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ABSTRACT 

In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of sta- 
tionary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after the initial de- 
ployment to overcome the coverage holes problem. To achieve optimal coverage, an efficient algorithm should be em- 
ployed to find the best positions of the additional mobile nodes. This paper presents a genetic algorithm that searches 
for an optimal or near optimal solution to the coverage holes problem. The proposed algorithm determines the minimum 
number and the best locations of the mobile nodes that need to be added after the initial deployment of the stationary 
nodes. The performance of the genetic algorithm was evaluated using several metrics, and the simulation results dem- 
onstrated that the proposed algorithm can optimize the network coverage in terms of the overall coverage ratio and the 
number of additional mobile nodes. 
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1. Introduction 

A Wireless Sensor Network (WSN) is a distributed sys- 
tem which is composed of tiny, low-cost, battery-oper- 
ated sensor nodes that collaborate together for the pur- 
pose of achieving certain task such as environment moni- 
toring and object tracking [1]. Depending on the required 
application, the sensor nodes are responsible for sensing, 
computation and communication tasks. The sensing task 
is usually configured in each node; therefore the sensing 
attribute is considered a key factor in designing WSNs. 

One of the key points in the design stage of a WSN 
that is related to the sensing attribute is the coverage of 
the sensing field. In the literature, the coverage problem 
in WSNs has been addressed either as target coverage or 
area coverage [2]. While area coverage protocols are 
designed to maximize the area of the sensing field that 
could be covered, target coverage, on the other hand, 
assumes that the sensing field is divided into targets. 
Therefore, the main objective of the target coverage pro- 
tocols is to maximize the number of targets that could be 
covered in the field. 

The coverage issue in WSNs depends on many factors, 
such as the network topology, sensor sensing model, and  

the most important one is the deployment strategy that is 
used to distribute or throw the sensor nodes in the field 
[3]. The sensor nodes can be deployed either manually 
based on a pre-defined design of the sensor locations, or 
randomly by dropping them from an aircraft. Random 
deployment is usually preferred in large scale WSNs not 
only because it is easy and less expensive but also be- 
cause it might be the only choice in remote and hostile 
environments. However, random deployment of the sen- 
sor nodes can cause holes formulation; therefore, in most 
cases, random deployment is not guaranteed to be effi- 
cient for achieving the required objective in terms of the 
coverage [2]. 

In order to overcome the problem of holes formulation 
after initial deployment of the sensor nodes in the sensing 
field, an efficient algorithm that would maximize the 
covered area or targets should be employed. According 
to the application, the sensor nodes might be stationary, 
mobile, or hybrid in which some of the nodes are static 
and the others are mobile. In WSNs where all nodes are 
stationary, the area of the sensing field and the number of 
sensor nodes are small, coverage can be maximized by 
manually deploying additional nodes to the initially de- 
ployed ones. However, in large scale WSNs where hu- 
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man intervention is not possible or when the sensing filed 
is hostile, random deployment is the only choice. 

In random deployment, the holes formulation problem 
might be reduced or eliminated after initial deployment 
using one of two approaches. In the first approach, if all 
sensor nodes are mobile, then an efficient algorithm 
should be designed such that the coverage is maximized 
while at the same time the moving cost of the mobile 
nodes is minimized. In this case, the mobility feature of 
the nodes can be utilized in order to maximize the cov- 
erage. After the initial configuration of the mobile nodes 
in the sensing field, an efficient algorithm such as poten- 
tial field algorithm or virtual force algorithm can be em- 
ployed for the purpose of relocating the sensor nodes 
[4,5]. 

In the second approach, if the sensor nodes are hybrid 
in which some of the nodes are stationary and the other 
are mobile, an efficient algorithm should be employed in 
order to find the number and locations of the mobile 
nodes that should be added after the initial deployment of 
the stationary nodes. One of the algorithms that can be 
employed is a genetic algorithm (GA) which is used to 
find an optimal or near optimal solution for optimization 
problems [6]. A little research in the field of WSNs has 
used and employed GA to search for an optimal number 
of sensor nodes that can be added after the initial node 
deployment in order to maximize the coverage. 

In this paper, we propose an approach that exploits the 
movements of some nodes for eliminating the holes 
which would be formulated after the initial deployment 
of the sensor nodes. Our approach uses GA in order to 
determine the minimum number of mobile nodes that 
should be used in addition to the previously deployed 
stationary nodes such that the coverage of the monitored 
area is maximized. 

This paper is organized as follows. Section 2 discusses 
the operation of the GA. Section 3 presents the related 
work. Section 4 discusses the assumptions and the com- 
ponents of the proposed approach. Section 5 presents 
simulation experiments and discusses the results, and 
Section 6 concludes the paper. 

2. Genetic Algorithm 

A genetic algorithm is used to search for near optimal 
solutions when no deterministic method exists or if the 
deterministic method is computationally complex. GA is 
a population based algorithm (i.e.; it generates multiple 
solutions each iteration). The number of solutions per 
iteration is called population size. Each solution is repre- 
sented as a chromosome and each chromosome is built 
up from genes. For a genetic algorithm of population size 
n, it starts with n random solutions. Then it chooses the 
best member solutions for mating to generate new solu- 
tions. The best generated solutions will be added to the  

next iteration while the bad solutions will be rejected. 
While the algorithm iterates its solutions, these solutions 
are improved up to a point where converge to a near op- 
timal solution is achieved. Many factors should be taken 
into consideration when the genetic algorithm is used. 
The first factor is the representation of chromosome and 
genes because bad representation may result in slower 
convergence. Another important factor is the mechanism 
of producing new solutions from the old ones. The most 
popular mechanisms are crossover and mutation. The 
third factor is how to find a fitness function (i.e.; a me- 
thod to evaluate the solutions) in order to accept or reject 
the solutions, and how to select the best members for 
mating. 

In general, a genetic algorithm has four stages: popu- 
lation initialization, evaluation of fitness, reproduction 
and termination. Initialization is the process of creating 
initial random solutions, which can be done by setting 
genes to random values. In the initialization process, n 
chromosomes are created as the first generation of solu- 
tions. After the initialization, each chromosome fitness 
(i.e.; solution goodness) is evaluated using the fitness 
function. 

Reproduction process has four steps: selection, cross- 
over, mutation, and accepting the solution. In the selec- 
tion step, the fittest members in the current population 
are selected in order to reproduce new solutions. How- 
ever, less fitness members will have also a chance to be 
selected. The selection step can be implemented by many 
mechanisms such as the rollet wheel method. This selec- 
tion will be performed on two chromosomes to reproduce 
two new chromosomes each time. After selecting the 
chromosomes, a crossover operation is performed by 
selecting a random point in chromosomes and exchang- 
ing genes after this point. Crossover may be stuck in lo- 
cal optima. To overcome this problem, a tie breaker is 
needed which can be achieved by using mutation opera- 
tion where a gene is selected randomly and its value is 
changed. 

A widely used representation for genes is bits where 
each gene is represented by a bit. In this case, mutation is 
done by flipping a bit randomly in the chromosome. Af- 
ter crossover and mutation, two new chromosomes are 
reproduced. The final step is accepting these two chro- 
mosomes to be in the new population. Typically, the new 
chromosomes are accepted if they are better than their 
parents. 

Termination is the last step in the genetic algorithm. 
Usually, the iteration of the genetic algorithm is stopped 
when a certain criterion is met. The most widely used 
stopping criterion is the number of iterations. When a 
predefined number of iterations are satisfied, the genetic 
algorithm is terminated. 
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3. Related Work 

Several research works have addressed the node deploy- 
ment problem to achieve maximum coverage in WSN. 
For random node deployment, these works considered 
WSNs that consist of mobile sensor nodes [4,5,7,8] or 
that contain both static and mobile nodes [9-12]. 

For mobile sensor networks, several approaches have 
been proposed. Voronoi diagrams were used in [7] to 
find the uncovered areas and determine the positions 
where the nodes can move. In [4], a potential field-based 
approach was proposed, in which a repelled force is gen- 
erated between the obstacles and sensor nodes and 
among the nodes themselves, in order to evenly distribute 
the nodes in the field. A virtual force algorithm was pro- 
posed in [5] that uses both pulling and pushing force 
among the nodes. In [8], simulated annealing was used to 
find near optimal solutions for nodes placement that 
maximize the coverage of the area of interest. 

On the other hand, several works have considered both 
static and mobile nodes in WSN. In [9], a bidding proto- 
col was proposed, in which the static nodes are utilized 
as bidders and a number of mobile nodes move accord- 
ingly to satisfy the coverage requirements. In [10], a dis- 
tributed protocol was proposed that considers the differ- 
ent sensing capabilities of the nodes using realistic sens- 
ing coverage model. In this protocol, the static nodes 
determine the uncovered areas using a probabilistic cov- 
erage algorithm and the mobile nodes move accordingly 
using virtual force algorithm. In [11], several approaches 
were proposed based on virtual force algorithm and par- 
ticle swarm optimization. The obtained solutions were 
analyzed for better deployment in the region of interest. 
Recently, a biogeography-based optimization algorithm 
was proposed in [12] to maximize the coverage area of 
the network. 

Genetic algorithms have also been used to solve the 
problem of optimal node deployment. While most of the 
proposed solutions have focused on deterministic node 
deployment [13-18], few works have been done in case 
of random node deployment [19-22]. In random deploy- 
ment, genetic algorithms are applied to determine near 
optimal positions for additional mobile nodes in order to 
maximize the coverage. In [19], a force-based genetic 
algorithm was proposed, in which the mobile nodes util- 
ize the sum of the forces used by the neighbors to choose 
their direction. In [20], a multi-objective genetic algo- 
rithm running on a base station was used. The base sta- 
tion determines where the mobile nodes can move to 
maximize the coverage and minimize the travelled dis- 
tance. In [21], a cluster based WSN was considered and a 
genetic algorithm was used to find the best positions for 
the cluster heads that cover the maximum number of 
nodes and hence maximizing the area coverage. In [22], 
Voronoi diagrams were used to partition the field into  

cells and a genetic algorithm was then applied to deter- 
mine the best positions for k additional mobile nodes that 
maximize the area coverage inside each cell. 

Unlike the above-mentioned genetic algorithms, this 
paper proposes a genetic algorithm that finds the mini- 
mum number of additional mobile nodes and the best 
positions for these nodes in order to maximize the overall 
coverage 

4. Proposed Approach 

In this section, we present our proposed approach. We 
first present the network assumptions and coverage model, 
and then we discuss the GA-based approach. 

4.1. Network Assumptions 

It was assumed that the sensor nodes are randomly de- 
ployed and equipped with GPS, and the base station node 
position is stationary. Furthermore, the number of sensor 
nodes that are initially deployed equals the number of 
nodes that are required to achieve full coverage as if 
these nodes were deterministically deployed. It was also 
assumed that few mobile nodes are available and can be 
used to repair the coverage holes after initial deployment 
of the stationary nodes. 

4.2. Coverage Model 

We assumed that each sensor node with a sensing radius 
r can cover an area of circular shape. We also assumed 
that a target object Oj can be detected by sensor Si if Oj is 
within the sensing range of Si. This can be represented 
using the binary model of sensor detection which is given 
by: 

 
 
 

1,    ,
Coverage

0,    ,

i j

i j

D S O r
S

D S O r

  


         (1) 

where D is the distance between the target object being 
sensed Oj and the sensor node Si. The coverage function 
Coverage(S) equals 1 when the target object can be cov- 
ered or sensed, otherwise it equals 0. 

4.3. GA-Based Approach 

The main objective of employing the GA in our approach 
is to maximize the coverage by reducing or eliminating 
the holes that are formulated after initial deployment of 
the stationary nodes. Figure 1 shows the pseudo code of 
the proposed GA algorithm. Assume that Si stationary 
sensor nodes are deployed randomly over a sensing field, 
and all the sensor nodes have the same sensing range 
which is represented as a circle with radius r. Then, the 
base station will run the GA after gathering the locations 
of the stationary sensor nodes in order to determine the  
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Set the area length and width 

Si  number of static sensor nodes 

r  sensor sensing radius  

Oj  number of targets 

Calculate the coverage ratio of static deployed nodes 
Initialize chromosomes and the number of generations 
Initialize random locations of the chromosomes  
While (iteration < generations &&  
       required fitness not satisfied) 

Evaluate the fitness of each chromosome  
Rank the chromosomes 
Compute the total fitness 
Do a random crossover and mutation 
Update the value of chromosomes  
Evolve the next generation chromosomes 

End 

Figure 1. Implementation procedure of the GA-based opti- 
mization model. 
 
number and locations of the mobile nodes as follow: 

1) Chromosmes modeling: Each chromosome, as a 
solution in the GA, represents the location of a potential 
mobile sensor node in the sensing field modeled as (X, Y) 
point. The gens of each chromosome represent a binary 
digit that resembles the value of the location on the X 
and Y axises. For example, in order to represent a mobile 
node mapped to location (30,40), the corresponding chro- 
mosome is shown in Figure 2. 

The size of the chromosome population is selected 
based on two factors: the area of the sensing field and the 
initial configuration of the network. For instance, if the 
area of the sensing field is 50 m  50 m, the sensing 
radius of each node is 8m, and the number of deployed 
stationary nodes is 13 (i.e.; 502/(82) ≈ 13), then the 
proposed GA will start with population of 13 randomly 
generated chromosomes. Note that value 13 is selected in 
this case based on the assumption that 13 sensor nodes 
would cover the entire field as if they were determini- 
stically deployed. 

2) Fitness function: In GAs, an objective function is 
defined in order to evaluate the fitness of each solution to 
the corresponding objective. The formulation of the ob- 
jective or fitness depends on the problem characteristics. 
The fitness function is used in order to choose the best 
fittest chromosomes for the purpose of reproduction of 
the next generated solutions by the GA. The fitness func- 
tion in our model defines the mutually exclusive cover- 
age ratio of each chromosome. That is, the fitness func- 
tion calculates the maximum number of covered targets 
by each mobile node if and only if these targets are un- 
covered by other mobile or static nodes. This property of 
the fitness function prevents the overlapping redundancy 
among the coverage regions of the deployed mobile 
nodes and forces each mobile node to cover only a dis- 
tinct region. The fitness function is given by: 

X-location                    Y-location 

 
0 1 1 1 1 0 1 0 1 0 0 0 

Figure 2. Chromosome representation of sensor location (30, 
40). 
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where F(MSi) is the fitness of mobile node i (MSi) which 
calculates the coverage as a function of the targets it cov- 
ered, given that the target object Oj is not covered by any 
stationary node or other mobile nodes. In Equation (2), Sc 
is the coverage of initially deployed stationary nodes and 
F(MS/i) is the coverage of any mobile node except mobile 
node i. 

To choose the fittest species for mating in the next 
generation, we defined a fitness ratio for each mobile 
node as a function of its coverage and the total number of 
targets, which is given by: 

 
Fitness Ratio % Si

j

F M

O

 
   
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          (3) 

We also defined a function that measures the total cov- 
erage of the network at each GA generation. This func- 
tion is defined as an accumulation of the coverage of the 
static nodes and the generated mobile nodes, and is given 
by: 

1
Accumulated Coverage

m

C Si
S F M


  i    (4) 

3) GA operators: We used the fitness ratio calculated 
in Equation (3) as a measure for ranking the chromo- 
somes and then performing parent selection according to 
the ratio participated by each chromosome in the fitness 
function. The chromosomes with higher ranking have a 
higher probability to become parents and perform repro- 
duction of new individuals than others with smaller rank- 
ing. This property must be maintained in order to in- 
crease the improvement ratio at each generation of the 
GA. With high probability, a crossover operation is per- 
formed between a pair of parent chromosomes in order to 
create two offspring. In the crossover operation, the 
crossover point is choosed randomly where two parent 
chromosomes are selected, and then the chromosome 
parts are exchanged after that point. The sequence of 
selection and crossover operations may lead to a state 
where all chromosomes are identical and thus the algo- 
rithm stops creating new individuals. This may prevent 
the average fitness improvement and thus trapping into a 
local optimum. To solve this problem, a mutation opera- 
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tion, with low probability, is applied to toggle the ran- 
domly selected gene on the chromosomes. 

4) Termination condition: We defined the termination 
condition of the applied algorithm in terms of the number 
of generations and coverage ratio perspectives. That is, 
the algorithm terminates either when the required net- 
work coverage ratio is reached or when the algorithm 
reaches the specified number of generations. 

5. Performance Evaluation 

In this section, the performance of the proposed algo- 
rithm is evaluated in terms of the amount of coverage 
(coverage ratio), degree of coverage (k-coverage), and 
number of additional mobile nodes. Moreover, the effect 
of the number of randomly deployed static nodes and the 
sensing ranges on coverage and number of additional 
mobile nodes were investigated. 

Two simulation experiments were conducted for per- 
formance evaluation. In the simulation environment, it 
was assumed that the sensor nodes were randomly de- 
ployed and the targets were uniformly located in a 200 m 
 200 m sensor field. In the first experiment, the number 
of deployed static nodes varies from 100 to 200 to cover 
625 targets, whereas the sensing ranges of all nodes are 
fixed to 12 m. In the second experiment, the number of 
deployed static nodes is fixed to 100, while the sensing 
ranges vary from 10 m to 20 m. In each experiment, the 
coverage ratio, k-coverage, and number of additional 
mobile nodes were measured before and after applying 
the proposed algorithm. 

5.1. Effect of Number of Static Nodes 

Figure 3 shows the coverage ratio when the static nodes 
are randomly deployed and after adding the mobile nodes 
to the network. As shown, the coverage ratio increases as 
the number of deployed static nodes increases. The cov- 
erage of the static nodes alongside the additional mobile 
nodes clearly outperforms the case of random deploy- 
ment of the static nodes as the additional mobile nodes 
are located into regions where targets are not covered by 
the static nodes. 

Figure 4 shows the k-coverage when the static nodes 
are randomly deployed and after adding the mobile nodes 
to the network. For both cases, it is shown that as the 
number of nodes increases, the k-coverage increases. 
This is because the static nodes in both cases are ran- 
domly deployed and it is very likely that the coverage 
among these nodes is overlapped, hence the targets 
would be covered by more sensor nodes as the number of 
static nodes increases. 

Figure 5 shows the number of additional mobile nodes 
versus the number of randomly deployed static nodes. As 
shown, the number of mobile nodes decreases as the  
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Figure 3. Comparison of coverage ratio for different number 
of deployed nodes. 
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Figure 4. Comparison of k-coverage for different number of 
deployed nodes. 
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Figure 5. Number of additional mobile nodes versus number 
of static nodes. 
 
number of static nodes increases. This is because more 
targets would be covered as the number of static nodes 
increases and hence less mobile nodes would be added to 
increase the coverage ratio. 

5.2. Effect of Sensing Range 

Figure 6 shows the coverage ratio when the static nodes 
are randomly deployed and after adding the mobile nodes 
as a function of the sensing ranges. It is shown that the 
coverage ratio increases as the sensing radii of the de- 
ployed nodes increase, since sensor nodes with larger  
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sensing range can cover more targets than that with 
smaller range. The coverage of the static nodes along 
with the additional mobile nodes clearly outperforms the 
case of random deployment of the static nodes as the 
additional mobile nodes are located into regions where 
targets are not covered by the static nodes. 

Figure 7 shows the k-coverage when the static nodes 
are randomly deployed and after adding the mobile nodes 
as a function of the sensing ranges. As shown, the k- 
coverage increases as the sensing radii of the deployed 
nodes increase. This is because the coverage among sen- 
sor nodes with large sensing range is very likely to over- 
lap, and hence more targets would be covered by multi- 
ple nodes. 

Figure 8 shows the number of additional mobile nodes 
as a function of the sensing range. It is shown that the 
number of mobile nodes decreases as the sensing radii of 
the nodes increase. This is because more targets would 
be covered as the sensing range of the static nodes in- 
creases and hence less mobile nodes would be added to 
increase the coverage ratio. 

6. Conclusion 

This paper presents a genetic algorithm to find an opti- 
mal solution to the coverage holes problem caused by 
random deployment of stationary sensor nodes in wire- 
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Figure 6. Comparison of coverage ratio for different sensing 
ranges. 
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Figure 7. Comparison of k-coverage for different sensing 
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algorithm was evaluated in terms of the coverage ratio, 
k-coverage, and the number of additional mobile nodes 
using different numbers of stationary nodes and various 
sensing ranges. The simulation results showed that the 
genetic algorithm can maximize the coverage of the sens- 
ing field by finding the minimum number of additional 
mobile nodes and their best positions in the field. 
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	1) Chromosmes modeling: Each chromosome, as a solution in the GA, represents the location of a potential mobile sensor node in the sensing field modeled as (X, Y) point. The gens of each chromosome represent a binary digit that resembles the value of the location on the X and Y axises. For example, in order to represent a mobile node mapped to location (30,40), the corresponding chro- mosome is shown in Figure 2.
	The size of the chromosome population is selected based on two factors: the area of the sensing field and the initial configuration of the network. For instance, if the area of the sensing field is 50 m ( 50 m, the sensing radius of each node is 8m, and the number of deployed stationary nodes is 13 (i.e.; 502/(((82) ≈ 13), then the proposed GA will start with population of 13 randomly generated chromosomes. Note that value 13 is selected in this case based on the assumption that 13 sensor nodes would cover the entire field as if they were determini- stically deployed.
	4) Termination condition: We defined the termination condition of the applied algorithm in terms of the number of generations and coverage ratio perspectives. That is, the algorithm terminates either when the required net- work coverage ratio is reached or when the algorithm reaches the specified number of generations.

