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ABSTRACT 

Economic Load Dispatch (ELD) is a process of scheduling the required load demand among available generation units 
such that the fuel cost of operation is minimized. The ELD problem is formulated as a nonlinear constrained optimiza- 
tion problem with both equality and inequality constraints. In this paper, two test systems of the ELD problems are 
solved by adopting the Cuckoo Search (CS) Algorithm. A comparison of obtained simulation results by using the CS is 
carried out against six other swarm intelligence algorithms: Particle Swarm Optimization, Shuffled Frog Leaping Algo- 
rithm, Bacterial Foraging Optimization, Artificial Bee Colony, Harmony Search and Firefly Algorithm. The effective- 
ness of each swarm intelligence algorithm is demonstrated on a test system comprising three-generators and other con- 
taining six-generators. Results denote superiority of the Cuckoo Search Algorithm and confirm its potential to solve the 
ELD problem. 
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1. Introduction 

The electrical systems are interconnected in order to ob- 
tain the benefits of minimum generation costs, maximum 
reliability and best operational conditions, such as shar- 
ing of power reserve, improving the stability and operat- 
ing on emergency situations [1]. Thus, the optimization 
problem of the economic dispatch of electrical power is 
relevant to accomplish requirements of quality and effi- 
ciency in power generation. 

The economic load dispatch is an issue in which it has 
generated units available and connected to the power 
system. During the operational activity of the system, it 
must comply the expected load (system’s demand), so 
that the sum of the power of the generating units is equal 
to the total load of the system and electrical losses. 

The basic objective of the economic load dispatch 
problem of electrical power generation is the scaling of 
committed generating units outputs to find the consumer 
load demand at a minimal operating cost within a time 
interval (typically one hour), satisfying the inherent re- 
strictions with the gathered generating units and the 
equality and inequality constraints imposed by the prob- 
lem [2]. 

The economic dispatch for the operation of electrical 

groups is described as a multi-objective mathematical 
programming problem, where the goal is to minimize the 
function that determines the fuel cost (objective function), 
stating an optimal generation profile, subject to satisfac- 
tion of the energy load power and the technical limits of 
the operating groups. 

The economic dispatch problem has complex and 
nonlinear characteristics, and usually with the presence 
of equality and inequality constraints. Several methods 
have been used to solve this problem since it was intro- 
duced, for example, iterative method, gradient based 
techniques, interior points method, linear programming 
and dynamic programming. However, the conventional 
approaches used for the optimization of this problem are 
inadequate, because the solution can be retained in traps 
of local minima [1]. Furthermore, the classical dispatch 
algorithms require incremental cost curves to be mono- 
tonically increasing/piecewise linear and some approxi- 
mation should be made to satisfy the requirements. How- 
ever, the input/output characteristics of modern generat- 
ing units are inherently highly non-linear. Therefore, 
more interests have been focused on the application of 
Computational Intelligence (AI) methods for solving this 
kind of problem. 
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Some heuristic methods explore not only features of 
the problems but particularly also the analogy with other 
optimization methods found in nature. Such heuristics 
are called metaheuristics and are independent of the 
problem being treated. Many metaheuristics were pro- 
posed based on population for solving unconstrained op- 
timization problems. Since population-based optimiza- 
tion techniques are more effective than the gradient tech- 
niques in finding the global minimum, they have been 
preferred in many applications, because metaheuristics 
approaches allow the insertion of constraints in a 
smoother manner. 

Several models of the economic load dispatch problem 
using population-based methods have also been ad- 
dressed in some works of literature, including the use of 
methods such as Genetic Algorithms [2], Particle Swarm 
Optimization [3,4], Evolutionary Programming [5], Bac-
terial Foraging Optimization (BFO) [6], Ant Colony Op-
timization [7], Harmony Search [8], Biogeography- 
based Optimization [9] and Seeker Optimization Algo- 
rithm [10]. 

The fundamental principle of these algorithms, also 
referred to as bioinspired methods, uses a constructive 
method for obtaining the initial population (initial feasi- 
ble solutions represented by individuals) and a local 
search technique to improve the solution within the 
population, whereas the individuals (solutions) of popu- 
lation are evolved according to specified rules that con- 
sider the exchange of information among individuals. 
This process drives the population towards obtaining an 
optimal solution. Such algorithms are also known as 
swarm intelligence algorithms [11]. 

This paper applies the recent Cuckoo Search (CS) al- 
gorithm [12] to solve the economic load dispatch prob- 
lem. Our motivation for using this population-based al- 
gorithm is due to two primary reasons highlighted by its 
authors for a superior performance of this algorithm in 
contrast with others metaheuristics, as discussed in [12]: 
a fine balance of randomization and intensification, and 
less number of control parameters. First, for any meta- 
heuristic algorithm, a good balance of intensive local 
search strategy and an efficient exploration of the whole 
search space will usually lead to a more efficient algo- 
rithm. So, the success or failure of a population-based 
algorithms depends on its ability to establish proper 
tradeoff between exploration and exploitation. Random 
walk via Lévy flight used by CS is more efficient in ex- 
ploring the search space as its step length is heavy-tailed, 
and any large step is possible. On the other hand, CS has 
some sort of elitism and/or selection similar to that used 
in Harmony Search. Second, there are just two parame- 
ters to be fine-tuned in CS algorithm: population size and 
discovery probability (pa). The CS convergence rate is 
insensitive to the parameter pa. This also means that it is 

not necessary to fine tune these parameters for a specific 
problem. 

The effectiveness of this algorithm is demonstrated for 
test cases of three and six-generating units. The CS re- 
sults are compared to six others population-based meth- 
ods: Particle Swarm Optimization (PSO) [13], Shuffled 
Frog Leaping Algorithm (SFLA) [14], Bacterial Foraging 
Optimization (BFO) [15], Artificial Bee Colony (ABC) 
[16], Harmony Search (HS) [17] and Firefly Algorithm 
(FA) [18]. 

The remaining sections of this work are organized as 
follows: Section 2 describes the formulation of an ELD. 
Section 3 describes the CS algorithm. Section 4 presents 
the two case tests, the computational settings and ana- 
lyzes the CS results when applied to case studies of 
ELDs with three and six-generating units and compared 
with the others six algorithms’ results. Lastly, Section 5 
outlines the conclusions. 

2. Problem Formulation 

The purpose of the economic load dispatch problem in 
electrical power system is to schedule the outputs of 
committed generating units to meet the consumer load 
demand at a minimal operating cost, satisfying the equal- 
ity and inequality constraints imposed to the system. 

The economic dispatch for the operation of electrical 
units is described by a multi-objective mathematical pro- 
gramming problem, which consists of minimizing the 
function that determines the fuel cost (objective function), 
finding an optimal generation profile, subject to satisfy 
the load power and the technical limits of operation of 
the groups. 

Consider an electrical groups park with n generating 
units. The total fuel cost for power generation to be 
minimized is the sum of contributions of each generating 
units, which is given by: 

 
1

min
n

i i
i

F P

                 (1) 

where: Fi is the fuel cost function for the generation unit i 
(in $/h) and Pi (in MW) is the real power output for this 
unit. 

The fuel cost characteristics of each generation unit i is 
represented by a quadratic equation: 

  2 ,i i i i i i iF P a P b P c               (2) 

subject to: 

min max ,i i iP P P                 (3) 

where: ai, bi and ci are the fuel cost coefficients of the unit 
i, and  and  are the minimum and maximum 
generation limits of the real power of unit i (in MW). 

min
iP max

iP

In this context, an equality constraint should be at- 
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tempted. The total generated power by the units must be 
equal to the sum of total load demand and total real 
power loss in the transmission lines, as follows: 

1

0
n

i D L
i

P P P


                 (4) 

where: PD is the total system real power demand (in 
MW); PL is the overall system real power losses (in 
MW). 

In the methodology of constant loss formula coeffi- 
cients (loss coefficient method) or B-coefficients, the 
network losses are expressed as a quadratic function of 
the generators power outputs that can be approximated in 
the form: 

0

n n n

L ij i j i i
i j i

P B PP B P   00B





        (5) 

where: Bij are the elements of loss coefficient square ma- 
trix B, Bi0 is the i-th elements of the loss coefficient vec- 
tor and B00 is the loss coefficient constant. 

The generation capacity inequality constraint related to 
real power generation limits of each unit is given by 
Equation (3), whereas the power balance equality con- 
straint (i.e., balance between demand and production) is 
represented by Equation (4).  

The swarm optimization algorithms were applied to 
minimize the following objective function: 

  1
1 1

n n

i i i D L
i i

f F P q abs P P P
 

       
 

        (6) 

where: q1 is a positive constant to penalize the solutions 
that does not attend the power load balance. 

This objective function was established to include not 
only the load distribution in the generating units with a 
lower cost but also to satisfy the equality constraint of 
the system. 

3. Cuckoo Search Algorithm 

Cuckoo search (CS) is inspired by some species of a bird 
family called cuckoo because of their special lifestyle and 
aggressive reproduction strategy. This algorithm was 
proposed by Yang and Deb [12]. The CS is an optimiza- 
tion algorithm based on the brood parasitism of cuckoo 
species by laying their eggs in the communal nests of 
other host birds, though they may remove others’ eggs to 
increase the hatching probability of their own eggs. Some 
host birds do not behave friendly against intruders and 
engage in direct conflict with them. If a host bird discov- 
ers the eggs are not their own, it will either throw these 
foreign eggs away or simply abandon its nest and build a 
new nest elsewhere [19]. 

The CS algorithm contains a population of nests or 
eggs. Each egg in a nest represents a solution and a 

cuckoo egg represents a new solution. If the cuckoo egg 
is very similar to the host’s, then this cuckoo egg is less 
likely to be discovered; thus, the fitness should be related 
to the difference in solutions. The better new solution 
(cuckoo) is replaced with a solution which is not so good 
in the nest. In the simplest form, each nest has one egg. 
When generating new solutions x(t+1) for, say cuckoo i, a 
Lévy flight is performed: 

     1 L vy ,t t
i ix x a     é           (7) 

where  > 0 is the step size which should be related to 
the scales of the problem of interest. In most cases, we 
can use  = O (1). The product  means entry-wise mul- 
tiplications. Lévy flights essentially provide a random 
walk while their random steps are drawn from a Lévy 
distribution for large steps: 

L vy ~ , 1 3 ,u t l  é              (8) 

which has an infinite variance with an infinite mean. 
Here the consecutive jumps/steps of a cuckoo essentially 
form a random walk process which obeys a power-law 
step-length distribution with a heavy tail. 

The rules for CS are described as follows: 
 Each cuckoo lays one egg at a time, and dumps it in a 

randomly chosen nest; 
 The best nests with high quality of eggs (solutions) 

will carry over to the next generations; 
 The number of available host nests is fixed, and a 

host can discover a foreign egg with a probability pa 
 [0, 1]. In this case, the host bird can either throw 
the egg away or abandon the nest so as to build a 
completely new nest in a new location. 

The later assumption can be approximated by the frac- 
tion pa of the n nests which are replaced by new ones 
(with new random solutions). With these three rules, the 
basic steps of the CS can be summarized as the pseu-
docode shown bellow: 

1) Define the objective function f(x), x = (x1, ..., xd)
T. 

2) Set n, pa and MaxGenerations parameters. 
3) Generate initial population of n nests xi (i = 1, 2, ..., 

n).  
4) Move a cuckoo (i) randomly by Lévy flights. 
5) Evaluate the fitness Fi. 
6) Randomly choose a nest (j) among n available 

nests. 
7) If Fi > Fj then replace j by the new solution. 
8) Abandon a fraction pa of worse nests and create the 

same fraction of new nests at new locations via Lévy 
flights.  

9) Keep the best solutions (or nests with quality solu- 
tions). 

10) Sort the solutions and find the best current solu- 
tion. 

11) If stopping criterion is not satisfied, increase gen- 
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eration number and go to step 4. 
12) Postprocess results and find the best solution 

among all. 

4. Experiments 

CS has been applied to solve the ELD problems in two 
different test cases for investigating its optimization ca- 
pability, where the objective function was limited within 
power ranges of the generating units and transmission 
losses are employed to demonstrate that were taken into 
account. Its performance was compared with six swarm 
optimization algorithm. We describe the test systems, the 
parameters’ settings and the experimental results as fol- 
lows. 

4.1. Test Systems 

The CS and the other swarm algorithms were validated 
with two test systems consisting of three and six-genera- 
tion units. The ELD problem was solved to obtain the 
minimum cost for the generation units with transmission 
losses. The Equation (6) was used as objective function 
for this problem. 

4.1.1. Case 1: Three-Generating Unit System 
This case study consists of three-generating units. The 
coefficients of fuel cost and the capacities of the genera- 
tion units are shown in Table 1. In this case, the load 

demand expected (PD) to be determined is 150 MW. 
However, the transmission loss coefficients matrix B is 

specified as: 

2

0.0218 0.0093 0.0028

10 0.0093 0.0228 0.0017

0.0028 0.0017 0.0179
ijB 

 
    
  

 

 3
0 10 0.3 3.1 1.5iB    

00 0.030523.B   

4.1.2. Case 2: Six-Generating Unit System 
The six-generating unit system is presented here where 
the power system load demand (PD) is 700 MW and the 
fuel cost coefficients are given in Table 2. Comparing to 
Case 1, the complexity and non-linearity of the ELD 
problem are augmented. 

The loss coefficients in the power transmission line 
(matrix B) are given by: 

4

0.14 0.17 0.15 0.19 0.26 0.22

0.17 0.60 0.13 0.16 0.15 0.20

0.15 0.13 0.65 0.17 0.24 0.19
10

0.19 0.16 0.17 0.71 0.30 0.25

0.26 0.15 0.24 0.30 0.69 0.32

0.22 0.20 0.19 0.25 0.32 0.85

ijB 

 
 
 
 

   
 
 
 
  

 

 

 3
0 10 0.3908 0.1297 0.7047 0.0591 0.2161 0.6635iB       

 
 

00 0.056.B   Table 1. Generator cost coefficients for the three-generating 
unit system. 

4.2. Algorithm’s Settings 
Unit a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW)

1 0.008 7 200 10 85 

2 0.009 6.3 180 10 80 

3 0.007 6.8 140 10 70 

We tested each test system for each swarm optimization 
algorithm. For every test, we carried on 20 independent 
runs with 5000 cycles per each run. We printed out worst, 
best and mean results as well the standard deviation 
within the set of 20 runs. Simulations were done on Intel 
Core i7 2630QM mobile processor with 4GB of RAM on 
Windows 7 × 64 Ultimate Operating System and Matlab 
R2010a. The parameters’ settings of each algorithm cho- 
sen by experimentation are cited bellow: 

 
Table 2. Generator cost coefficients for the six-generating 
unit system. 

Unit a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW)

1 0.007 7 240 100 500 

2 0.005 10 200 50 200 

3 0.009 8.5 220 80 300 

4 0.009 11 200 50 150 

5 0.0080 10.5 220 50 200 

6 0.0075 12 120 50 120 

 Particle Swarm Optimization (PSO): P (particles) = 
20, 1 (cognitive term) = 2, 2 (social term) = 2. 

 Shuffled Frog Leaping Algorithm (SFLA): m (meme- 
plexes) = 10, n (frogs) = 10, q (submemeplexes) = 2, 
Smax (step) = 5, iN (evolutions) = 5. 

 Bacterial Foraging Optimization (BFO): S (bacteria) 
= 20, Nc = 10, Ns = 4, Nre = 4, Ned = cycles, ped = 0.25, 
dattract = 0.1, wattract = 0.2, hrepellant = 0.1, wrepellant = 10. 

 Artificial Bee Colony (ABC): col (colony) = 20, BN  
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(employed bees) = 10, BC (onlookers) = 10, Cmax = 
100. 

 Harmony Search (HS): HMS (harmony memory size) 
= 2, HMCR (harmony memory considering rate) = 80, 
PAR (pitch adjusting rate) = 0.4. 

 Firefly Algorithm (FA): n (fireflies) = 20,  (ran- 
domization factor) = 0.2, 0 (attractiveness) = 1.0,  
(absorption coefficient) = 1.0. 

 Cuckoo Search (CS): n (nests) = 20, pa (discovery 
rate) = 0.25. 

4.3. Experimental Results 

The results of CS algorithm were compared to those re- 
ported using PSO, SFLA, BFO and ABC [11]. HS and 
FA were implemented in this work for comparing with 
CS. The experimental results of overall simulations are 
shown in Table 3, where standard deviation and mean, 
worst and best costs for both test power systems were 
achieved. 

In all cases, CS outperformed the solution founded by 
the others evaluated algorithms, in terms of reaching 
lowest worst cost, lowest mean cost solution and lowest 
standard deviation. As indicated in Table 3, CS pre-  

sented the best convergence results and strong stability. 
The optimal dispatch of the units is given in Table 4 

for the three-generating unit system and in Table 5 for 
the six-generating unit system, in which CS results are 
compared to ABC and FA methods. The Tables 4 and 5 
indicate the furnished power by each generating unit, the 
total generated power and the transmission losses for the 
best simulation. 

It is clear from Tables 4 and 5 that the total power ob- 
tained by CS is closed to the constraint of the power de- 
mand. In this context, these CS approach performed bet- 
ter than the ABC and FA methods in terms of reducing 
the power transmission losses in the test case 2, while FA 
did not satisfy the power balance equality constraint 
(Equation (4)). Although the power outputs for PSO, 
SFLA, BFO and HS were not exhibited in these tables, 
all these methods achieved the active power balance. 

5. Conclusions 

In this work, Cuckoo Search is proposed for solving 
economic load dispatch problems. The effectiveness of 
this algorithm is demonstrated for test cases consisting of 
three and six-generating units. The results of the Cuckoo  

 
Table 3. Results for the seven swarm intelligence algorithms for minimizing the generation cost considering 20 runs. 

Case 1 Case 2 

 
Mean cost ($/h) 

Standard 
deviation 

Worst cost ($/h) Best cost ($/h) Mean cost ($/h)
Standard 
deviation 

Worst cost ($/h) Best cost ($/h)

PSO 1609.13 8.231 1627.87 1600.60 8722.04 177.652 8912.16 8401.45 

SFL 1602.06 1.519 1607.62 1600.67 8479.49 54.781 8604.29 8419.78 

BFO 1604.28 3.1993 1611.35 1600.02 8571.91 127.85 8909.85 8428.69 

ABC 1607.37 11.676 1620.60 1600.51 8457.16 57.726 8610.28 8372.27 

HS 1610.10 9.415 1629.18 1600.58 8541.72 99.531 8778.37 8398.06 

FA 1617.34 10.746 1633.57 1600.47 8631.82 176.83 9082.00 8388.45 

CS 1600.46 2.7e−6 1600.46 1600.46 8356.06 0.0008 8356.06 8356.06 

 
Table 4. Results for the best simulations with three-gener- 
ating units system. 

Power outputs CS ABC FA 

Unit 1 (MW) 33.490 33.049 32.729 

Unit 2 (MW) 64.116 61.764 63.843 

Unit 3 (MW) 55.126 57.872 56.151 

PL (MW) 2.73 2.70 2.72 

PD (MW) 150 150 150 

Pi (MW) 152.73 152.69 152.72 

Cost ($) 1600.46 1600.51 1600.47 

Table 5. Results for the best simulations with six-generating 
units system. 

Power outputs CS ABC FA 

Unit 1 (MW) 324.113 323.043 293.312 

Unit 2 (MW) 76.859 54.965 79.546 

Unit 3 (MW) 158.094 147.354 123.334 

Unit 4 (MW) 50.000 50.000 69.700 

Unit 5 (MW) 51.963 85.815 79.546 

Unit 6 (MW) 50.000 50.233 63.778 

PL (MW) 11.03 11.40 11.44 

PD (MW) 700 700 700 

Pi (MW) 711.03 711.40 709.22 

Cost ($) 8356.06 8372.27 8388.45 
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Search are compared with that of other six swarm intel- 
ligence algorithms. Although in this work there are not 
methodological innovations, the comparison among the 
swarm methods is very interesting for potential real ap- 
plications. 

After contrasting the simulation results with the other 
algorithms, it is obviously seen that Cuckoo Search gives 
better results than other algorithms. Cuckoo Search is 
easy to implement and capable of finding feasible near 
global optimal solution. 

In addition, the results substantiate the robustness, 
precise convergence and efficiency of this optimization 
algorithm. The main advantage of Cuckoo Search is a 
good ability for finding the solution. From the results 
obtained it can be concluded that Cuckoo Search is a 
competitive technique for solving complex nonsmooth 
optimization problems in power system operation. 
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