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ABSTRACT 

This paper presents a conception of an exponential observer for a class of linear distributed-parameter systems (DPSs), 
in which the dynamics are partially unknown. The given distributed-parameter observer ensures asymptotic state esti- 
mator with exponentially decay error, based on the theory of -semigroups in a Hilbert space. The theoretical ob- 

server developed is applied to a chemical tubular reactor, namely the isothermal Plug-Flow reactor basic dynamical 
model for which measurements are available at the reactor output only. The process is described by Partial differential 
equations with unknown initial states. For this application, performance issues are illustrated in a simulation study. 
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1. Introduction 

In many physical systems (e.g., bio-reactor, vibrations 
problems in mechanics, diffusion problems), the states of 
the mathematical model depend on spatial variable, 
which is a position in a one-dimensional or multi-dimen- 
sional space. This kind of system is called distributed- 
parameter system(s) (DPSs) (see [1]). A powerful tool in 
the analysis of DPSs is the theory of -semigroups 
(see [2,3]). 

0C

For the state feedback control, the exact and full 
knowledge of sates of the system is important. However, 
the presence of spatial variables makes the state not 
available for direct measurements and that imposes limi- 
tations to the design. In such case, the states can be esti- 
mated using state estimators (observers). For this purpose, 
the classical theory of the Luenberger observer [4] has 
been extended from linear finite-dimensional systems to 
a large class of DPSs by many authors, (we mention as 
examples [5-10] and the references within). However, 
research on efficient and practicable observer design for 
DPSs has not been so extensive as in the case of finite- 
dimensional systems, and papers on distributed-parame- 
ter observers are scattered in the literature. 

In This paper, we focus on estimating the states of lin- 
ear DPSs with partially unknown dynamics. The paper 

presents an exponential distributed-parameter observer 
design which is an asymptotic state estimator with expo- 
nentially decay error. The proposed conception is effi- 
cient and suitable in practice applications; for instance, it 
is appropriate to be applied to estimate the states of a 
chemical tubular reactor, namely the isothermal Plug- 
Flow Reactor basic dynamical model, with unknown 
initial state, in the case where measurements may occur 
at the reactor output only. 

2. Infinite Dimensional Observer Design 

Let consider the linear Infinite-Dimensional system 
given by 

   
      0, 0

x Ax t Bu t

y t Cx t x x

 


 


            (1) 

Here, A  is the infinitesimal generator of a 0 - 
semigroup on a real Hilbert space 

C
H  with inner prod- 

uct .,.  and the induced norm . ,  y t Y  is the 
known output function associated to the unknown initial 
condition  0x ,  is another real Hilbert space and 

 is a bounded linear operator from 
Y

C H  into . The 
dot over a variable means the time derivative of the var- 
iable.  

Y
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The purpose is to design a dynamic system (observer 
or state estimator) for the system (1) by using  as the 
input such that the output of this designed dynamic sys- 
tem is used as an estimate of the current state 

y

 x t  of 
(1). 

The initial state  of (1) is unknown while the 
initial state  of the observer can be assigned arbi-
trarily. Thus, the error between  and  is still 
an unknown quantity even if we know . As a basic 
requirement in observer design, we require that if 

 then 

 0x

 ˆ

 ˆ 0x

0

 0x



 ˆ 0x
ˆ 0x

  ˆ 0x x x t x t  for all . So, the 
observer for (1) can be expressed in the following form 

0t

          
  0

ˆ ˆ ˆ

ˆ ˆ0 .

x t Ax t Bu t L y t Cx t

x x

    





     (2) 

where  is the observer gain operator. L
Proposition 2.1: Given the linear infinite-dimensional 

system (1). Suppose that there exists a bounded linear 
operator  from L H  into H  such that the linear op- 
erator A LC

T t
  is the infinitesimal generator of a 0 - 

semigroup 
0t

 on 
C

  H , such that there exist con- 
stants  and 0M  0   and a time t  satisfying: 

   exp ,T t M t t t     

then the dynamic system (2) with  arbitrary cho-
sen is an exponential observer for system (1) and 

 ˆ 0x

     ˆ expx t x t k t    

for all t t
  0 0

, where  is a positive number depending 
on 

k
x̂ x . 

Proof 1 Let consider the estimation error  
, for all , the evolution sys- 

tem, 
     ˆe t x t x t   0e H

     
  0 0ˆ0

e t A LC e t

e x x

 


 


             (3) 

has a unique mild solution on the interval  0, , given 
by: , for all  (see [2,3]).      0e t T t e 0t 

Hence, 

     0 , 0e t T t e t    

Thus, the error satisfies: 

     exp ,e t T t t t t     

and that implies that the norm of the difference 
   x̂ t x t  will decrease exponentially to zero. This 

competes the proof. 
Let now suppose that linear operator A  is the infini- 

tesimal generator of a 0 -semigroup 
0A t

 and 
 is linear bounded operator on 

C   T t
D H . The following 
result will be needed in the sequel. 

Theorem 2.2: [3] The operator A D  is the infini- 

tesimal generator of a 0 -semigroup C   
0A D t

T t 

  0ds x s

 
which is the unique solution of the equation 

     0 0A D A A DT t x T t x T t s DT   
0

t

A  

for all 0x H . If in addition,    expM tAT t  , 
then, 

    t

0b 

expM

bC

C

A DT t M D  

2

 

3. Application to the Plug-Flow Reactor  
Basic Model 

The theory presented in the linear infinite-dimensional 
sitting in Section 2, is applied to reconstruct the states of 
a chemical tubular reactor with the following chemical 
reaction: 

1C                     (4) 

where 1  is the reactant, 2  the product, and  
is the stoichiometric coefficient of the reaction. The dy- 
namics of the process in a tubular reactor without axial 
dispersion are given, for all time  and for all 

C

0t 
 0,z L  where  is the reactor length, by mass bal- 

ance equations (see [11]): 
L

 1 1
0 1

0 1

k x

bk x



2 2

w in

x x
x t

t z
x x

t z

 



 
   

 
 

  
 

          (5) 

with the boundary conditions: 

  x 1 20, 0, 0, 0x z t z t              (6) 

and the initial conditions: 

  , 0 0
1 1 2, 0 , 0 2x z t x z t xx             (7) 

where      1 2, , , , ,inx z t x z t x tz  and   are the con- 
centrations of 1  and 2  (mol/l), the influent reactant 
concentration (mol/l) and the fluid superficial velocity 
(m/s). We assume that the kinetics depend only on the 
reactant concentration 

C C

1x  and we consider a reaction 
rate model of the form 0 1 , where 0  is the kinetic 
constant 

k x k
 1s .  .w

0z

denotes a finite unit impulse of 
window width w, i.e. an approximate Dirac delta distri- 
bution at  , given by 

   
 

1, 0,

sewhere.

w

w

z z

z

  

 

if

0, el

0
2

w
 

The initial states 0
1 ,x x  are supposed to be unknown 

hereafter. 
Throughout the sequel, we assume  

   2 20, 0,H L L L L  , the Hilbert space with the usual 
inner product 
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    2 21 2 1 2 1 1 2 2, , , , ,
L L

x x y y x y x y   

and the induced norm 

  2 2

2 2

1 2 1 2,
L L

x x x x   

for all  T

1 2, x x  and   in T

1 2,y y H . 
A partial-differential equations like (5)-(7), when ex- 

pended with an output equation, can also be expressed as 
an abstract state space equation on the Hilbert space H : 

     
      0, 0

x t Ax t Bu t

y t Cx t x x

 


 


            (8) 

associated to the unknown initial condition  
 T0 0

0 1 2: , x x x . Where, x
.,

 stands for the time derivative 
of the state      T

1 2, ., x t x t x t , and the control 
. The control operator  is a bounded 

linear operator from 
   inu t x t B

2IR  to H , which is defined by 

 .
0 wB
 

  
 

 

The output trajectory  is a bounded linear operator, 
and the linear operator 

C
A  is defined on its domain, 

 

 

1

2

1,2

: is absolutely continuous,

d
and 0 0

d i

x
D A x H x

x

x
H x

z 

 

      
  

  



 

 

by, 

0
1

2
0

d
0

d
d

d

k
xzAx
x

bk
z





    
   
   
 

 

The operator A  is the infinitesimal generator of a 

0 -semigroup 
t

 on C  
0

 AT t H , exponentially stable, 
i.e., there exist constants 1,M k I R  such that, 

   1exp , 0AT t M k t t     

Satisfying, 

   
   

11

21 22

0
A

T t
T t

T t T t

 
  
 

 

such that for all  1 2,x x H , (see [11] and the refer- 
ences within for more detail), 

       0 1
11 1

exp if

0 i

k t x z t z t
T t x z

z tf ,

 


    
 

 

     2
22 2

if ,

0 if

and 

     21 1 22 0 110
d .

t
T t x T t s bk T s s   

Remark 3.1 [11] It can be observed that the - 0C

semigroup   
0t

T t


 is such that  for all   0T t x 

x H , for all t L  , whence the stability bound is 
rather conservative and is only of interest for t small. 

More specifically, Remark 3.1 could lead us to deduce 
intuitively that the growth bound 0  of the -semi- 
group 

0C
  

0t
T t


, defined as follows: 

 
0

0

log
inf
t

T t

t



  

is equal to  . 

3.1. Observer Design 

Hereafter we consider measurements of the state vector 
 x t  are available at the reactor output only. In this case, 

the output function  .y  is defined as follows: we con- 
sider a (very small) finite interval at the reactor output 
 1 ,1  such that: 

    

     1

1 ,10
: , d ,

y t Cx t

a x a t a t IR 




  
      (9) 

where,    1 ,1 1a    if  1 ,1a    and  

    0a1 ,1    elsewhere, with 0 1   is a small 
number. 

The observer operator  is linear bounded. 2:C H IR
For all 2,x y H IR  , 

     

     

2
2

2

1

1 ,10

1

1 ,10

, ,

,. , d

IR
. d ,

IR

IR

Cx y a x a a y

x a a y



















 a

 

The adjoint operator C  of  is defined for all C
   , 0,1z t IR   by: 

      1 ,1C y z z y
  

For all ,x H  

           
      

22 1 1

1 1 ,10 0

21

1 ,10

2 2 22
[1 ,1]

,. d d

,. d

C Cx z a x a a z

a x a a

x x

 





 

 

  


 









 

 

  

Then, C C    

,

x z t z t
T t x z

z t

 


   
 

 A candidate observer for the system (5)-(7), is ob-
tained as the output of the following dynamic system 
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   

 

1 1
0 1 1 1 1 1 1

2 2
0 1 2 2 2 2

ˆ ˆ
ˆ

ˆ ˆ
ˆ ˆ

in

x x
k x x t gC C x C x

t z
x x

bk x gC C x C x
t z

 







 
      

 
 

    
 

ˆ

1 ,

 (10) 

with the boundary conditions: 

 
 

1

2

ˆ 0, 0,

ˆ 0, 0

x z t

x z t

 

 
             (11) 

and the initial conditions: 

 
 

0
1

0
2 2

ˆ ˆ, 0

ˆ ˆ, 0

x z t x

x z t x

 

 
             (12) 

With  defined by (9) and g the is a 
positive number. 

 T

1 2C C C 

The system (10)-(12) can be written on its compact 
form 

          
      0

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ, 0

x t Ax t Bu t GC C x t x t

y t Cx t x x

    


 


   (13) 

where, the linear operator  is the observer gain, sat- 
isfy 

G

1

2

0
:

0

G
G

G

 
  
 

gI              (14) 

with I  is the identity operator of the Hilbert H . 
Corollary 3.1: Given the isothermal Plug-Flow reactor 

basic dynamical model (5)-(7). Suppose that there exists a 
bounded linear operator , where G gI g  is a positive 
number, such that 0g k  , the dynamic system (10)-(12) 
is an exponential observer for the system (5)-(7). 

Proof 2 Let consider the linear operator G gI , 
where g  is a positive number. The operator  is a 
bounded linear operator on 

GC C

H , such that 
GC C g  . 

On the other hand, from Remark 3.1 and the definition 
of the growth bound, there exists a time  such that 

0kt

 
00

log
, k

T t
k t t

t
    

Hence, 

   
00exp , kT t k t t t     

Now, by the Theorem 2.2, the linear operator 
A GC C  is the infinitesimal generator of a -semi-  0C

group  satisfying, for all  :  
0A GC C t

T t 
 0kt t

    
  

0

0

exp

exp

A GC C
T t k GC C

k g t





  

  

If 0k
g


 , it follows by application of the Theorem 2.1,  

that the dynamic system (10)-(12) is an exponential ob- 
server for the system (5)-(7). More precisely the 
reconstruction error   ˆ x t x t  satisfies, for all , 

0kt t

          0ˆ ˆ 0 0 expx t x t x x k g t      

3.2. Simulation Result 

In order to test the performance of the proposed observer, 
numerical simulations will be given. The equations have 
been integrated by using a backward finite difference 
approximation for the first-order space derivative z  . 
The adopted numerical values for the process parameters 
are taken from the Table 1 (see [12]). 

Figures 1 and 2 show respectively the evolution in time 
and space of the error on the reactant concentration 

1 1 1ˆe x x   and the evolution in time and space of the 
error on the product concentration , related to 
the observer (10)-(12).  

2 2ˆe x x  2

The measurements are taken on the length interval 
 3 4,L L  i.e., 3 L 4   , and the process model has 
been arbitrary initialized with the constant profiles 

     1 2 1̂0, 1, 0, 0, 0, 0,x z x z x z    and  2ˆ 0, 1x z  . 
In order to response to the assumption of the Corollary 3.1,  

we set 01

2

k
g


  for the observer design parameter. 

4. Conclusions and Prospects 

In this paper we present a conception of a state estimator 
for linear distributed-parameter systems, which ensures 
that the estimation error converges exponentially to zero. 
The theory developed is applied to reconstruct the state 
of the isothermal Plug-Flow reactor basic dynamical 
model, and performed by a simulation study in which the 
parameters can be tuned by the user to satisfy specific 
needs in terms of convergence rate. 

One of the purposes in designing an observer is to ob- 
tain an efficient and practicable feedback control that 
stabilizes the original system around a desired profile. So 
the investigation of the stability of the overall closed- 
loop system (which is composed of original system, ob-  
 

Table 1. Process parameters for numerical simulations. 

Process parameters Numerical values 

0

in

L

k

b

x



 6 1

0.025 m s

1 m

10 s

2

0.02 mol L

  
t
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Figure 1. Error evolution of the reactant concentration. 
 

 

Figure 2. Error evolution of the product concentration. 
 
server, and feedback controller), is an interesting topic 
for future research. 
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