salamander by Romero et al. [27]. Igarashi et al. 
found two patients who had renal proximal tubular aci- 
dosis (pRTA) with different NBCe1 mutations [28]. 
These patients also had band keratopathy, cataract, glau- 
coma, cerebral calcification, mental retardation and short 
stature.  

NBCe1 is encoded by the gene SLC4A4 and has five 
splicing variants [29,30], among them NBCe1A is mainly 
expressed in the proximal tubule. NBCe1B is expressed 
widely in many tissues including the pancreas duct and 
corneal endothelium, while NBCe1C is almost limited in 
the brain [31-33]. The structures of major NBCe1 vari- 
ants are shown in Figure 1 [26]. 

NBCe1A and NBCe1B differ only in the N-terminus, 
whereas NBCe1C is identical to NBCe1B in the N-ter- 
minus but differs in C-terminus. The N-terminus of 
NBCe1B and NBCe1C has a binding site of IRBIT, 
inositol 1,4,5-triphosphate (IP3) receptor-binding protein 
[34].  

One of the proposed models of NBCe1 topology is 
shown in Figure 2 [29,35,36]. This is hypothesized based 
on the model of anion exchanger 1 [37]. According to  
 

 

Figure 1. The structure of major NBCe1 variants. 
 

 

Figure 2. The topology of NBCe1. The numbers 
show the sites of pRTA-related mutations as follows: 
1: Q29X, 2: R298S, 3: S427L, 4: T485S, 5: G486R, 
6: R510H, 7: W516X, 8: L522P, 9: N721TxfsX29, 
10: A799V, 11: R881C, 12: S982NfsX4. 
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this model, there are 13 transmembrane domains and a 
long extraloop with glycosylation sites between TM5 and 
TM6. Kurtz and colleagues propose another topology 
model of NBCe1A with 14 TM sites [38]. 

4. NBCe1 MUTATIONS AND RENAL 
TUBULAR ACIDOSIS 

Igarashi et al. [39] described about a patient with sys- 
temic symptoms, including severe proximal renal tubular 
acidosis (pRTA), short stature, mental retardation, glau- 
coma, cataracts and band keratopathy. Later the muta- 
tions of NBCe1, encoded by SLC4A4, were found to be 
responsible for these abnormalities [28]. So far 12 symp- 
tomatic mutations of SLC4A4 have been reported; eight 
missense mutations, R298S, S427L, T485S, G486R, 
R510H, L522P, A799V and R881C [28,40-43], two non- 
sense mutations, Q29X and W516X [44,45], and two 
frameshift mutations, N721TxfsX29 and S982NfsX4 [46, 
47]. Almost all of these mutations cause severe pRTA, 
but in S982NfsX4 the acidosis is not so severe (serum 

3  around 15 to 17 mmol/l). In Xenopus oocytes 
expression study this mutation shows normal function, 
while in immunohistological study in polarized mam- 
malian cells this shows cytoplasmic retention. The 
S982NfsX4 mutant is speculated to induce the clinical 
manifestations via cytoplasmic retention in vivo, but 
some of the mutant may reach the plasma membrane of 
proximal tubule, resulting in the relatively mild acidosis. 
Most of the other symptomatic mutations are found to be 
in the deep transmembrane sites [48]. The reason why 
there is no tight relationship between the severity of aci- 
dosis and the degree of NBCe1 inactivation remains 
speculative, but the trafficking defects caused by some 
NBCe1 mutants may be partly responsible [40,42,47]. 

HCO−

5. ANALYSIS IN NBCe1 W516X 
KNOCK-IN MICE 

A homozygous W516X mutation of NBCe1 was recently 
found in Taiwan [45]. The patient was a Chinese girl of 
16 years old, presenting severe pRTA (serum 3 : 
10 mmol/l), growth retardation and typical ocular ab- 
normalities such as glaucoma, band keratopathy, and 
cataract. 

HCO−

In order to clarify the pathophysiology of this muta- 
tion, we and others created knock-in mice carrying 
W516X mutation. In NBCe1 W516X/W516X mice a 
very low amount of the truncated NBCe1 mRNA was 
detected, suggesting that nonsense-mediated mRNA de- 
cay (NMD) is involved in this mechanism. The homo- 
zygous mice had severe acidosis (serum 3HC : 3.9 
mmol/l) due to pRTA, growth retardation, hyperaldos- 
teronism, anemia, splenomegaly, and early death before 
weaning. These phenotypes were very similar to those 
previously reported in NBCe1−/− mice [49]. Interestingly, 

pRTA has not been reported in humans carrying the het- 
erozygous NBCe1 mutations. However, both  
NBCe1W516X/+ and NBCe1−/+ mice showed a mild acido- 
sis, suggesting that the compensatory ability of distal tu- 
bule acidification might be higher in humans than in mice. 

O−

In physiological studies using isolated proximal tu- 
bules of NBCe1W516X/W516X mice, the NBCe1 activity was 
severely reduced to less than twenty percent of that in 
wild-type mice. Additionally, the rate of bicarbonate 
absorption from the proximal tubule was reduced to less 
than twenty percent of that in wild-type mice. These re- 
sults confirmed the indispensable role of NBCe1 in 

3  reabsorption in the proximal tubule. In the al- 
kali-treated mice, the symptoms such as bone dysplasia, 
splenomegaly, and anemia were significantly attenuated. 
Administration of sodium bicarbonate elongated their 
life as long as seventy days. This may be a good model 
to try the effect of PTC124, which is expected to rescue 
the nonsense mutations [50,51]. 

HCO−

6. SINGLE NUCLEOTIDE  
POLYMORPHISMS (SNPS) OF THE 
NBCe1 AND THEIR CHARACTERS 

Recently SNPs of NBCe1 are reported in sequence 
[http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=
8671]. Among them we have analyzed four missense 
mutations (E122G, S356Y, K558R, and N640I) [35]. In 
the electrophysiological study in Xenopus oocytes, 
E122G, S356Y and N640I showed almost normal func- 
tion, whereas K558R had about half activity of the wild- 
type. The sodium affinity of K558R was similar as wild- 
type. In the expression study in polarized MDCK cells, 
these four mutants (E122G, S356Y, K558R, and N640I) 
showed the similar basolateral expression as wild-type, 
suggesting that these mutants have normal trafficking 
ability. In the functional analysis in HEK cells, the 
K558R showed significantly reduced pH recovery, while 
the other SNPs showed normal activity.  

This suggests that K558 may play an important role in 
the transport function of NBCe1. It is predicted that 
K558 lies in the transmembrane segment 5 [37,38]. As 
the other SNPs do not lie in the transmembrane site 
(E122 and S356 in the N-terminal cytoplasmic region, 
N640 in the extracellular loop between TM5 and TM6), 
this study also confirms the importance of the trans- 
membrane regions in the normal function of NBCe1. At 
present, the clinical significance of K558R SNP remains 
unknown. 

7. VACUOLAR H+-ATPASE IN THE 
KIDNEY: RENAL SPECIFIC  
SUBTYPES AND STUDIES  
OF MUTATIONS 

The vacuolar H+-ATPase (V-ATPase) is a multisubunit 
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complex which is ubiquitously expressed in various 
eukaryotic cells [52,53]. V-ATPase is committed to 
ATP-driven H+ transport across membranes, including 
plasma membrane, lysosome, the Golgi, secretary vesicle, 
and endosome. As these intracellular organelles need to 
keep their pH in optimal range to perform the proper 
functions, the acidification process by the V-ATPase is 
crucial.  

The structure of the V-ATPase is very complicated and 
large, constituted of two domains, V0 and V1. V0 do- 
main is membrane-bound, including one a, five c, one d 
and one H domains. The a subunit has four isoforms, a1, 
a2, a3 and a4. a1 is expressed ubiquitously, a2 is ex- 
pressed in lung, kidney and spleen. a3 is in osteoclasts, 
while a4 is in kidney, epididymis and inner ear [54-58]. 
Mutations in a4 subunit cause distal renal tubular acido- 
sis (dRTA) with or without hearing loss in human. 

V1 domain consists of eight subunits, A to H. Among 
them the B subunit plays an essential role. There are two 
subtypes in B subunit, B1 and B2 in human. The expres- 
sion of B1 is restricted to renal intercalated cells, inner 
ear, epididymis, and ciliary body, on the other hand B2 is 
expressed ubiquitously [59-62]. Mutations in B1 subunit 
in human cause dRTA accompanied with sensorineural 
hearing loss. Figure 3 shows the simplified scheme of 
V-ATPase. 

8. RENAL SPECIFIC SUBTYPES AND 
ANALYSIS OF a4 SUBUNIT  
MUTATIONS 

There are four subtypes of “a” subunits of V-ATPase, a1  
 

 

Figure 3. The simplified scheme of V-ATPase [53,63]. In V1, 
the cytoplasmic part, ATP is hydrolyzed to ADP and Pi, pro-
ducing energy to drive proton out of the cytoplasm. Proton is 
exported to luminal side from V0 part. 

to a4. Among them a4 subunit is kidney-specific [64]. At 
first mutations in ATP6V0A4, the gene coding a4 subunit, 
were shown to cause recessive distal renal tubular acido- 
sis (dRTA) with preserved hearing [65], however later it 
was found that there are patients carrying homozygous 
mutations in ATP6V0A4 with both dRTA and hearing 
loss [66]. The reason why only a subset of a4 deficient 
patients develops hearing disorder has not been clarified 
yet. 

As previously mentioned, V-ATPase was thought to 
have some roles in H+ secretion in the proximal tubule 
[20]. Recently some groups investigated the details of a4 
subunit deficiency using targeted gene knockout mice. 
Norgett et al. [67] made Atp6v0a4 KO mice and clarified 
that a4 null mice had severe metabolic acidosis, hypo- 
kalemia, hyperchloridemia, and early nephrocalcinosis. 
These mice also lost the sense of smell and had severe 
hearing impairment, showing elevated threshold of audi- 
tory brainstem response and loss of endocochlear poten- 
tial. a4 null mice died without alkali treatment, and even 
if they survived the weaning period they had a mild 
acidemia and alkali urine. Heterozygous mice did not 
show academia. When they were challenged with acid, 
however, they became more acidic than the wild-type 
mice. 

On the other hand, a4 knockout mice produced by 
Hennings et al. [68] had profound deafness and enlarged 
endolymphatic fluid compartments, like that in pendrin 
knockout mice [69]. It was also clarified that in the inner 
ear a4 colocalizes with pendrin. Pendrin is one of the 
anion exchangers, coded by SLC26A4 [70-72]. Disrup- 
tion of pendrin causes Pendred syndrome, which shows 
various phenotypes like sensorineural deafness and thy- 
roid dysfunction [70]. They speculate that pendrin and 
V-ATPase co-operate in the regulation of endolymph 
homeostasis. 

Interestingly, Hennings et al. also proposed that a4 de- 
ficiency causes proximal tubule dysfunction, as these 
mice showed trafficking disorder of NaPi-IIa (sodium- 
phosphate transporter), proteinuria, phosphaturia and 
accumulation of lysosomal material in the proximal tu- 
bule. They also reanalyzed the clinical data with reces- 
sive dRTA and found that the patients with a4 mutations 
had severer acidosis, lower serum bicarbonate, and lower 
blood pH than the patients with B1 mutations. The pa- 
tients with a4 mutations were diagnosed earlier than the 
patients with B1 mutations. It remains unknown, how- 
ever, whether a4 deficiency affects proximal functions 
also in human. 

The reason why these a4 null mice (created by Norgett 
et al. and Hennings et al.) show the different phenotypes 
is not entirely clear. Both mice show metabolic acidosis, 
hypokalemia, and hyperchloridemia. While Norgett’s 
mice do not show hypercalcemia and hypercalciuria seen 
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in human dRTA, Hennings’ mice show hypercalcemia 
and hyperphosphateueria (urine calcium not measured). 
Different background of the mice may be at least par- 
tially responsible for these different phenotypes. 

9. CONCLUSIONS 

Renal proximal tubule plays an important role in the 
regulation of acid-base homeostasis. Recently there have 
been some remarkable progresses in the investigation of 
proximal tubule acid-base transporters such as NHEs and 
NBCe1. As proximal tubule reabsorbs most of the bicar- 
bonate filtered in the glomeruli, it is quite important to 
clarify the detailed functions of these transporters and 
their regulations. Moreover, V-ATPase, a main acid-base 
regulator of the distal tubule, is now suggested to have 
some regulatory roles in the proximal tubule. 

The animal model studies, especially using transgenic 
mice, have considerably contributed to the detailed ana- 
lysis of these transporters. Some models mimic the hu- 
man phenotypes of these deficient diseases to some ex- 
tent. In some cases, however, the phenotypes of human 
and mice are not identical, showing the limitation of 
these approaches. 

Clinically, acid-base balance is quite important in the 
development of neonatal period, keeping fluid homeo- 
stasis, bone metabolism, and even the survival of the 
individual. We hope that the further understanding of 
acid/base transporters will lead to the development of 
more effective treatment of acid/base disorders. 
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