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ABSTRACT 

A genetic algorithm-based joint inversion method is presented for evaluating hydrocarbon-bearing geological forma- 
tions. Conventional inversion procedures routinely used in the oil industry perform the inversion processing of borehole 
geophysical data locally. As having barely more types of data than unknowns in a depth, a set of marginally over-de- 
termined inverse problems has to be solved along a borehole, which is a rather noise sensitive procedure. For the reduc- 
tion of noise effect, the amount of overdetermination must be increased. To fulfill this requirement, we suggest the use 
of our interval inversion method, which inverts simultaneously all data from a greater depth interval to estimate petro- 
physical parameters of reservoirs to the same interval. A series expansion based discretization scheme ensures much 
more data against unknowns that significantly reduces the estimation error of model parameters. The knowledge of res- 
ervoir boundaries is also required for reserve calculation. Well logs contain information about layer-thicknesses, but 
they cannot be extracted by the local inversion approach. We showed earlier that the depth coordinates of layer- 
boundaries can be determined within the interval inversion procedure. The weakness of method is that the output of 
inversion is highly influenced by arbitrary assumptions made for layer-thicknesses when creating a starting model (i.e. 
number of layers, search domain of thicknesses). In this study, we apply an automated procedure for the determination 
of rock interfaces. We perform multidimensional hierarchical cluster analysis on well-logging data before inversion that 
separates the measuring points of different layers on a lithological basis. As a result, the vertical distribution of clusters 
furnishes the coordinates of layer-boundaries, which are then used as initial model parameters for the interval inversion 
procedure. The improved inversion method gives a fast, automatic and objective estimation to layer-boundaries and 
petrophysical parameters, which is demonstrated by a hydrocarbon field example. 
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1. Introduction 

Borehole geophysical measurements are extensively used 
in hydrocarbon exploration for collecting high resolution 
in-situ information about subsurface geological forma- 
tions. Well-logging data measured by different physical 
principles are recorded along depth in the form of well 
logs [1]. The primary aim of the interpretation of obser- 
vations is the lithological separation of the succession of 
strata and the estimation of thicknesses and petrophysical 
properties of formations (such as porosity, water satura- 
tion, mineral content, permeability, etc.) for the calcula- 
tion of oil and gas reserves. The most advanced tools of 
well log analysis are based on geophysical inversion 

methods. By assuming a petrophysical model, one can 
calculate theoretical well logs, which are compared to 
real ones measured in the borehole. The initial model is 
progressively refined in an iteration procedure until a 
proper fit is achieved between the predictions and obser- 
vations. The estimated model obtained in the last itera- 
tion step is accepted as the solution of the inverse prob- 
lem that represents the most probable geological struc- 
ture. The mathematical basis and computer implementa- 
tion of traditional well-logging inversion methods, which 
solve the inverse problem depth by depth separately, can 
be found in [2-4]. The positions of layer-boundaries 
cannot be extracted from the local data set by this inver- 
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sion method. Instead they are picked out on the lithologi- 
cal logs manually. A novel inversion method that inverts 
a data set of a greater depth interval to estimate the varia- 
tion of petrophysical parameters and thicknesses along a 
borehole was developed by the Department of Geophys- 
ics, University of Miskolc. The inversion methodology 
named interval inversion has been applied to solve sev- 
eral hydrocarbon exploration problems [5-9]. 

Multivariate statistical methods are proven to be pow- 
erful tools in formation evaluation [10]. Regression, fac- 
tor and cluster analysis are widely used to find correla- 
tions between petrophysical variables, to reduce problem 
dimensionality or explore non-measurable background 
variables as well as to separate observed data into distinct 
groups of different lithological characters. The principles 
of clustering techniques are detailed in [11], to which a 
variety of petrophysical applications can be found in the 
literature, e.g. in [12-15]. In this study, we apply the hi- 
erarchical form of cluster analysis to separate nearly ho- 
mogeneous beds of shaly-sand sequences on a lithologi- 
cal basis. This technique is able to specify the coordi- 
nates of layer boundaries in an automatic procedure, 
which are then used as input for solving a global optimi- 
zation-based interval inversion procedure. The workflow 
enables a fast and automatic estimation of layer-bounda- 
ries and petrophysical parameters to provide the log ana- 
lysts and reservoir engineers with accurate and reliable 
information for planning the exploitation of hydrocarbon 
fields. 

2. Theory of Interpretation Method 

2.1. Well-Logging and Inversion 

Several books deal with the basics of well-logging sur- 
veying and interpretation methods, among them many 
was written chiefly for petroleum geologists [16,17]. The 
classification of well logs can be made by parameter sen- 
sitivities [18], which in this particular case inform how 
the data are influenced by the petrophysical parameters, 
separately. Accordingly, three main groups of measure- 
ments can be distinguished, i.e. lithology, porosity and 
saturation sensitive logs.  

In hydrocarbon exploration relatively high cost meas- 
urements are made to increase the probability of finding 
an economically valuable oil/gas field. Normally, a field 
data set consists of natural gamma-ray intensity (GR), 
spectral gamma-ray intensity such as potassium (K), tho- 
rium (TH), uranium (U), and spontaneous potential (SP) 
data (lithology logs). Porosity logs comprise formation 
density (DEN), neutron porosity (NPHI) and acoustic 
traveltime (AT) data. Resistivity tools measure the for- 
mation resistivity with different penetration depth from 
the borehole wall. In this study, true resistivity (RT) log 
is applied that represents the corrected resistivity of the 

part of formation not invaded by the drilling mud (satu- 
ration log). The observed data are inverted to derive 
petrophysical properties of formations such as effective 
porosity, water saturation at different penetration depth, 
mineral volumes, shale content and permeability that 
cannot be measured directly, but necessary for the calcu- 
lation of hydrocarbon reserves. Since the measured data 
can be related to petrophysical parameters by probe re- 
sponse equations [5], thus the latter can be estimated by 
an iterative inversion procedure. The principles of geo- 
physical inversion and related issues are detailed in [19]. 
Inversion methods are preferred as they use all suitable 
logs instead of one or two logs to reduce the estimation 
error of petrophysical parameters. To further increase the 
performance of inverse modeling as much good quality 
prior information as possible should be given and proper 
optimization strategy must be posed when they are ap- 
plied. 

2.2. Local Inverse Modeling 

Let m be the column vector of model parameters such as 
porosity (POR), water saturation in the flushed zone in- 
vaded by mud filtrate (SX0), water saturation of undis- 
turbed formation (SW), shale volume (VSH), quartz con- 
tent (VSD) in a given depth. Well-logging data types 
measured at the same measuring point are also repre- 
sented in a column vector d(m). If we consider the data set 
listed in Section 2.1, an inverse problem with 5 un- 
knowns and 9 data has to be solved in each depth. In this 
case, the overdetermination (data-to-unknowns) ratio is 
1.8.  

Theoretical (calculated) well-logging data are con- 
nected to the petrophysical model nonlinearly as d(c) = 
g(m), where g represents a set of probe response func- 
tions. Substituting the initial guess of model parameters 
to the empirically derived response equations one can 
calculate a local data set in the measuring point. The so- 
lution of the inverse problem is found at the minimal 
misfit between the observed and predicted data [19]. The 
Euclidean norm of the deviation between measured and 
calculated data vectors is applied as an objective function 
for the optimization 

    2

1

min
m cN

k k

k k

d d
E



 
   

 
             (1) 

where σk  is the variance of the k-th well log depending 
on the probe type and borehole conditions (N is the num- 
ber of applied probes). To optimize Equation (1), the 
Weighted Least Squares method (WLSQ) is used, where 
the actual model is gradually refined by m = m(0) + m, 
where m(0)

 is the initial model and m is the model correc- 
tion vector. By introducing the diagonal weighting matrix 
Wkk = 1/k

2 (k = 1,2,…N) including data variances, the 
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vector of model corrections in a given iteration step can 
be estimated by 

  1T T
m G WG G W d             (2) 

where G denotes the Jacobi’s matrix containing partial 
derivatives of data with respect to model parameters and 
d is the difference between the measured and calculated 
data vector (T is the symbol of matrix transpose). The 
quality check of inversion results is based on the follow- 
ing connection between the uncertainties of observed 
data and model parameters [19] 

Tcov covm M dM                (3) 

where covm and covd denote the data and model covari- 
ance matrices, respectively, and M is the generalized 
inverse matrix of the actual inversion method. The latter 
can be expressed with the proper combination of matrix 
G. If we know data variances from covd, Equation (3) 
gives the estimation errors of model parameters at the 
end of the inversion procedure. They are obtained from 
the main diagonal of model covariance matrix as m,I = 
sqrt(diag(covmii)). For measuring the distance between 
the observed and calculated data the RMS error is nor- 
mally used. 

2.3. Genetic Algorithm-Based Interval Inversion 

Linearized optimization methods work properly and 
quickly only when an initial model sufficiently close to 
the solution is available. However, in cases when poor 
prior information or rather noisy data is provided the 
WLSQ procedure can be easily trapped in a local mini- 
mum of Equation (1). To avoid localities a global opti- 
mization method such as Genetic Algorithm (GA) is used 
that searches the absolute extreme of the objective func- 
tion. GA belongs to the class of evolutionary algorithms 
that solves optimization problems using the analogy of 
natural selection of living populations [20]. Nowadays 
the most preferred variant is the Float-Encoded GA that 
improves a model population represented by model pa- 
rameters from the domain of real numbers in an iteration 
procedure [21]. 

In the population each individual has a fitness value 
representing its survival capability. During the genetic 
process the fittest individuals reproduce more success- 
fully in the subsequent generations than those who have 
relatively low fitness. To achieve the best solution, the 
fitness function is maximized by using genetic operations 
in a random optimum-seeking procedure. From the point 
of view of well-logging inverse problem a petrophysical 
model has large fitness when the misfit is relatively small 
between the observed and calculated data. In well-log- 
ging inversion normally 30 - 100 model take part in the 
selection process. To reach the absolute maximum of 

fitness function a proper combination of genetic opera- 
tors such as selection, crossover, mutation and reproduc- 
tion is used (GA search in Figure 1). According to our 
experience after some tens of thousands generations (it- 
eration steps) the fittest individual of the last generation 
can be accepted as the optimal petrophysical model. 
More details of the GA-based inversion procedure can be 
found in [5,9]. 

Local inversion methods (Chapter 2.2.) process barely 
more data than unknowns, where the accuracy of solution 
highly depends on the noise level of data and the initial 
guess of the petrophysical model. To increase the over- 
determination of the inverse problem, we define a set of 
probe response functions as d(z) = g(m(z)), which is valid 
in a greater depth interval. In the response functions the 
data and model parameters are varying with depth. To 
discretize the depth variations of petrophysical unknowns 
we suggest a series expansion technique 

     
1

iQ
i

i q
q

m z B z


  q              (4) 

where mi denotes the i-th model parameter, Bq is the q-th 
expansion coefficient, Ψq is the q-th basis function, Qi is 
the requisite number of coefficients describing the i-th 
unknown. Basis functions in Equation (4) are known and 
arbitrarily chosen. For instance, in homogeneous layers a 
combination of heaviside functions (u) is advantageous 
to use as basis function. From one hand, using the basis 
function     1q qY z u z Z u z Zq     , each petro- 
physical parameter in the q-th layer (where   1=q z ) 
can be described by one series expansion coefficient. On 
the other hand, we can introduce 1qZ  , Zq upper and 
lower depth coordinates of the q-th layer as unknown in 
the inverse problem [5]. For describing inhomogeneous 
intervals polynomial basis functions can be used [7]. The 
model parameter vector to be determined by inversion is 
m = [B,Z]T, where B and Z vectors contain all series ex- 
pansion coefficients given in Equation (4) and layer- 
 

 

Figure 1. Workflow of the GA-based inversion procedure. 
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boundary coordinates (or thicknesses) in the processed 
interval, respectively. 

The fitness function of the GA process is inversely 
connected to the objective function of the well-logging 
inverse problem. We tested two types of fitness functions. 
The first one follows the idea of traditional inversion 
methods represented by the objective function in Equa- 
tion (1) 

 
    2

1
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m cP N
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p k pk

d d
F

 

 
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 
 

m        (5) 

where P is the total number of measuring points. The 
minimization of the weighted least squares criterion in 
Equation (5) leads to optimal solution as well-logging 
data have different magnitudes and measurement units. 
The only weakness of weighting by variances is that we 
have to know standard deviations of all data types in 
each depth. In fact, the variances of data in most of the 
cases are not known (just from literature given for probe 
types), because normally we measure only once in a 
depth point. Our experience shows that an optimal solu- 
tion can be given by normalizing the individual data dif- 
ferences by the measured data 
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To compare the performance of the F1 and F2 based 
interval inversion procedures a four-layered petrophysi- 
cal model was defined (Table 1). We calculated syn- 
thetic data by the exact model parameters (POR, SX0, SW, 
VSH, VSD). To synthetic well logs 5% Gaussian distrib- 
uted noise was added to produce quasi measured data  
 

Table 1. GA interval inversion results for synthetic case. 

Petrophysical parameters as inversion unknowns 
Layer 

POR SX0 SW VSH VSD 

1 

0.19* 

0.20** 

0.20*** 

0.79 

0.79 

0.80 

0.39 

0.40 

0.40 

0.30 

0.30 

0.30 

0.49 

0.49 

0.50 

2 

0.09 

0.10 

0.10 

1.01 

1.00 

1.00 

1.01 

1.01 

1.00 

0.79 

0.80 

0.80 

0.11 

0.11 

0.10 

3 

0.29 

0.30 

0.30 

0.81 

0.80 

0.80 

0.30 

0.30 

0.30 

0.11 

0.10 

0.10 

0.60 

0.60 

0.60 

4 

0.10 

0.10 

0.10 

0.99 

0.99 

1.00 

0.98 

0.98 

1.00 

0.60 

0.60 

0.60 

0.29 

0.30 

0.30 

*Maximization of fitness function weighted by data variances (F1). 
**Maxi- 

mization of fitness function weighted by observed data (F2). 
***Exactly 

known (target) model parameter. 

substituting real measurements. The input of the inver- 
sion procedure was a noisy well-logging data set include- 
ing 1400 data (20 m processed length, 0.1 m sampling 
interval, 7 types of well logs). 

Series expansion was developed for describing a layer- 
wise homogeneous model. There were 20 unknowns 
against data, thus the overdetermination ratio (70) was 
almost 40 times higher than that of local inversion (Sec- 
tion 2.2.). In Equation (5) the standard deviations of data 
were calculated empirically for each data types layer by 
layer. For the characterization of misfit we used the rela- 
tive data and model distances. The first measures the 
difference between the measured and calculated data, the 
latter quantifies the deviation between the estimated and 
(exactly) known model 
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    (7) 

where m(e) and m(t) denote the estimated and target model, 
respectively (L is the number of layers, M is the number 
of model parameters). The outputs of inversion program 
runs in Table 1 show highly accurate estimation results. 
We let the search run till 15,000 generations in both 
cases (Figure 1). The inversion procedures were stable 
and the data distance of the solutions based on Equation 
(7) was around 5.1% (Figure 2(a)). The model distance 
for fitness function F1 was 0.85%, while that of F2 was 
0.62% (Figure 2(b)). It was concluded that the applica- 
tion of both fitness functions led to the same (global) 
optimum. In case of F2 a faster convergence towards the 
optimum was found after iteration 1000, and a little 
higher retrieval accuracy was indicated as the relative 
improvement of model distance was 37% compared to 
the case of F1. 

After defining a proper fitness function, the upper and 
lower boundaries of model parameters and the control 
parameters of genetic operators must be specified 
(specifying search domain in Figure 1). The optimal 
values of series expansion coefficients B are estimated 
by the GA-based interval inversion method, which are 
substituted into Equation (4) to produce the vertical dis- 
tributions of petrophysical parameters. The determination 
of layer-thicknesses cannot be accomplished with local 
inversion methods. They have to be a priori known be- 
fore starting a local inversion procedure. In interval in- 
version only the lower and upper limits of thicknesses are 
required that means a non-automatic processing step. To 
automate this phase, we use cluster analysis for produc- 
ing the estimates of layer-thicknesses that can be treated  
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 (a)

(b)

 

Figure 2. Convergence of interval inversion procedures. 
 
either as constant or unknown in the interval inversion 
procedure. 

2.4. Hierarchical Cluster Analysis 

Clustering methods can be effectively used for the group- 
ing of well-logging data in such a way that the N dimen- 
sional objects specified by data sets measured from given 
depths are more similar than others observed from dif- 
ferent depths. From the point of view of our method, it is 
of great importance that objects connected to the same 
cluster define approximately the same lithologic charac- 
ter, while other clusters represent dissimilar ones. 

Agglomerative clustering methods build a hierarchy 
from the observed objects by progressively merging 
clusters. At the beginning, we have as many clusters as 
individual elements. In the first step, the closest points 
are coupled together to form a new cluster. In each fol- 
lowing step, the distances between objects are re-calcu- 
lated and the procedure is continued until all elements are 
grouped into one cluster. In this study, we used the ma- 
trix of Euclidean distances as a measure of dissimilarity 
between the pairs of observed objects. During the proce- 
dure the distances between the elements of the same 
group are minimized while they are maximized between 
the clusters at the same time. During the reconnection of 
clusters we follow the Ward’s linkage criterion that 
minimizes the deviances of (xi-c), where xi is the i-th 
object and c is the centroid (average of elements) of the 
given cluster [22]. The result of cluster analysis is a den- 
drogram that shows the steps of clustering as it provides 
the hierarchy of clusters and the connections between 
them at different distances. 

We use cluster analysis as a preliminary data process- 
ing step before inverse modeling (Figure 1). The input of 
clustering is the complete data set originated from the 
logged interval. By finding the similarities between raw 
data the objects are grouped into clusters. The log of 
clusters correlates well to the lithology variation along a 
borehole. The change in the group number of clusters 
appearing on the log gives the positions of layer bounda- 
ries, which can be read automatically by computer proc- 
essing. The estimated layer-boundary coordinates as im- 
portant a priori information for constructing the starting 
model serve as input for the interval inversion procedure.  

3. Hydrocarbon Field Application 

We tested the inversion method on a borehole geophysi- 
cal data set measured from a Hungarian hydrocarbon 
well (Well No. 1). We used GR, K, U, TH, DEN, NPHI, 
AT, RT logs as input for the interpretation procedure. In 
the processed interval a sedimentary complex made up of 
four unconsolidated shaly-sand beds is found. The 
crossover effect between DEN and NPHI logs confirms 
the presence of gas in the porous and permeable forma- 
tions. According to the workflow in Figure 1, at first a 
simultaneous cluster analysis of the 8 logs was per- 
formed. We specified three lithological categories: shale, 
shaly sand and sand. At this stage of interpretation, this 
resolution is enough for finding the layer-boundaries, 
because the relative volumes of rock-forming sand and 
shale can be estimated later in the inversion processing 
phase. For measuring the distance between the observed 
objects we used a standardized Euclidean distance, where 
each datum in the sum of squares is inversely weighted 
by the sample variance of that data type. We assigned 
leaf node numbers for each object in the original data set, 
where some leaf nodes correspond to multiple objects 
(Figure 3(b)). We created the hierarchical cluster tree of 
30 objects by using the Ward’s linkage algorithm (Fig-
ure 3(a)). 

On the dendrogram 3 clusters can be discriminated at 
distance 15. The 3D crossplots of clustered well-logging 
data can be seen in Figures 4-6. The plots give useful 
information about some site-specific constants for calcu- 
lating wellbore data in the straightforward modeling 
phase (well-logging data prediction in Figure 1) as val- 
ues of physical properties of rock constituents (sand, 
shale) must be specified in probe response equations. For 
instance, the neutron porosity of sands (15%) and shale 
(26%) or the natural gamma-ray intensity of sand (40 
API) and shale (110 API) can be estimated for the given 
hydrocarbon zone (Figure 5). 

The log of the group numbers of clusters is useful to 
separate three types of formations (sand reservoir, shale, 
shaly-sand reservoir). The layer-boundaries are normally 
picked out at the places of inflection points on the GR  
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Figure 3. Result of cluster analysis in Well No. 1. 
 

 

Figure 4. Clustered spectral gamma-ray intensity log data 
in Well No. 1. 
 
curve. These depths are well indicated by abrupt changes 
in cluster log. In the given example, the layer-boundary 
coordinates were found at 4 m, 8.4 m, 9.6 m, 16 m. We 
set these coordinates fixed, then petrophysical parameters 
were determined by interval inversion. 

In the interval inversion phase, we applied a series ex- 
pansion of model parameters (POR, SX0, SW, VSH, VSD) 
for a combination of homogeneous and inhomogeneous 
layers. Until the depth of 9.6 m the 3 layers can be 
treated as homogeneous ones. Below 10 m the 2 statisti- 
cally located layers can be coupled as they belong to the 
same hydrocarbon reservoir. For the first 3 layers unit 
step functions, for the rest ones fourth-degree power 
functions were used as basis functions in Equation (4).   

 

Figure 5. Clustered neutron, acoustic and natural gamma- 
ray intensity log data in Well No. 1. 
 

 

Figure 6. Clustered bulk density, resistivity and natural 
gamma-ray intensity log data in Well No. 1. 
 
The standalone GA procedure is very time-consuming. 
For decreasing the CPU time of the inversion procedure 
we implemented a hybrid optimization technique that is 
based on the successive combination of global and lin- 
earized optimization methods [8]. We start the procedure 
with global optimization (GA) that performs a random 
search in the parameter space avoiding the local maxima 
of F2 in Equation (6). Then, after some 200 generations, 
in the near vicinity of the absolute maximum, we change 
for a faster linear optimization method (Figure 7). We 
used the Damped Least Squares (DLSQ) method for the 
minimization of objective function E* = F2 in the sec-  
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Figure 7. Convergence of GA + DLSQ interval inversion 
procedure in Well No. 1. 
 
ond phase with applying proper damping factor to avoid 
big skips from the optimum [19]. This method both ac- 
celerates the rate of convergence of the inversion proce- 
dure and gives the estimation errors of model parameters 
as the Jacobi’s matrix is calculated by Equation (3) at the 
end of the procedure.  

The petrophysical parameters and their estimation er- 
rors are listed in Table 2. In the 4th layer, the depth coor- 
dinates were properly transformed into the range of 0 and 
1 for the polynomial approximation, where C0 denotes 
the coefficient of the 0th power exponent of depth coor- 
dinate as independent variable. The inversion results are 
highly accurate according to the values of estimation 
errors. This is because of the high overdetermination of 
the inverse problem. For further increasing the overde- 
termination, parameter VSD in the 4th layer was calcu- 
lated by the physical constraint . 
The measured logs and inversion results are in Figure 8. 
The log of the group numbers of clusters is represented 
in track 6, while the inversion estimates are in tracks 7 - 
8, where the relative volume of water, movable and ire- 
ducible hydrocarbon, pore space, shale, sand can be ana- 
lyzed visually. In the 4th layer, gas is accumulated at the 
top of the reservoir, while the denser water is situated 
underneath. The amount of shale is increasing with depth 
in the lowest formation. 

1VSD POR VSH  

4. Conclusions 

The ever-increasing claim of oil industry lain to highly 
reliable petrophysical information requires advanced data 
processing techniques. In the paper, a quick automated 
inversion method was shown for the interpretation of 
borehole geophysical data. The cluster analysis assisted 
joint inversion method is highly accurate (assured by 
great amount of overdetermination), automatic (auto- 
mated layer boundary and petrophysical model estima- 
tion), robust and adaptive (evolutionary algorithm phase)  

Table 2. GA interval inversion results in Well No. 1. 

Petrophysical parameters as inversion unknowns 
Layer

POR SX0 SW VSH VSD 

1 
0.10 

(0.002)*

0.99 

(0.02) 

0.99 

(0.02) 

0.58 

(0.003)

0.32 

(0.003)

2 
0.27 

(0.002) 

0.75 

(0.004) 

0.23 

(0.002) 

0.07 

(0.001)

0.66 

(0.002)

3 
0.17 

(0.003) 

0.99 

(0.02) 

0.99 

(0.02) 

0.34 

(0.003)

0.49 

(0.003)

4 

C0 = 0.277

(0.002) 

C1 = 0.026

(0.006) 

C2 = −0.001

(0.000) 

C3 = −0.007

(0.000) 

C4 = −0.1734

(0.007) 

C0 = 0.679

(0.01) 

C1 = 0.592

(0.108) 

C2 = −0.776

(0.406) 

C3 = −0.740

(0.633) 

C4 = 1.350

(0.346) 

C0 = 0.253 

(0.002) 

C1 = −0.994 

(0.025) 

C2 = 4.027 

(0.111) 

C3 = −6.275 

(0.201) 

C4 = 3.696 

(0.123) 

C0 = 0.069

(0.002)

C1 = −0.524

(0.0346)

C2 = 1.860

(0.149)

C3 = −1.852

(0.237)

C4 = 0.722

(0.123)

D
et

er
m

in
is

ti
c 

*Estimation error of the model parameter in fractional unit. 

 
and fast (hybrid optimization technique; simultaneous 
inversion processing of data from the logged interval 
instead of one point). 

The inversion method is not fully automatic, where the 
supervision of the log analyst cannot be discarded. To 
achieve a good and unique solution, the prior geological 
and geophysical information must be built-in by the user 
properly (chose of site specific constants and response 
equations in different hydrocarbon zones). Moreover, in 
case of the global optimization phase (GA), some experi- 
ence is needed to set the combination and control pa- 
rameters of genetic operators and to decide when it is 
possible to switch over to linear optimization. As a spe- 
ciality of the interval inversion method, the basis func- 
tions of series expansion can be chosen arbitrarily. The 
optimal set of basis functions to be in use depends on the 
variation of lithology and pore fluids along a borehole. A 
trade-off must be taken between the vertical resolution 
(number of unknowns) and stability (uniqueness) of the 
inversion procedure as they are inversely proportional. 
Usually, this is the most important question from the 
point of view of constructing an inversion method. To 
increase the overdetermination of the inverse problem, it 
is important to search for such parameters that can be 
fixed during the inversion procedure. The cluster analy-
sis-based interval inversion method helps to find lithologi- 
cal similarities in the data set, which leads to constrain 
the inversion process with reliable site constants and layer- 
thicknesses. This can reduce the uncertainty and ambigu- 
ity of inversion estimates. In the future, we are planning  
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Figure 8. Processed well logs and result of cluster analysis assisted interval inversion procedure. 
 
to find technical solutions to reach even better spatial 
resolution of petrophysical properties with preserving 
stability by using orthogonal polynomial series expan- 
sion along the entire logging interval and further develop 
the multiwell applications of the presented inversion 
method. 
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