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ABSTRACT 

Winner determination is one of the main challenges in combinatorial auctions. However, not much work has been done 
to solve this problem in the case of reverse auctions using evolutionary techniques. This has motivated us to propose an 
improvement of a genetic algorithm based method, we have previously proposed, to address two important issues in the 
context of combinatorial reverse auctions: determining the winner(s) in a reasonable processing time, and reducing the 
procurement cost. In order to evaluate the performance of our proposed method in practice, we conduct several experi-
ments on combinatorial reverse auctions instances. The results we report in this paper clearly demonstrate the efficiency 
of our new method in terms of processing time and procurement cost. 
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1. Introduction 

An auction is a market place where the bidders compete 
for item(s). In a traditional or standard auction, an item is 
auctioned separately, which leads to an inefficient alloca- 
tion and processing time [1,2]. To improve the efficiency 
of bid allocation, combinatorial auctions have been pro- 
posed by allowing bidders to bid on multiple items [1,3]. 
This type of auctions provides a combinatorial allocation 
that minimizes the procurement cost and processing time 
[1,2,4]. Combinatorial auctions have been used to solve 
many real-world applications [5] such as supply chain 
management [6], resource allocation with real-time con- 
straints [2], computer grids [7], and sensor management 
[3,8]. A combinatorial auction problem has been dem- 
onstrated as a winner determination problem [9]. Winner 
determination is still one of the main challenges of com- 
binatorial auctions [2]. Indeed, determining the winner(s) 
in combinatorial auctions is an extremely complex prob- 
lem that has been shown to be NP-complete [1,4]. On the 
other hand, applying combinatorial auctions to procure- 
ment scenarios [10,11], such as travel packages and 
transportation services, may save the costs [1]. Several 
methods have been proposed to solve combinatorial auc- 
tion problems [1]. Some research works have been car-
ried out to determine the efficient way to solve the win-
ner determination problem in combinatorial auctions. 
Most of the proposed methods limit the bundles on which 
bids can be submitted in order to solve the problem op- 

timally, but this type of restrictions introduces economic 
inefficiencies [1]. Some other techniques avoid these re- 
strictions but allow bidding on a small number of items 
[1]. 

In this paper, we are interested in combinatorial re- 
verse auctions in which we consider the procurement of a 
single unit of multiple items. In our auction, there is one 
buyer and several sellers who compete according to the 
buyer’s requirements. First, the buyer announces his de- 
mand (multiple items) in the auction system. Then, the 
interested sellers register for that auction and bid on a 
combination of items. Genetic Algorithms (GAs) were 
successful to solve many combinatorial optimization 
problems [1], such as quadratic assignment problem [12], 
travelling salesman problem [13] and job scheduling [14]. 
Nevertheless, not much work has been done by using 
GAs to solve the winner determination problem in the 
context of combinatorial reverse auctions. In [15,16], we 
have proposed a GA based method that we called 
GACRA (Genetic Algorithm for Combinatorial Reverse 
Auctions) to tackle this problem. GACRA is successful 
in finding optimal solutions; however, it needs compara- 
tively a considerable amount of time to produce good 
solutions as it uses two repairing methods. Our research 
goal here is twofold: 1) solve the winner determination 
problem in combinatorial reverse auctions in a reason- 
able processing time, and 2) reduce the procurement cost 
with fewer generations. For this purpose, we improve the 
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method GACRA described in [15,16] and name our new 
method Improved Genetic Algorithms for Combinatorial 
Reverse Auctions (IGACRA). IGACRA only uses one 
repairing function to repair infeasible chromosomes. 
Moreover, we conduct several experiments by comparing 
IGACRA with GACRA for finding the winner(s) in 
combinatorial reverse auctions. The experimental results 
we report here clearly demonstrate the superiority of 
IGACRA in terms of processing time and procurement 
cost. In addition, some statistical measurements reveal 
that IGACRA is a consistent method. 

The rest of the paper is organized as follows. In Sec- 
tion 2, the literature related to this research work is dis- 
cussed with a focus on winner determination and genetic 
algorithms, and briefly outlines how GACRA is used in 
[15,16] to address the winner determination problem. In 
Section 3, the proposed IGACRA is presented in detail 
through an example. In Section 4, the experimental study 
we have conducted to evaluate the running time and 
procurement cost of our method is reported. Finally, 
concluding remarks and future research directions are 
listed in Section 5. 

2. Background 

2.1. Winner Determination 

Winner determination in combinatorial auctions is com- 
putationally expensive and has been classified as a NP- 
complete problem [1,4]. In practice, the following three 
approaches have been adopted to tackle this problem [4]: 
the first one is to limit the allowable bids, the second one 
is to address the unrestricted problems using search tech- 
niques, and the last one is to find a sub-optimal alloca- 
tion.  

Winner determination is based on two parts [5]: satis- 
fiability and optimization. The main target of satisfiabil-
ity is to find a solution to a given problem satisfying a set 
of required services. On the other hand, the basic task of 
optimization is to find the winner(s) based on multiple 
criteria [5], such as reduced procurement cost and proc- 
essing time. The required services identified to solve a 
task at the optimum measurement are the winners. The 
relationship between services can be of three types such 
as co-operation, benefit co-operation and no co-operation. 
The order in which these services are combined in all the 
three relationships according to the criteria used for op-
timization is important [5]. 

2.2. Genetic Algorithms 

GAs are powerful search techniques consisting of selec- 
tion, crossover and mutation methods that follow the 
Darwinian principle of survival: “Survival is the fittest” 
[17]. They are considered as approximate search algo- 

rithms driven by genetics and natural selection [18]. GAs 
algorithms model the sexual reproduction [19]. They are 
stochastic and polynomial rather than exponential [2] and 
are often used as an alternative approach for solving hard 
problems. The crossover operator builds a child with the 
combined characteristics of its parents. In contrast, muta- 
tion is a unary operator that needs only one input. During 
the process, the mutation operator produces a child by 
selecting some bad genes from the parent and replacing 
them with the good genes. Crossover and mutation both 
follow the characteristic of GAs in that the next genera- 
tion is expected to perform better than the current one. 
GAs can terminate anytime as required and the current 
best chromosome can be the best solution within the re- 
quired running time; that is why it is called anytime al- 
gorithm [5]. We may note that the problem representa- 
tion is one of the most challenging tasks to the success of 
GAs [5]. Determining an appropriate fitness function for 
a specific problem is another crucial part of GAs in 
which the qualities of chromosomes are assessed, and 
very often this task requires most CPU intensive part of 
GAs [4]. 

Genetic Algorithms (GAs) perform iterative multi-di- 
rectional non systematic searches by maintaining a con- 
stant size population of individuals and encouraging in- 
formation generation and exchange between these direc- 
tions [20]. Each iteration is called a generation and it 
undergoes some changes through crossover and mutation 
operators [20]. At each generation, good solutions are 
expected to be produced and bad solutions die. It is the 
role of the fitness function to distinguish the goodness of 
the solution [20]. 

2.3. Genetic Algorithms in Combinatorial  
Reverse Auctions 

Combinatorial auctions provide a more efficient alloca- 
tion than standard auctions in a multi-item scenario 
[1,2,4]. In [15,16], we have used GAs to solve the winner 
determination problem in the context of combinatorial 
reverse auctions. In our proposed GACRA method 
[15,16], infeasible chromosomes are repaired by remov- 
ing redundancy and emptiness through two repairing 
methods. Emptiness means a chromosome in which some 
item(s) are not selected, while in redundancy some item(s) 
are chosen more than once. Moreover, the gambling- 
wheel disk selection method has been adapted to choose 
the chromosome for the crossover operation. Then in the 
crossover operation, the modified two-point crossover 
operator has been used. Regarding the mutation opera- 
tion, the product configuration of two different suppliers 
was interchanged in the same chromosome. The popula- 
tion size has been set to 100, the crossover probability to 
60%, and the mutation rate to 1%. 
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3. Proposed GA-Based Method 

In Figure 1, a combinatorial reverse auction scenario is 
depicted. The buyer wants to buy items A and B. Three 
sellers are bidding with many feasible solutions. For 
example, seller 1 provides both items A and B, seller 2 
item B and seller 3 item A, etc. Winner(s) will be se- 
lected based on the minimum bid price. In real life, the 
running time for finding the optimal solution is also con- 
sidered. 

In Algorithm 1, we define our proposed Improved 
Genetic Algorithms for Combinatorial Reverse Auctions 
(IGACRA) method. Assume there are m items and n 
sellers. In this case, the number of bid items combina- 
tions is . The target of winner determination in 
combinatorial reverse auctions is to reduce the procure- 
ment cost. Let us consider an example with n = 3 (sellers 
S1, S2 and S3) and m = 2 (items A and B). Assume there 
are six chromosomes in each generation for this example. 
We use m × n bits to represent each chromosome, so in 
this case, 2 × 3 = 6 bits are used for each chromosome. 

2m 1

 

Algorithm 1: IGACRA (m: number of bid items, n: number of 
sellers, δ: number of generations, α: crossover rate, β: mutation 
rate) 

{     

1) t=1; 

2) bidGenerator();  

//generates bid prices for each combination of bid items for each 
seller  

3) chromosomeGenerator();  

//generates initial chromosomes 

4) repairChromosome();  

//converts infeasible chromosomes into feasible //ones 

5) fitnessChromosome();  

//computes fitness values of chromosomes 

      do{ 

6) selectionChromosome();  

//selects chromosomes using the gambling-wheel disk method 

7) crossoverChromosome();  

//generates child chromosomes from parent  
chromosomes with two-point crossover considering crossover rate, 
α 

8) mutationChromosome();  

//mutates chromosomes considering mutation rate, β 

9) repairChromosome();  

10) fitnessChromosome();  

11) newChromosomeGenerator();  

//determines better chromosomes from both initial and new 
chromosomes of each generation 

      } while t ≤ δ 

12) return winner(s);  

//returns the winner(s) with minimum bid price in optimal run-
ning time 

} 

In this particular case, the total number of possible 
combination of bid items for each seller is 
   22 1 2 1 3m     . The item combinations are: 
 Bidding for only item A = {A} = {10},  
 Bidding for only item B = {B} = {01}, 
 Bidding for both items A and B = {A, B} = {11}. 

Here, in the procedure of chromosome encoding, the 
corresponding bit is assigned to 1 if the seller bids for 
that item, and 0 otherwise. Let us consider the chromo- 
some 100100. The first two bits (10) are for seller S1, the 
next two bits (01) for S2, and the last two bits (00) for 
S3.In other words, this means that seller S1 bids only for 
item A, S2 bids for only item B, and S3 does not bid for 
any item. 

Through the above example, we describe in the fol- 
lowing the steps of IGACRA. We use one repairing 
function named repair Chromosome rather than using 
two repairing functions named Remove Redundancy and 
Remove Emptiness as in [15,16]. We also employ the 
two-point crossover operator defined in [14] in lieu of 
our former proposed modified two-point crossover op-
erator [15,16].  

Steps 1-3 
To generate bid prices, we consider random values 

between 200 and 500 for each item and for each seller. In 
Step 2, the bid Generator function performs this task. In 
Step 3, chromosome Generator function generates the 
chromosomes. For example, the six initial chromosomes 
are generated randomly by selecting a bid for each seller 
from the item combinations in the interval of [1, 2m]. A 
particular case is when 2m is chosen (in our example 22 = 
4). This means no item is selected for bidding for the  
 

 

Figure 1. A combinatorial reverse auction scenario. 
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seller, so the corresponding bid item combination is {00} 
and the price is also 0. 

Steps 4-5 
To repair infeasible chromosomes, the repair Chro- 

mosome() method, defined in Algorithm 2, ensures ex- 
actly one selection of every item from all sellers in each 
chromosome. So, we repair infeasible chromosomes by 
using this method. Repair Chromosome() has four func- 
tions: is Feasible(), assign Zeros(), generate Random() 
and assign One(). The task of is Feasible() is to return 
true if the chromosome has exactly one selection of every 
item from all sellers and false otherwise. This function 
uses the XOR operation to find it out. The task of as- 
sign Zeros() is to assign 0s to all the bits of an infeasible 
chromosome. The task of generate Random() is to return 
a random number between 1 and n. The task of assign 
One() is to assign 1 to the particular bit of an infeasible 
chromosome generated by the generate Random() func- 
tion. 

 
Algorithm 2: repair Chromosome (X: chromosome, m: number 

of items, n: number of sellers) 

 

{  

1. for each X 

{ 

1.1 if(!isFeasible(X)) 

{ 

1.1.1 assignZeros(); 

1.1.2 for each m 

{ 

1.1.2.1 generateRandom(1, n); 

1.1.2.2 assignOne(); 

} 

} 

} 

} 

 
Let us consider the following example to illustrate our 

repairChromosome method. Assume the chromosome is 
001101. For this chromosome, the first two bits (00) are 
for seller S1, the next two bits (11) for S2, and the last 
two bits (01) for S3. Moreover, the first, third and fifth 
bits are for item A and the second, fourth and sixth bits 
are for item B. The is Feasible() function performs XOR 
operations between the bits of item A and then between 
the bits of item B. For item A, it finds exactly one selec- 
tion. However, for item B it finds more than one selec- 
tion and therefore returns false which means the chro- 
mosome is infeasible. Then assign Zero() converts the 
chromosomes into 000000 generate Random() generates 
random value between 1 and 3 for each item. Assume 1 
is generated for item A and 3 for item B. assign One() 
assigns 1 to the bit for item A in the position for S1 and 1 

to the bit for item B in the position for S3. Thus, the 
chromosome is converted into 100001 which is feasible. 
Table 1 lists the initial chromosomes after repairing. 

In step 5, chromosome fitness value is computed by 
the fitness Chromosome function. Since the motivation 
of this research work is to minimize the procurement cost 
for the buyer, our fitness function for a given Xi is de- 
fined as follows, 

 
   

2 1

1 1

1
mi n

s s
s C

F X

b C x C


 



 
 

where 

   0,1sx C                 (1) 

bs (C) represents a bid for the item combination C sub- 
mitted from the sth seller. xs(C) is 1 when the item com- 
bination C is selected for the sth seller and 0 otherwise. 

Steps 6-7 
The selection Chromosome function uses the gam- 

bling-wheel disk selection method [9]. In this selection 
procedure, at first the sum of fitness values of all chro- 
mosomes is calculated, then a corresponding scope lo- 
cated in [0, 1] is assigned to each chromosome according 
to its fitness value.  

For example, if the fitness value of the first chromo- 
some is  1F X , and the sum of the fitness values of all 
chromosomes is F, then its corresponding scope is  

 10, F X F   . If the fitness value of the second chro- 
mosome is  2F X , then its scope is  

     1 1,  2F  X F F F X FF X   . In this way, we 
can deduce the scope of all chromosomes as follows. 

     1 ,i i iS X F X F F X F          (2) 

The chromosome that has the highest fitness value also 
has the longest scope which means that it has a better 
chance to be selected. For each chromosome a random 
number from [0, 1] is generated. If this number falls in 
the scope of one chromosome, then that chromosome is 
selected. 
 

Table 1. Initial chromosomes. 

Chromosome S1 S2 S3 

X1 10 01 00 

X2 01 00 10 

X3 11 00 00 

X4 00 00 11 

X5 00 11 00 

X6 10 00 01 
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In step 7, the crossover operation is performed using 
the two-point crossover method. At first the fitness val- 
ues of the parents are calculated. According to the cross- 
over rate only those parents with a relatively better fit-
ness values are considered for crossover. Figure 2 shows 
the two-point crossover operation. A child chromosome 
takes two portions from one parent and one portion from 
the other parent. In Algorithm 1, crossover Chromosome() 
function performs this task. 

In our algorithm, 60% of the total chromosomes will 
get the chance to participate in crossover operation. In 
Figure 2, Xparent3 and Xparent1 participate in crossover 
operation and Xchild3 and Xchild1 are created.  

Steps 8-12 
The procedure will move to mutation operation as in- 

dicated in our algorithm. In this step chromosomes are 
selected randomly and item combinations between two 
sellers are altered. Figure 3 shows a given mutation op- 
eration. 

Assume X2 chromosome is selected randomly for 
mutation operation. S1 and S3 sellers are selected ran- 
domly and their bid combinations are altered. Finally  
 

 

Figure 2. Two-point crossover operation. 
 

 

Figure 3. Mutation operation. 

Xmutate2 is created. The mutation Chromosome() function 
performs this task. 

In step 9, repair Chromosome() repairs the infeasible 
chromosomes. In step 10, our fitness function calculates 
the fitness values of the chromosomes.  

In step 11, the procedure selects the better chromo- 
somes among the initial and new chromosomes of the 
generation by using the new Chromosome Generator() 
function. Since a genetic algorithm is an anytime algo- 
rithm, our procedure can be stopped anytime and pro- 
duces the best solution so far. The entire process is re- 
peated until the termination condition is fulfilled, which 
in our case is the number of generations. In step 12, after 
fulfilling the termination condition the procedure returns 
the winner(s). While the solution is not improving in 
every generation, we always preserve the current winner. 

4. Experimentation 

We conduct in this paper several experiments to solve the 
winner determination problem in combinatorial reverse 
auctions using IGACRA. The goal of the experiments is 
to evaluate the performance of IGACRA in terms of run- 
ning time and procurement cost. We also compare 
IGACRA with our former method GACRA [15,16]. 

Both IGACRA and GACRA are coded in Java and 
executed on an AMD Athlon (tm) 64 X2 Dual Core 
Processor 4400+ with 3.43 GB of RAM and 2.30 GHz of 
processor speed. We utilize the following common pa- 
rameters and settings for all the experiments. 
 Chromosome Encoding: Binary String 
 Number of Chromosome: 100 
 Selection: Gambling-Wheel Disk 
 Crossover: Two-point 
 Crossover Rate: 0.6 
 Mutation Rate: 0.01 
 Termination Condition: Generation Number 

We evaluate our proposed procedure through the fol- 
lowing experiments: 

1) At first we compare our procedure with GAC- 
RAwith respect to both bid price and running time.  

2) We test our procedure measuring running time by 
varying the number of items and number of sellers. 

3) We analyze the IGACRA consistency through some 
statistical measurements. 

Experiment 1 
In this first experiment, we measure the required time 

of our proposed method and then compare it with 
GACRA. 

In Figure 4, we show the required time (in millisec- 
onds) versus the number of generations for both 
IGACRA and GACRA. This is the average required time 
of 20 runs. In this experiment 20 sellers compete for 5 
items. 
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From the comparison we can see that IGACRA needs 
less processing time. This happens because of using one 
and simple repairing function rather than two functions 
[15,16]. 

Experiment 2 
We also conduct experiments on the procurement cost 

and report the average results of 20 runs in Figure 5. For 
5 items, 20 sellers compete in this experiment. The price 
of each item is between 200 and 500. Bid price versus 
number of generations is shown for both IGACRA and 
GACRA.  
 

 

Figure 4. Required time vs number of generations. 
 

 

Figure 5. Bid price vs number of generations. 

Since our procedure always maintains feasible solu- 
tions and never accepts more than one instance of a spe- 
cific bid item, it is able to produce good solutions from 
the very first generations. Moreover, it keeps producing 
better solutions in the consecutive generations. 

Experiment 3 
In Figure 6, we show the average bid price of 20 runs 

for IGACRA with the maximum and minimum values 
indicated by ‘+’ and ‘−’ respectively and error bars with 
confidence level of 95%. This experiment is based on the 
results found in experiment 2. 

The solid line represents the average bid price and the 
error bars indicate 95% confidence level. The data points 
above and below the error bars show the maximum and 
minimum bid prices found over 20 runs.  

Clearly IGACRA gives consistently a better solution 
quality. It should also be noted that the solution quality 
increases steadily over generations. We also notice that 
the variability of the solution quality over multiple runs 
improves over the generations. Together with the fact 
that the minimum bid price remains constant, this sug- 
gests that the best solution found by IGACRA might be 
the optimal solution to the problem.  

Overall, these observations illustrate the any-time be- 
havior and more importantly the consistency of the 
IGACRA algorithm. IGACRA is able to minimize the 
procurement cost from the very early generations. 
Therefore, in the real world scenario, IGACRA is appro- 
priate to produce minimum bid price when the allowable 
processing time is too short. 

Experiment 4 
In this experiment, we assess the processing time for  

 

 

Figure 6. Bid price vs number of generations with error 
bars of IGACRA. 
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IGACRA by varying the number of sellers and keeping 
the number of items fixed to 2, 4, 6 and 8. Figure 7 illus- 
trates the required time (in seconds) versus the number of 
sellers. For this experiment 100 generations is used as the 
termination condition. 

This running time increases with the increment of the 
number of sellers. For a higher number of items, this 
increment occurs more sharply because of encoding more 
bits for chromosomes, calculating fitness values and op- 
erating on more chromosomes. 

Experiment 5 
We also report the results of experiments in terms of 

running time obtained by varying the number of items 
and keeping the number of sellers fixed to 20, 40, 60 and 
80. In Figure 8, the required time (in seconds) versus the 
number of items is shown. For this experiment, 100 gen- 
erations are used as the termination condition. 

These results also demonstrate that with the increase 
of the number of items, the required time increases and 
for a higher number of sellers it increases more sharply 
as for the same reason of increasing items.  

The number of bits required to represent the chromo- 
somes in IGACRA directly depends on both the number 
of items and the number of sellers. Therefore increasing 
any of these will increase the number of bits in the 
chromosomes which will increase the required running 
time. 

5. Conclusion and Future Work 

Motivated to reduce both the processing time and the  
 

 

Figure 7. Required time vs number of sellers. 

 

Figure 8. Required time vs number of items. 
 
procurement cost, this research work addresses the prob- 
lem of winner determination in combinatorial reverse 
auctions.  

Indeed, every important operation of the proposed 
GA-based method is chosen very carefully along with 
some other fruitful mechanisms in each step. We define 
the repairing method, repair Chromosome(), to ensure 
feasible solutions. With the help of this repairing method 
and a careful selection of genetic algorithms operators, it 
is notable that our method can produce optimal solutions 
in a reduced processing time in the context of combina- 
torial reverse auctions.  

Real-time response to large-scale applications is needed 
in resource allocation and e-commerce areas [21]. When 
the solutions should be produced quickly for large prob- 
lem instances, exact algorithms are not only inadequate 
but also infeasible [21]. Furthermore, in real life, certain 
domains may need approximate solutions within a suit- 
able processing time [21]. For these reasons, in this re- 
search we consider GAs to solve the problem of winner 
determination and our IGACRA algorithm is able to 
produce good solutions from the very first generations. 

Since parallel GAs are capable of constructing the so- 
lutions more efficiently [18,22], the future target of this 
research is to solve the problem of winner determination 
in combinatorial reverse auctions by using the parallel 
GAs. Another future direction is to consider some other 
non-price dimensions such as warranty, customer rating, 
and time of delivery. 
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