
Intelligent Control and Automation, 2013, 4, 371-378
Published Online November 2013 (http://www.scirp.org/journal/ica)
http://dx.doi.org/10.4236/ica.2013.44044

Open Access ICA

Evolutionary Techniques for Reverse Auctions

Shubhashis Kumar Shil, Samira Sadaoui, Malek Mouhoub
Department of Computer Science, University of Regina, Regina, Canada

Email: shil200s@uregina.ca, sadaouis@uregina.ca, mouhoubm@uregina.ca

Received August 22, 2013; revised September 22, 2013; accepted September 30, 2013

Copyright © 2013 Shubhashis Kumar Shil et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Winner determination is one of the main challenges in combinatorial auctions. However, not much work has been done
to solve this problem in the case of reverse auctions using evolutionary techniques. This has motivated us to propose an
improvement of a genetic algorithm based method, we have previously proposed, to address two important issues in the
context of combinatorial reverse auctions: determining the winner(s) in a reasonable processing time, and reducing the
procurement cost. In order to evaluate the performance of our proposed method in practice, we conduct several experi-
ments on combinatorial reverse auctions instances. The results we report in this paper clearly demonstrate the efficiency
of our new method in terms of processing time and procurement cost.

Keywords: Winner Determination; Combinatorial Reverse Auctions; Genetic Algorithms

1. Introduction

An auction is a market place where the bidders compete
for item(s). In a traditional or standard auction, an item is
auctioned separately, which leads to an inefficient alloca-
tion and processing time [1,2]. To improve the efficiency
of bid allocation, combinatorial auctions have been pro-
posed by allowing bidders to bid on multiple items [1,3].
This type of auctions provides a combinatorial allocation
that minimizes the procurement cost and processing time
[1,2,4]. Combinatorial auctions have been used to solve
many real-world applications [5] such as supply chain
management [6], resource allocation with real-time con-
straints [2], computer grids [7], and sensor management
[3,8]. A combinatorial auction problem has been dem-
onstrated as a winner determination problem [9]. Winner
determination is still one of the main challenges of com-
binatorial auctions [2]. Indeed, determining the winner(s)
in combinatorial auctions is an extremely complex prob-
lem that has been shown to be NP-complete [1,4]. On the
other hand, applying combinatorial auctions to procure-
ment scenarios [10,11], such as travel packages and
transportation services, may save the costs [1]. Several
methods have been proposed to solve combinatorial auc-
tion problems [1]. Some research works have been car-
ried out to determine the efficient way to solve the win-
ner determination problem in combinatorial auctions.
Most of the proposed methods limit the bundles on which
bids can be submitted in order to solve the problem op-

timally, but this type of restrictions introduces economic
inefficiencies [1]. Some other techniques avoid these re-
strictions but allow bidding on a small number of items
[1].

In this paper, we are interested in combinatorial re-
verse auctions in which we consider the procurement of a
single unit of multiple items. In our auction, there is one
buyer and several sellers who compete according to the
buyer’s requirements. First, the buyer announces his de-
mand (multiple items) in the auction system. Then, the
interested sellers register for that auction and bid on a
combination of items. Genetic Algorithms (GAs) were
successful to solve many combinatorial optimization
problems [1], such as quadratic assignment problem [12],
travelling salesman problem [13] and job scheduling [14].
Nevertheless, not much work has been done by using
GAs to solve the winner determination problem in the
context of combinatorial reverse auctions. In [15,16], we
have proposed a GA based method that we called
GACRA (Genetic Algorithm for Combinatorial Reverse
Auctions) to tackle this problem. GACRA is successful
in finding optimal solutions; however, it needs compara-
tively a considerable amount of time to produce good
solutions as it uses two repairing methods. Our research
goal here is twofold: 1) solve the winner determination
problem in combinatorial reverse auctions in a reason-
able processing time, and 2) reduce the procurement cost
with fewer generations. For this purpose, we improve the

S. K. SHIL ET AL. 372

method GACRA described in [15,16] and name our new
method Improved Genetic Algorithms for Combinatorial
Reverse Auctions (IGACRA). IGACRA only uses one
repairing function to repair infeasible chromosomes.
Moreover, we conduct several experiments by comparing
IGACRA with GACRA for finding the winner(s) in
combinatorial reverse auctions. The experimental results
we report here clearly demonstrate the superiority of
IGACRA in terms of processing time and procurement
cost. In addition, some statistical measurements reveal
that IGACRA is a consistent method.

The rest of the paper is organized as follows. In Sec-
tion 2, the literature related to this research work is dis-
cussed with a focus on winner determination and genetic
algorithms, and briefly outlines how GACRA is used in
[15,16] to address the winner determination problem. In
Section 3, the proposed IGACRA is presented in detail
through an example. In Section 4, the experimental study
we have conducted to evaluate the running time and
procurement cost of our method is reported. Finally,
concluding remarks and future research directions are
listed in Section 5.

2. Background

2.1. Winner Determination

Winner determination in combinatorial auctions is com-
putationally expensive and has been classified as a NP-
complete problem [1,4]. In practice, the following three
approaches have been adopted to tackle this problem [4]:
the first one is to limit the allowable bids, the second one
is to address the unrestricted problems using search tech-
niques, and the last one is to find a sub-optimal alloca-
tion.

Winner determination is based on two parts [5]: satis-
fiability and optimization. The main target of satisfiabil-
ity is to find a solution to a given problem satisfying a set
of required services. On the other hand, the basic task of
optimization is to find the winner(s) based on multiple
criteria [5], such as reduced procurement cost and proc-
essing time. The required services identified to solve a
task at the optimum measurement are the winners. The
relationship between services can be of three types such
as co-operation, benefit co-operation and no co-operation.
The order in which these services are combined in all the
three relationships according to the criteria used for op-
timization is important [5].

2.2. Genetic Algorithms

GAs are powerful search techniques consisting of selec-
tion, crossover and mutation methods that follow the
Darwinian principle of survival: “Survival is the fittest”
[17]. They are considered as approximate search algo-

rithms driven by genetics and natural selection [18]. GAs
algorithms model the sexual reproduction [19]. They are
stochastic and polynomial rather than exponential [2] and
are often used as an alternative approach for solving hard
problems. The crossover operator builds a child with the
combined characteristics of its parents. In contrast, muta-
tion is a unary operator that needs only one input. During
the process, the mutation operator produces a child by
selecting some bad genes from the parent and replacing
them with the good genes. Crossover and mutation both
follow the characteristic of GAs in that the next genera-
tion is expected to perform better than the current one.
GAs can terminate anytime as required and the current
best chromosome can be the best solution within the re-
quired running time; that is why it is called anytime al-
gorithm [5]. We may note that the problem representa-
tion is one of the most challenging tasks to the success of
GAs [5]. Determining an appropriate fitness function for
a specific problem is another crucial part of GAs in
which the qualities of chromosomes are assessed, and
very often this task requires most CPU intensive part of
GAs [4].

Genetic Algorithms (GAs) perform iterative multi-di-
rectional non systematic searches by maintaining a con-
stant size population of individuals and encouraging in-
formation generation and exchange between these direc-
tions [20]. Each iteration is called a generation and it
undergoes some changes through crossover and mutation
operators [20]. At each generation, good solutions are
expected to be produced and bad solutions die. It is the
role of the fitness function to distinguish the goodness of
the solution [20].

2.3. Genetic Algorithms in Combinatorial
Reverse Auctions

Combinatorial auctions provide a more efficient alloca-
tion than standard auctions in a multi-item scenario
[1,2,4]. In [15,16], we have used GAs to solve the winner
determination problem in the context of combinatorial
reverse auctions. In our proposed GACRA method
[15,16], infeasible chromosomes are repaired by remov-
ing redundancy and emptiness through two repairing
methods. Emptiness means a chromosome in which some
item(s) are not selected, while in redundancy some item(s)
are chosen more than once. Moreover, the gambling-
wheel disk selection method has been adapted to choose
the chromosome for the crossover operation. Then in the
crossover operation, the modified two-point crossover
operator has been used. Regarding the mutation opera-
tion, the product configuration of two different suppliers
was interchanged in the same chromosome. The popula-
tion size has been set to 100, the crossover probability to
60%, and the mutation rate to 1%.

Open Access ICA

S. K. SHIL ET AL. 373

3. Proposed GA-Based Method

In Figure 1, a combinatorial reverse auction scenario is
depicted. The buyer wants to buy items A and B. Three
sellers are bidding with many feasible solutions. For
example, seller 1 provides both items A and B, seller 2
item B and seller 3 item A, etc. Winner(s) will be se-
lected based on the minimum bid price. In real life, the
running time for finding the optimal solution is also con-
sidered.

In Algorithm 1, we define our proposed Improved
Genetic Algorithms for Combinatorial Reverse Auctions
(IGACRA) method. Assume there are m items and n
sellers. In this case, the number of bid items combina-
tions is . The target of winner determination in
combinatorial reverse auctions is to reduce the procure-
ment cost. Let us consider an example with n = 3 (sellers
S1, S2 and S3) and m = 2 (items A and B). Assume there
are six chromosomes in each generation for this example.
We use m × n bits to represent each chromosome, so in
this case, 2 × 3 = 6 bits are used for each chromosome.

2m 1

Algorithm 1: IGACRA (m: number of bid items, n: number of
sellers, δ: number of generations, α: crossover rate, β: mutation
rate)

{

1) t=1;

2) bidGenerator();

//generates bid prices for each combination of bid items for each
seller

3) chromosomeGenerator();

//generates initial chromosomes

4) repairChromosome();

//converts infeasible chromosomes into feasible //ones

5) fitnessChromosome();

//computes fitness values of chromosomes

 do{

6) selectionChromosome();

//selects chromosomes using the gambling-wheel disk method

7) crossoverChromosome();

//generates child chromosomes from parent
chromosomes with two-point crossover considering crossover rate,
α

8) mutationChromosome();

//mutates chromosomes considering mutation rate, β

9) repairChromosome();

10) fitnessChromosome();

11) newChromosomeGenerator();

//determines better chromosomes from both initial and new
chromosomes of each generation

 } while t ≤ δ

12) return winner(s);

//returns the winner(s) with minimum bid price in optimal run-
ning time

}

In this particular case, the total number of possible
combination of bid items for each seller is
   22 1 2 1 3m     . The item combinations are:
 Bidding for only item A = {A} = {10},
 Bidding for only item B = {B} = {01},
 Bidding for both items A and B = {A, B} = {11}.

Here, in the procedure of chromosome encoding, the
corresponding bit is assigned to 1 if the seller bids for
that item, and 0 otherwise. Let us consider the chromo-
some 100100. The first two bits (10) are for seller S1, the
next two bits (01) for S2, and the last two bits (00) for
S3.In other words, this means that seller S1 bids only for
item A, S2 bids for only item B, and S3 does not bid for
any item.

Through the above example, we describe in the fol-
lowing the steps of IGACRA. We use one repairing
function named repair Chromosome rather than using
two repairing functions named Remove Redundancy and
Remove Emptiness as in [15,16]. We also employ the
two-point crossover operator defined in [14] in lieu of
our former proposed modified two-point crossover op-
erator [15,16].

Steps 1-3
To generate bid prices, we consider random values

between 200 and 500 for each item and for each seller. In
Step 2, the bid Generator function performs this task. In
Step 3, chromosome Generator function generates the
chromosomes. For example, the six initial chromosomes
are generated randomly by selecting a bid for each seller
from the item combinations in the interval of [1, 2m]. A
particular case is when 2m is chosen (in our example 22 =
4). This means no item is selected for bidding for the

Figure 1. A combinatorial reverse auction scenario.

Open Access ICA

S. K. SHIL ET AL. 374

seller, so the corresponding bid item combination is {00}
and the price is also 0.

Steps 4-5
To repair infeasible chromosomes, the repair Chro-

mosome() method, defined in Algorithm 2, ensures ex-
actly one selection of every item from all sellers in each
chromosome. So, we repair infeasible chromosomes by
using this method. Repair Chromosome() has four func-
tions: is Feasible(), assign Zeros(), generate Random()
and assign One(). The task of is Feasible() is to return
true if the chromosome has exactly one selection of every
item from all sellers and false otherwise. This function
uses the XOR operation to find it out. The task of as-
sign Zeros() is to assign 0s to all the bits of an infeasible
chromosome. The task of generate Random() is to return
a random number between 1 and n. The task of assign
One() is to assign 1 to the particular bit of an infeasible
chromosome generated by the generate Random() func-
tion.

Algorithm 2: repair Chromosome (X: chromosome, m: number

of items, n: number of sellers)

{

1. for each X

{

1.1 if(!isFeasible(X))

{

1.1.1 assignZeros();

1.1.2 for each m

{

1.1.2.1 generateRandom(1, n);

1.1.2.2 assignOne();

}

}

}

}

Let us consider the following example to illustrate our

repairChromosome method. Assume the chromosome is
001101. For this chromosome, the first two bits (00) are
for seller S1, the next two bits (11) for S2, and the last
two bits (01) for S3. Moreover, the first, third and fifth
bits are for item A and the second, fourth and sixth bits
are for item B. The is Feasible() function performs XOR
operations between the bits of item A and then between
the bits of item B. For item A, it finds exactly one selec-
tion. However, for item B it finds more than one selec-
tion and therefore returns false which means the chro-
mosome is infeasible. Then assign Zero() converts the
chromosomes into 000000 generate Random() generates
random value between 1 and 3 for each item. Assume 1
is generated for item A and 3 for item B. assign One()
assigns 1 to the bit for item A in the position for S1 and 1

to the bit for item B in the position for S3. Thus, the
chromosome is converted into 100001 which is feasible.
Table 1 lists the initial chromosomes after repairing.

In step 5, chromosome fitness value is computed by
the fitness Chromosome function. Since the motivation
of this research work is to minimize the procurement cost
for the buyer, our fitness function for a given Xi is de-
fined as follows,

 
   

2 1

1 1

1
mi n

s s
s C

F X

b C x C


 



 

where

   0,1sx C  (1)

bs (C) represents a bid for the item combination C sub-
mitted from the sth seller. xs(C) is 1 when the item com-
bination C is selected for the sth seller and 0 otherwise.

Steps 6-7
The selection Chromosome function uses the gam-

bling-wheel disk selection method [9]. In this selection
procedure, at first the sum of fitness values of all chro-
mosomes is calculated, then a corresponding scope lo-
cated in [0, 1] is assigned to each chromosome according
to its fitness value.

For example, if the fitness value of the first chromo-
some is  1F X , and the sum of the fitness values of all
chromosomes is F, then its corresponding scope is

 10, F X F   . If the fitness value of the second chro-
mosome is  2F X , then its scope is

     1 1, 2F X F F F X FF X   . In this way, we
can deduce the scope of all chromosomes as follows.

     1 ,i i iS X F X F F X F       (2)

The chromosome that has the highest fitness value also
has the longest scope which means that it has a better
chance to be selected. For each chromosome a random
number from [0, 1] is generated. If this number falls in
the scope of one chromosome, then that chromosome is
selected.

Table 1. Initial chromosomes.

Chromosome S1 S2 S3

X1 10 01 00

X2 01 00 10

X3 11 00 00

X4 00 00 11

X5 00 11 00

X6 10 00 01

Open Access ICA

S. K. SHIL ET AL. 375

In step 7, the crossover operation is performed using
the two-point crossover method. At first the fitness val-
ues of the parents are calculated. According to the cross-
over rate only those parents with a relatively better fit-
ness values are considered for crossover. Figure 2 shows
the two-point crossover operation. A child chromosome
takes two portions from one parent and one portion from
the other parent. In Algorithm 1, crossover Chromosome()
function performs this task.

In our algorithm, 60% of the total chromosomes will
get the chance to participate in crossover operation. In
Figure 2, Xparent3 and Xparent1 participate in crossover
operation and Xchild3 and Xchild1 are created.

Steps 8-12
The procedure will move to mutation operation as in-

dicated in our algorithm. In this step chromosomes are
selected randomly and item combinations between two
sellers are altered. Figure 3 shows a given mutation op-
eration.

Assume X2 chromosome is selected randomly for
mutation operation. S1 and S3 sellers are selected ran-
domly and their bid combinations are altered. Finally

Figure 2. Two-point crossover operation.

Figure 3. Mutation operation.

Xmutate2 is created. The mutation Chromosome() function
performs this task.

In step 9, repair Chromosome() repairs the infeasible
chromosomes. In step 10, our fitness function calculates
the fitness values of the chromosomes.

In step 11, the procedure selects the better chromo-
somes among the initial and new chromosomes of the
generation by using the new Chromosome Generator()
function. Since a genetic algorithm is an anytime algo-
rithm, our procedure can be stopped anytime and pro-
duces the best solution so far. The entire process is re-
peated until the termination condition is fulfilled, which
in our case is the number of generations. In step 12, after
fulfilling the termination condition the procedure returns
the winner(s). While the solution is not improving in
every generation, we always preserve the current winner.

4. Experimentation

We conduct in this paper several experiments to solve the
winner determination problem in combinatorial reverse
auctions using IGACRA. The goal of the experiments is
to evaluate the performance of IGACRA in terms of run-
ning time and procurement cost. We also compare
IGACRA with our former method GACRA [15,16].

Both IGACRA and GACRA are coded in Java and
executed on an AMD Athlon (tm) 64 X2 Dual Core
Processor 4400+ with 3.43 GB of RAM and 2.30 GHz of
processor speed. We utilize the following common pa-
rameters and settings for all the experiments.
 Chromosome Encoding: Binary String
 Number of Chromosome: 100
 Selection: Gambling-Wheel Disk
 Crossover: Two-point
 Crossover Rate: 0.6
 Mutation Rate: 0.01
 Termination Condition: Generation Number

We evaluate our proposed procedure through the fol-
lowing experiments:

1) At first we compare our procedure with GAC-
RAwith respect to both bid price and running time.

2) We test our procedure measuring running time by
varying the number of items and number of sellers.

3) We analyze the IGACRA consistency through some
statistical measurements.

Experiment 1
In this first experiment, we measure the required time

of our proposed method and then compare it with
GACRA.

In Figure 4, we show the required time (in millisec-
onds) versus the number of generations for both
IGACRA and GACRA. This is the average required time
of 20 runs. In this experiment 20 sellers compete for 5
items.

Open Access ICA

S. K. SHIL ET AL. 376

From the comparison we can see that IGACRA needs
less processing time. This happens because of using one
and simple repairing function rather than two functions
[15,16].

Experiment 2
We also conduct experiments on the procurement cost

and report the average results of 20 runs in Figure 5. For
5 items, 20 sellers compete in this experiment. The price
of each item is between 200 and 500. Bid price versus
number of generations is shown for both IGACRA and
GACRA.

Figure 4. Required time vs number of generations.

Figure 5. Bid price vs number of generations.

Since our procedure always maintains feasible solu-
tions and never accepts more than one instance of a spe-
cific bid item, it is able to produce good solutions from
the very first generations. Moreover, it keeps producing
better solutions in the consecutive generations.

Experiment 3
In Figure 6, we show the average bid price of 20 runs

for IGACRA with the maximum and minimum values
indicated by ‘+’ and ‘−’ respectively and error bars with
confidence level of 95%. This experiment is based on the
results found in experiment 2.

The solid line represents the average bid price and the
error bars indicate 95% confidence level. The data points
above and below the error bars show the maximum and
minimum bid prices found over 20 runs.

Clearly IGACRA gives consistently a better solution
quality. It should also be noted that the solution quality
increases steadily over generations. We also notice that
the variability of the solution quality over multiple runs
improves over the generations. Together with the fact
that the minimum bid price remains constant, this sug-
gests that the best solution found by IGACRA might be
the optimal solution to the problem.

Overall, these observations illustrate the any-time be-
havior and more importantly the consistency of the
IGACRA algorithm. IGACRA is able to minimize the
procurement cost from the very early generations.
Therefore, in the real world scenario, IGACRA is appro-
priate to produce minimum bid price when the allowable
processing time is too short.

Experiment 4
In this experiment, we assess the processing time for

Figure 6. Bid price vs number of generations with error
bars of IGACRA.

Open Access ICA

S. K. SHIL ET AL. 377

IGACRA by varying the number of sellers and keeping
the number of items fixed to 2, 4, 6 and 8. Figure 7 illus-
trates the required time (in seconds) versus the number of
sellers. For this experiment 100 generations is used as the
termination condition.

This running time increases with the increment of the
number of sellers. For a higher number of items, this
increment occurs more sharply because of encoding more
bits for chromosomes, calculating fitness values and op-
erating on more chromosomes.

Experiment 5
We also report the results of experiments in terms of

running time obtained by varying the number of items
and keeping the number of sellers fixed to 20, 40, 60 and
80. In Figure 8, the required time (in seconds) versus the
number of items is shown. For this experiment, 100 gen-
erations are used as the termination condition.

These results also demonstrate that with the increase
of the number of items, the required time increases and
for a higher number of sellers it increases more sharply
as for the same reason of increasing items.

The number of bits required to represent the chromo-
somes in IGACRA directly depends on both the number
of items and the number of sellers. Therefore increasing
any of these will increase the number of bits in the
chromosomes which will increase the required running
time.

5. Conclusion and Future Work

Motivated to reduce both the processing time and the

Figure 7. Required time vs number of sellers.

Figure 8. Required time vs number of items.

procurement cost, this research work addresses the prob-
lem of winner determination in combinatorial reverse
auctions.

Indeed, every important operation of the proposed
GA-based method is chosen very carefully along with
some other fruitful mechanisms in each step. We define
the repairing method, repair Chromosome(), to ensure
feasible solutions. With the help of this repairing method
and a careful selection of genetic algorithms operators, it
is notable that our method can produce optimal solutions
in a reduced processing time in the context of combina-
torial reverse auctions.

Real-time response to large-scale applications is needed
in resource allocation and e-commerce areas [21]. When
the solutions should be produced quickly for large prob-
lem instances, exact algorithms are not only inadequate
but also infeasible [21]. Furthermore, in real life, certain
domains may need approximate solutions within a suit-
able processing time [21]. For these reasons, in this re-
search we consider GAs to solve the problem of winner
determination and our IGACRA algorithm is able to
produce good solutions from the very first generations.

Since parallel GAs are capable of constructing the so-
lutions more efficiently [18,22], the future target of this
research is to solve the problem of winner determination
in combinatorial reverse auctions by using the parallel
GAs. Another future direction is to consider some other
non-price dimensions such as warranty, customer rating,
and time of delivery.

Open Access ICA

S. K. SHIL ET AL.

Open Access ICA

378

REFERENCES
[1] P. Patodi, A. K. Ray and M. Jenamani, “GA Based Win-

ner Determination in Combinatorial Reverse Auction”.
Proceedings of the 2nd International Conference on
Emerging Applications of Information Technology, Kol-
kata,19-20 February 2011, pp. 361-364.

[2] V. Avasarala, H. Polavarapu and T. Mullen, “An Ap-
proximate Algorithm for Resource Allocation using
Combinatorial Auctions,” Proceeding of the IEEE/WIC/
ACM International Conference on Intelligent Agent
Technology, Hong Kong, 18-22 December 2006, pp. 571-
578.

[3] T. Mullen, V. Avasarala and D. L. Hall, “Customer-
Driven Sensor Management,” IEEE Intelligent Systems,
Vol. 21, No. 2, 2006, pp. 41-49.
http://dx.doi.org/10.1109/MIS.2006.23

[4] L. Zhang and R. Zhang, “The Winner Determination
Approach of Combinatorial Auctions based on Double
Layer Orthogonal Multi-Agent Genetic Algorithm”, Pro-
ceedings of the 2nd IEEE Conference on Industrial Elec-
tronics and Applications, Harbin, 23-25 May 2007, pp.
2382-2386.

[5] A. M. Easwaran and J. Pitt, “An Agent Service Brokering
Algorithm for Winner Determination in Combinatorial
Auctions,” Proceedings of the 14th European Conference
on Artificial Intelligence, Berlin, 20-25 August 2000, pp.
286-290.

[6] W. E. Walsh, M. Wellman and F. Ygge, “Combinatorial
Auctions for Supply Chain Formation”, Proceeding of the
ACM Conference on Electronic Commerce, 2000, pp.
260-269. http://dx.doi.org/10.1145/352871.352900

[7] A. Das and D. Grosu, “A Combinatorial Auction-Based
Protocols for Resource Allocation in Grids,” Proceedings
of the 19th IEEE International on Parallel and Distrib-
uted Processing Symposium, 4-8 April 2005.
http://dx.doi.org/10.1109/IPDPS.2005.140

[8] V. Avasarala, T. Mullen, D. L. Hall and A. Garga,
“MASM: Market Architecture or Sensor Management in
Distributed Sensor Networks,” Proceeding of the SPIE
Defense and Security Symposium, Vol. 5813, 2005, pp.
281-289.

[9] J. Gong, J. Qi, G. Xiong, H. Chen and W. Huang, “AGA
Based Combinatorial Auction Algorithm for Multi-robot
Cooperative Hunting,” Proceedings of theInternational
Conference on Computational Intelligence and Security,
Harbin, 15-19 December 2007, pp. 137-141.

[10] S. J. Rassenti, V. L. Smith and R. L. Bulfin, “A Combi-
natorial Auction Mechanism for Airport Time Slot Allo-
cation,” The Bell Journal of Economics, RAND Corpora-
tion, Vol. 13, No. 2, 1982, pp. 402-417.
http://dx.doi.org/10.2307/3003463

[11] Y. Narahari and P. Dayama, “Combinatorial Auctions for
Electronic Business,” Sadhana, Vol. 30, No. 2-3, 2005,
pp. 179-211. http://dx.doi.org/10.1007/BF02706244

[12] D. M. Tate and A. E. Smith, “A Genetic Approach to the
Quadratic Assignment Problem”, Computers and Opera-
tions Research, Vol. 22, No. 1, 1995, pp. 73-83.
http://dx.doi.org/10.1016/0305-0548(93)E0020-T

[13] H. Watabe and T. Kawaoka, “Application of Multi-Step
GA to the Travelling Salesman Problem”, Proceedings of
the 4th International Conference on Knowledge-Based
Intelligent Engineering Systems and Allied Technologies,
Vol. 2, Brighton, UK, 30 August-1 September 2000, pp.
510-513.

[14] P. Senthilkumar and P. Shahabudeen, “GA Based Heuris-
tic for the Open Job Scheduling Problem”, International
Journal of Advanced Manufacturing Technology, Vol. 30,
No. 3-4, 2006, pp. 297-301.
http://dx.doi.org/10.1007/s00170-005-0057-2

[15] S. K. Shil, M. Mouhoub and S. Sadaoui, “Winner Deter-
mination in Combinatorial Reverse Auctions”, In: Con-
temporary Challenges and Solutions in Applied Artificial
Intelligence, Studies in Computational Intelligence, Vol.
489, 2013, pp. 35-40.

[16] S. K. Shil, M. Mouhoub and S. Sadaoui, “An Approach to
Solve Winner Determination in Combinatorial Reverse
Auctions Using Genetic Algorithms”, Proceeding of the
15th Annual Conference Companion on Genetic and
Evolutionary Computation Conference Companion, Am-
sterdam, The Netherlands, 6-10 July 2013, pp. 75-76.
http://dx.doi.org/10.1145/2464576.2464611

[17] D. E. Goldberg and K. Deb, “A Comparative Analysis of
Selection Schemes Used in Genetic Algorithms”, In: G. J.
E. Rawlins, Ed., Foundations of Genetic Algorithms,
Morgan Kaufmann, Burlington, 1991, pp. 69-93.

[18] M. Nowostawski and R. Poli, “Parallel Genetic Algo-
rithm Taxonomy,” Proceedings of the 3rd International
Conference on Knowledge-Based Intelligent Information
Engineering Systems, Adelaide, December 1999, pp. 88-
92.

[19] H. Muhlenbein, “Evolution in Time and Space—The
Parallel Genetic Algorithm,” In: G. J. E. Rawlins, Ed.,
Foundations of Genetic Algorithms, Morgan Kaufmann,
Burlington, 1991, pp. 316-337.

[20] M. Mouhoub, “Systematic versus Local Search and GA
Techniques for Incremental SAT,” International Journal
of Computational Intelligence and Applications, Vol. 7,
No. 1, 2008, pp. 77-96.
http://dx.doi.org/10.1142/S1469026808002193

[21] H. H. Hoos and C. Boutilier, “Solving Combinatorial
Auctions using Stochastic Local Search,” Proceedings of
the 17th National Conference on Artificial Intelligence,
Austin, 30 July-3 August 2000, pp. 22-29.

[22] R. Abbasian and M. Mouhoub, “An Efficient Hierarchical
Parallel Genetic Algorithm for Graph Coloring Problem”,
Proceedings of the 13th Annual Genetic and Evolutionary
Computation Conference, Dublin, 12-16 July 2011, pp.
521-528. http://dx.doi.org/10.1145/2001576.2001648

http://dx.doi.org/10.1109/MIS.2006.23
http://dx.doi.org/10.1145/352871.352900
http://dx.doi.org/10.1109/IPDPS.2005.140
http://dx.doi.org/10.2307/3003463
http://dx.doi.org/10.1007/BF02706244
http://dx.doi.org/10.1016/0305-0548(93)E0020-T
http://dx.doi.org/10.1007/s00170-005-0057-2
http://dx.doi.org/10.1145/2464576.2464611
http://dx.doi.org/10.1142/S1469026808002193
http://dx.doi.org/10.1145/2001576.2001648

