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ABSTRACT 

Adaptive fuzzy neural inference systems are used to illustrate the primary nodal number of plant life-forms. Categoriza-
tion of two candidate areas is carried out using the water-energy dynamic (for Ecuador, South America) and Macedonia, 
Southern Europe), within which the life-form spectra are distributed. Genetic optimization methods are used to expand 
the primary nodal number to the complete number of life-form categories. The distribution of the elements exhibits a 
stochastic, binomial distribution and the utopia line and curve are summarized which enhance accuracy of the climatic 
data and of the consequent numbers of plant species occurrences. Expansion of the distribution of each life-form cate-
gory is approximated within the Z utopia hyperplane with use of the functional approximation algorithm. This process 
gives additional structure and informative value to the Z plane, enhancing our ability to make informed policy decisions 
concerning species and ecosystem conservation. 
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1. Introduction 

Plant life-forms are a primary means by which to catego- 
rize forms of plant growth, together with life history 
strategies and metabolism. Life-forms are an effective 
way to show distribution of plant species on a macro 
scale with use of computational statements [1,2]. Pat- 
terning of plant species may be determined by key fac- 
tors of the water-energy dynamic [3-5]. Climatic vari- 
ables such as rainfall and temperature often show dis- 
crete patterns across timescales, so are often made use of 
within fixed time ranges. As such, they can be said to be 
discrete stochastic patterns, which facilitate macro-level 
modelling of plants [6-8]. 

Utopian distribution refers to the informative com- 
bined objective Z matrices, which may be generated 
through the use of techniques including adaptive fuzzy 
neural inference systems, genetic programming, and par- 
ticle swarm optimization [9-13].  

Functional relations may be explored within the prod- 
ucts of evolutionary algorithms via the use of functional 
process models, which may display continuous or dis- 
continuous qualities [14,15]. Computational methods  

may be applied to differentiate biological systems such 
as reservoir capacity for life, environmental indices [8,16, 
17]. 

There are five main groups of life-forms: phanero- 
phytes, chamaephytes, hemicryptophytes, cryptophytes 
and therophytes. Within the main groups there exist a 
total of 18 subgroups, with the following characteristics: 
Phanerophytes are of three types: 1) evergreen phanero- 
phytes with bud scales; 2) evergreen phanerophytes with- 
out bud scales; 3) deciduous phanerophytes with bud 
scales. Phanerophytes are further divided according to 
height: Mega-(>30 m); Meso-(8 - 30 m); Micro-(2 - 8 m); 
Nano-(<2 m). 

Chamaephytes have woody and herbaceous types. 
Chamaephytes are broken into: 1) Suffruticose- (after the 
main growth period upper shoots die, only lower parts of 
the plant remain in “unfavourable” period); 2) Passive- 
(in unfavourable conditions upper shoots become pro- 
cumbent, protecting them from environmental stresses); 
3) Active—(shoots only produced along the ground and 
remain so); 4) Cushion—(similar to passive type but 
shoots are so closely packed together they form a “cush-  
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ion”). 
Hemicryptophytes are further divided into: 1) Proto- 

(leaves are well developed up the stem of the plant, par- 
tially developed leaves protect growing buds); 2) Partial- 
rosette—(developed leaves form a rosette at the base of 
the plant, the following year a long aerial shoot may 
grow); 3) Rosette (leaves restricted to a basal rosette, 
long exclusively flower bearing aerial shoot forms). 

Cryptophytes are divided into: 1) Geophyte—(under- 
ground organs such as bulbs, rhizomes, tubers, shoots 
emerge in growing season); 2) Helophyte (growing buds 
are in soil or mud under water producing shoots above 
water); 3) Hydrophyte—(buds lie under water, unfavour- 
able period spent completely below water). 

Therophytes are annual plants, which survive the un- 
favourable period as seeds, completing their life cycle in 
the summer months. 

Life-forms are often seen in differing proportions or 
spectra; plants show chaotic patterns of evolution in 
terms of their individual growth processes and numbers 
[18-20]. Life-form differences are often associated with 
variable gradients in topographical and climatic condi- 
tions [21,22]. In order to clarify the difference in life- 
form spectra this study considers two contrasting areas 
known to be rich in plant numbers: Ecuador, South 
America and Macedonia, Southern Europe [23-26]. The 
former of these has been well documented as being the 
most diverse location on the planet and the latter has pre- 
viously been algorithmically defined as having the char- 
acteristics of a more extreme environment (elevated tem- 
perature, comparatively low rainfall). 

In this paper proportions of plant life-form characteris- 
tics are investigated within fixed population sizes, which 
have been determined from a combined genetic algo- 
rithm fuzzy rule base, furthered by field based studies 
[24,26]. 

The aim of this study is to identify the functional ap- 
proximation algorithm using the following steps: Geo- 
graphic and climatic study to establish the framework for 
modelling species of plant life-forms in candidate areas; 
adaptive fuzzy neural inference system (ANFIS) using 
identified variables based on consequent primary nodal 
number; multi objective genetic algorithm dispersing ex- 
panded secondary nodal number; functional approxima- 
tion of characters within secondary nodal number using a 
continuous/discrete surrogate process model.  

2. Methods 

In this section we describe the steps of our functional 
approximation algorithm. Elements of the methods are 
presented in [27,28]. Definitions are given within the 
following sections further details of which can be found 
in [9,15,17,29]. 

2.1. Digital Elevation Model and Climatic  
Data Sourcing  

Climatic areas of diversity zone 8 - 10 [23], documented 
as containing greater than 3000 species per 10000 km2, 
were investigated and given algorithmic definition [30]. 
Further these areas are included within high resolution 
mapping tiles available from the Intergovernmental Panel 
on Climate Change (at 18.5 km resolution) and the 
United States Geological survey (at 1 km resolution). 
Two candidate areas were selected from the literature to 
show the breadth of difference in climatic, topographic 
and actual documented numbers of individual plant oc- 
currences within the areas. The selected areas were Ec- 
uador, including the reserve surrounding Tiputini Biodi- 
versity Station there (covering approximately 10,000 km2) 
[24,31] and the country of Macedonia (covering 25713 
km2 (European Environment Agency,  
http://www.eea.europa.eu/ accessed 30 06 13)). Coordi- 
nates for each area were obtained from the above sources 
and verified after investigation (via the IPCC and USGS 
web site) using the technical computing platform Matlab 
(Version R2010a ©). Coding was constructed in Matlab 
(available on request) enabling display of the digital ele- 
vation model (DEM), precipitation, temperature and 
ground frost frequency data for each region. Variables 
are quantified to maximize computational efficiency and 
interpretability of the ANFIS. The structure of ANFIS is 
given in Section 2.2. 

2.2. Adaptive Neural Fuzzy Inference System  
Structure  

ANFIS is commonly built using Takagi-Sugeno-Kang 
(T-S-K) or Mamdani fuzzy logic. T-S-K fuzzy systems 
[32,33] are more easily applied to multiple input and 
multiple (ranged) output. The general form of the ith rule 
as applied to T-S-K systems is as follows: 

 1 2 2 1If is is Then , ,i i nx A x A y f x x  １    (1) 

Here we see a constructive breakdown of the antece- 
dent term A, which may be dispersed through multiple 
sets of linguistic variables such as those present in cli- 
matic systems. These are detailed as: 

 1, , nX x x                (2) 

where 1, , nx x  are set values of generic set X. Addi- 
tionally the following definitions using multiple elements 
in T-S-K systems are applied: 

 1 2, , , nx x x x               (3) 

 1 2, , , ny y y y               (4) 

 ; ;Af x y X Y               (5) 

In (3) the mean of set x is represented by normal set 
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elements 1, , nx x . Accordingly, (4) the mean of set y is 
represented by normal set elements 1, , ny y . In (5) fA 
refers to function A in x and Xµ is the grade of member- 
ship of X and may also be used to express function A in y 
and Yµ is the grade of membership of Y. Both X and Y are 
used in the antecedent linguistic A in order to form: 

 y x R                  (6) 

where R is the relational index as a function of the com- 
bined arguments of x  and y  or succinctly defined as 
“IF A··· THEN B” [33].  

Given the above definitions, the nodal structure of an 
ANFIS engine is developed with the insertion of crisp 
input variables (A1(1,···, n),··· An(1,···, n)) in the first layer; 
membership function [0,1] fuzzifies the crisp inputs in 
the second layer; If (antecedent) Then (consequent) rules 
operate in the third layer; output membership function 
[0,1] operate in the fourth layer; summation of the output 
membership layer (defuzzification) and conversion back 
to crisp values give the output of the engine. One may 
then summaries the ANFIS via algorithmic statements 
detailing the rules linguistically. Partitioning of the mem- 
bership functions interval is crucial in fuzzy systems. In 
this study the variables are given 5 partitions within the 
membership function, which ordinate the crisp inputs via 
triangular functions [9]. Parameters (mean and variance) 
are defined according to: 

 ; , , max min , ,0
x a c x

f x a b c
b a c b

          
    (7) 

where parameters a, c are the feet and b are the peaks. 
The structure of the algorithm therefore appears as fol- 
lows: 

           

     

If 1

Then 1 , ,

n n n n

n

A A n A n A n

B E E n

  






   (8) 

where A(1),··· A(n) are antecedent singletons, (e.g. Tem- 
perature, precipitation and altitude) and B(n) is the conse- 
quent environment (E) given by the number of individual 
plant species occurrences (sourced from the Global Bio- 
diversity information facility (http://gbif.org accessed 
December 2012) as validated by [34]). ANFIS were built 
using Matlab (Version R2010a ©) and code is available 
on request. 

2.3. Multi Objective Genetic Optimization  
Selection and Dispersal of Elements 

Genetic algorithms (GAs) are adaptive algorithms for 
finding the best (global) solution to optimization prob- 
lems. The stages of GA are as follows: start with a popu- 
lation of randomly generated “chromosomes” (not actual 
chromosomes but sequences of defined length); initiali- 

sation, the collection of “chromosomes” (sequences) 
evolve through a form of natural selection. Each iteration 
of selection is known as a generation, and the chromo- 
somes are rated for their “adaption for solutions” or po- 
tential to solve the problem. On the basis of the evalua- 
tion, a new population of sequences is formed using a 
process of selection. At this point, genetic processes 
analogous to crossover and mutation take place. After 
further selection, given the solution is found an output is 
given. Evaluation or fitness function must be devised for 
each problem to be solved. Given a particular sequence 
or chromosome solution, the evaluation function returns 
a single numeric value proportional to the adaptation of 
the solution represented by the chromosome or sequence 
[35]. 

In this paper the initial number of 5 plant life-forms is 
expanded to cover the complete number of 18 sub-groups 
of life-forms, each sub group being quantified within an 
interval [1,5]. Code is constructed (available on request) 
in Matlab to enable the random, tournament selection 
spacing of each of the elements of life-forms within a 
combined objective axis, demonstrating the distribution 
of the elements in Z (utopia) space as a Pareto front. 
Plotting linear and varying degrees of polynomial regres- 
sion through the Pareto front enables precise statements 
to be made. One can extrapolate values of the objectives 
[36] enhancing the accuracy of measurement of the origi- 
nal antecedent variables, which in the current case are 
climatic measurements. The consequent variable (num- 
bers of plant species) is also enhanced. This process is 
carried out for contrasting locations with different num- 
bers of plant species in order that the variance of oppos- 
ing areas may be compared. A location ideal for plant 
growth (Ecuador, South America) and a more extreme 
drier area (Macedonia) are compared in this study. 

2.4. Functional Approximation Algorithms Using  
Surrogate Models 

We proceed with a further method of generating the Z 
matrix via the use of a surrogate function. We made the 
assumption that individuals within the populations of 
plant species in each of the studied areas are normally 
distributed in their life-form characteristics. Additionally 
standardization of the dispersed Strength Pareto popula- 
tion to zero mean and unit variance allows the population 
to be expressed across a bell shaped (Gaussian) curve 
[37]. 

In our choice of Gaussian models we selected 
Rastrigin’s function, which served the dual purpose of 
expanding the dispersal of the 18 sub groups of life- 
forms simultaneously and verified the validity of the GA 
process described in Section 2.3. (Code for the 
Rastrigin’s function as applied to 18 life-form sub groups 
in Matlab (Version R2010a ©) is available on request). 
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    2

1

10 10cos 2π
n

i i
i

f x n x x


       (9) 

where i = 1/n, xi is an element of the interval [−5.12, 
5.12]. Life-form categorization occurs within the interval 
shown. 

3. Results 

We present the implementation of steps 1 - 4 towards 
formation of the functional approximation algorithm here. 
Section 3.1 shows topographic mapping of GTOPO30 
for Macedonia and then for Ecuador. Climatic data [7] 
used for modelling of the water-energy dynamic are also 
exemplified. Section 3.2 details the rule structure for 
each and shows the algorithmic structure as applied to 
plant life-forms, exemplifies the building of the ANFIS, 
and gives additional examples of the 3 dimensional sur- 
face view of the algorithms. Section 3.3 includes the 
quantification of sub-groups of plant life-forms and 
shows the objective dispersal of the Strength Pareto 
Evolutionary population obtained, and gives linear and 
quadratic expressions by which the accuracy of objective 
functions and consequent values are enhanced. Finally, 
Section 3.4 shows extrapolation of life-form groups 
across the Z utopia hyperplane using the functional ap- 
proximation algorithm. 

3.1. DEM and Climatic Data 

The data presented in this section exemplify those that 
may be used to form fuzzy algorithms, and on which we 
operated a genetic (generational) structure. We success- 
fully predicted water-energy objective dispersion of plant 
species [30]. Topographic data are quantified in Table 1 
and climatic variables are quantified in Table 2. Should 
further detail be required contact the first author. The 
areas covered are 1) mainland Ecuador, South America 
which falls in between northernmost latitude 1.464504 
degrees, southern most latitude −5.02194 degrees and 
easternmost longitude −75.19056 degrees, westernmost 
latitude −81.023841 degrees and 2) Macedonia, southern 
Europe, which falls in between latitude 43 degrees north, 
40 degrees north and longitude degrees 20 east, 23 de- 
grees east. Coordinates of the locations were obtained 
using United States Geological Survey (USGS) data and 
extracted using Matlab (version 2010a ©) and validated 
by [24,31], (European Environment Agency,  
http://www.eea.europa.eu/ accessed 30 06 13). 

The DEM data of GTOPO30, published through the 
United States Geological Survey (USGS), are shown 
graphically in Figure 1. They are at 30 s (1 km resolu- 
tion). Data were processed using Matlab (version R2010a 
©). Code was constructed for mapping and image-proc- 
essing sections of Matlab and is available on request. 

Table 1. Quantification of DEM data. 

Elevation (m) Quantification 

0 - 1260 A4(1) 

1260 - 2520 A4(2) 

2520 - 3780 A4(3) 

3780 - 5040 A4(4) 

5040 - 6300 A4(5) 

 
Table 2. ANFIS rules for Ecuador. 

Rule Description Weight 

  [0,1] 

1 If Temp is Med-High then L-F is P 1 

2 If Prec is Low then L-F is P 0.75 

3 If Prec is Med-Low then L-F is P 0.75 

4 If Prec is Med then L-F is P 0.75 

5 If Prec is Med-High then L-F is P 0.75 

6 If Prec is High then L-F is P 0.75 

7 If Prec is Low then L-F is P 0.25 

8 If Prec is Low-Med then L-F is P 0.25 

9 If Prec is Med then L-F is P 0.25 

10 If Prec is Med-High then L-F is P 0.25 

11 If GFF is Low then L-F is P 1 

12 If GFF is Low-Med then L-F is P 1 

13 If Alt is Low then L-F is P 1 

14 If Alt is Low-Med then L-F is P 1 

15 If Alt is Med then L-F is P 1 

16 If Alt is Med-High then L-f is P 1 

17 If Alt is High then L-F is P 1 

Temp is temperature, Prec is precipitation, GFF is ground frost frequency, 
Alt is altitude, L-F is life-form, P is phanerophyte dominated, Med is me-
dium. 
 

In Figure 1 Ecuador shows an elevation range from 0 
m to 6300 m above sea level, whereas Macedonia shows 
an elevation of 0 m to just over 2520 m above sea level. 

The elevation ranges of Ecuador and Macedonia were 
quantified according to a five-split partitioning of the 
range as shown in Table 1. 

In Figure 2 Ecuador shows temperatures of −3 to >21 
˚Celsius in January, April, July and October; Macedonia 
shows temperatures of −27 to 21˚Celsius in January, −3 
to 21˚Celsius in April, 21 to 45˚Celsius in July, and −3 to 
21˚Celsius in October. Temperatures were quantified ac- 
cording to the method shown in [30]. 

In Figure 3 Ecuador shows precipitation of 0 - 500 kg 
m2 in January, April and October and 0 - 400 kg·m2 in   
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Figure 1. Digital elevation maps for (a) Ecuador, South America; (b) Macedonia, Southern Europe. 
 

 

Figure 2. Quarterly mean temperature (1961-90) of (a) Ecuador, South America and (b) Macedonia, Southern Europe. 
 

 

Figure 3. Quarterly mean precipitation (1961-90) of (a) Ecuador, South America and (b) Macedonia, Southern Europe.  
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July. Macedonia shows precipitation of 0 - 200 kg·m2

 in 
January, April and October and 0 - 100 kg·m2 in July. 
Data of ground frost frequency [7] is available on the 
IPCC web site. All climatic variables are displayed at 
18.5 km resolution. The method for quantification of cli- 
matic variables is shown in [25]. Temperature was des- 
ignated as A1, precipitation as A2, ground frost fre- 
quency as A3 and elevation as A4 to enable the construc- 
tion of the ANFIS engines, which is detailed in the fol- 
lowing section. 

3.2. Construction of the ANFIS Engines for  
Ecuador and Macedonia 

After quantifying the variables for the geographic loca- 
tions of Ecuador and Macedonia, and sourcing the num- 
ber of individual plant occurrences from the Global Bio- 
diversity Information Facility (http://gbif.org, accessed 
December 2012), the following concise fuzzy singleton 
antecedent-consequent rule bases were applied in order 
to build the inference engines: 

           

         

3 4 1 5 1 4

1 2 1 5 65535

If Al Al 0.75A2 A2 0.25A2 A2

A3 A3 A4 A4 Then B 1E



   

  


(10) 

The above algorithm translated into the following 
conditions: IF Variables (A) = Temperature = 60% - 80%; 
Precipitation = 0.75 × 0 - 100 kg·m2 to 400 - 500 kg·m2, 
0.25 × 0 - 100 kg·m2 to 200 - 300 kg·m2; Ground Frost 
Frequency = 0 - 6 days to 6 - 12 days; Altitude = 0 – 
6300 m THEN Environment 1 (Phanerophytes dominant 
≤ Chamaephytes ≤ Hemicryptophytes ≤ Cryptophytes ≤ 
Therophytes) (B) = 65535 individual plant occurrences. 
(10) Creates 17 rules with variable weights as shown in 
Table 2. 

The terms Low, Low-Medium, Medium, Medium, 
Medium-High, High are quantified according to [25].  

(11) Shows the algorithm for Macedonia. 

         

         

       

 

4 5 4 5 1

2 1 1 5 1

2 1 1 3

2023

If 0.25Al Al 0.5Al 0.25Al 0.75A2

A2 0.25A2 0.25A3 A3 0.5A3

A3 0.25A3 A4 A4

Then 5B E





 





 

 
 (11) 

The above algorithm translated into the following con- 
ditions: IF Variables (A) = Temperature = 0.25 × 60% - 
80% to 80% - 100%, 0.5 × 60% - 80%, 0.25 × 80% - 
100%; Precipitation = 0.75 × 0 - 100 kg·m2 to 100 - 200 
kg·m2, 0.25 × 0-100 kg·m2; Ground Frost Frequency = 
0.25 × 0 - 6 days to 24 - 30 days, 0.5 × 0 - 6 days to 6 - 
12 days, 0.25 × 0 - 6 days; Altitude = 0 – 3780 m THEN 
Environment 5 (Hemicryptophyte, Therophyte dominant 
≤ Chamaephytes ≤ Hemicryptophytes ≤ Cryptophytes ≤ 
Phanerophytes) (B) = 2023 individual plant occurrences. 
(11) Creates 16 rules with variable weights (further de- 

tails available on request). 
The first layer of the computational engine shown in 

Figure 4 accepts the crisp input variables, the second 
layer enables conversion of the variables according to 
their membership functions values/terms, the third layer 
is where the rules of the engine operate (seen in Table 2), 
the fourth layer converts the values back through mem- 
bership function partitioned terms and the fifth layer 
computes the specific (crisp) number applicable for the 
predominant life-form type. The estimated primary con- 
sequent nodal number is 65535 (individual plant occur- 
rences) for Ecuador and 2203 (individual plant occur- 
rences) for Macedonia (GBIF (http://gbif.org, accessed 
December 2012) [34]).  

The efficiency of each pair of variables may be seen 
viewing the surface of the algorithm. Clear definition is a 
good indication of accuracy achieved and helps us to 
choose which variables are minimized in optimization 
techniques [28]. 

Figures 5(a) and (b) show similar defined peaks of 
life-form differentiation, whereas Figures 5(c) and (d) 
give no defined life-form peaks. It is suggested therefore 
that the most effective variables for definition of the life- 
form categories are water (precipitation) and energy 
(temperature). Further dispersal of the life-forms is re- 
quired in order that we may consider the distribution of 
the range of life-forms present in the two candidate areas.  

The following section proceeds to quantify the 18 life- 
form characterization and shows the result of a multi- 
objective genetic programming allowing dispersal of the 
18 life-form elements, employing the objectives tem- 
perature and precipitation to generate the utopian space 
via multi objective genetic algorithm (MOGA). 

3.3. Quantification and Dispersal of Plant  
Life-Form Elements Using MOGA 

Quantification enables development of rule-based sys- 
tems (eR) to summarize information in terms of the po- 
tential of new data samples (such as accumulated plant 
species numbers), which may then trigger new rule bases 
to cater for population development. Generality of struc- 
tural changes in terms of the groups within populations 
can therefore be catered for [38,39]. In terms of plant life- 
forms we may state membership functions in terms of the 
five main groups of life-form within a final (known) 
population number, with an established distribution of the 
(objective) variables [40]. Integrating a mechanism to 
disperse elements (or sub-categories) of life-forms has 
proved to be an effective mechanism by which one can 
visualize and estimate the distribution of the elements. A 
hybrid genetic algorithm approach is applied in order to 
achieve dispersal of elements and extrapolation of the Z 
hyperplane [28].  

A concise summary of the combined methods is given  
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Figure 4. Adaptive Neural Fuzzy Inference System quantifying the dominant plant life-form type of Ecuador.  
 

 

Figure 5. 3-D Surface views of variables of the algorithm for plant life-forms. (a) Ecuador, South America (precipitation ver-
sus temperature); (b) Macedonia, Southern Europe (precipitation versus temperature; (c) Ecuador, South America (precipi-
tation versus altitude); (d) Macedonia, Southern Europe (precipitation versus altitude).  
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in [28]. In this study we replaced the node structure of 
plant strategies with the plant life-forms. The expanded 
number of life-forms (18) are given solutions and de- 
tailed in Table 3.  

The characters represented in Table 3 represented a 
chromosomal population and were used to form a multi 
objective genetic algorithm (MOGA) in which the chro- 
mosomes cycled through 0 - 5, resulting in a Pareto front 
across the combined objective space. This substantiates 
one method by which we estimated the distribution of the 
life-form elements within the previous sections algo- 
rithmically defined statements, expanding the number of 
life-form nodes from 5 to 18. The process of MOGA is 
covered in [28] with the essential difference being that 
we disperse 18 elements of plant life-forms as opposed to 
20 elements of strategies as covered in previous studies. 
Code for the MOGA is available on request. 

From the selection of “good” and “bad” rules such as 
those displayed in Table 3, the evolutionary strength 
Pareto clearly shows the relationship between objectives 
1 and 2, which in this case are temperature and precipita- 
tion. Hence we state: 

Z Rn                 (12) 

where Z represents the utopia hyperplane and Rn is 2. 
Vectors of Z are within the correlation (relational) matrix  

multiplied by the number of objectives. The beauty of 
this relationship is that one may enter any value of objec- 
tive 1 and obtain a value for objective 2, thus enhancing 
the data from which the objective values are derived and 
ultimately the accuracy of the population number itself. 
(Figure 6). 

In Table, 4 y is equal to an element of Z. Rule 1 follows 
a weighted least squares structure subject to the  (error) 
shown. Rule 2 follows a quadratic structure subject to the 
 shown. The MOGA process was also carried out for 
Macedonia. Linear and quadratic utopian lines were 
drawn and utopian rules stated. All of these are available 
on request. 

The expressions shown in Table 4 enable an approxi- 
mation of the functional distribution of each of the life- 
form elements present within the candidate areas of Ec- 
uador and Macedonia as the errors for both are within the 
range 0 - 1. We extrapolate more informative value from 
the Z hyperplane via the functional approximation algo- 
rithm. This is discussed further in the following section. 

3.4. Functional Approximation Algorithm  
Expansion of the Z Hyperplane 

Elements of plant life-forms are distributed normally 
amongst the species occurrences of the candidate loca-  

 
Table 3. Solutions and ranges for plant life form chromosomes. 

Character/ Phan Chamae Hemi-crypt Crypt Thero 

Chromosome (0, ···,5) (0, ···,5) (0, ···,5) (0, ···,5) (0, ···,5) 

ws/1 5 1, ···,5 1, ···,2.5 0, ···,2.5 0, ···,3 

eg/d bs/2 5 0 0 0 0 

H >30 m/3 1.25, ···,5 0 0 0 0, ···,1.25 

H 8 - 30 m/4 1.25, ···,5 0 0 0 0, ···,1.25 

H 2 - 8 m/5 1.25, ···,5 0 0, ···,1.25 0, ···,1.25 0, ···,1.25 

H < 2 m/6 1.25, ···,5 5 1.25, ···,5 0, ···,1.25 0, ···,1.25 

amgpusd/7 0, ···,1.25 1.7, ···,5 0, ···,1.25 0 0 

amgpusf/8 0, ···,1.25 1.7, ···,5 0, ···,1.25 0 0 

sopag/9 0, ···,1.25 1.7, ···,5 0, ···,1.25 0 0 

scppag/10 0, ···,1.25 1.7, ···,5 0, ···,1.25 0 0 

agdoamgp/11 0 0, ···,1.25 1.25, ···,5 0 0 

lwdusspgb/12 0, ···,1.25 0, ···,1.25 1.25, ···,5 0 0 

dlfbrlasgyal/13 0 0, ···,1.25 1.25, ···,5 0 0 

lrtbrlasgyal/14 0 0, ···,1.25 1.25, ···,5 0 0 

ufsoseigs/15 0, ···,1.7 0, ···,1.7 0, ···,1.7 1.7, ···,5 0 

gbaisbwsapaw /16 0, ···,1.7 0, ···,1.7 0, ···,1.7 1.7, ···,5 0 

gbuwagpsruw/ 17 0, ···,1.7 0, ···,1.7 0, ···,1.7 1.7, ···,5 0 

apcegcismawsas/18 0, ···,0.3 0, ···,0.3 0, ···,0.3 0, ···,0.3 5 
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Table 4. Utopia rules. 

Variables (3 Significant figures) 
Rule 

1  2  3    

1. 1 2Z       −0.110 −0.140  0.425 

22. 1 2 3Z        0.014 0.009 0.009 0.034 

 

 

Figure 6. (a) Objective dispersal of the Strength Pareto 
Evolutionary population obtained for Ecuador; (b) Error of 
linear Utopia line and quadratic curve; (c) Illustration of 
how selection within the chromosome populations took 
place. 
 
tions Ecuador and Macedonia as the strength Pareto 
shown in the previous section indicates. It is therefore 
possible to generate values of the Z plane with use of a 
surrogate Gaussian function model [14]. Rastrigin’s 
function is one such process function, which can be made 
use of in order to extrapolate values of a multimodal op- 
timization. 

Values of objective 1 (temperature) and objective 2 
(precipitation) are extrapolated to the scale 0 - 5 and 
hence local minima of life-form percentage in Figure 7  

 

Figure 7. Rastrigin’s function approximating distribution of 
plant life-forms within the Z hyperplane. 
 
indicate the presence of the least present life-form (thero- 
phytes and hemi-cryptophytes in the case of Macedonia) 
and the maxima (peaks) of life-form percentage indicate 
the predominant life-form (in the case of Ecuador, phan- 
erophytes). Use of the function is an effective method of 
extrapolating values in the Z hyperplane, given that the 
number of individual occurrences represents n in Equa-
tion (9). The 3 dimensional surface of the function is an 
appropriate surrogate illustrating how the characters of 
each life-form sub category overlap with one another in 
the spectrum of life-forms present in different ecosys-
tems and locations. This point is discussed in the follow-
ing section. 

4. Discussion 

In this paper we have presented a T-S-K logic based 
structure for the ordering of plant life-forms, carried out 
genetic programming of the life-forms and developed a 
method by which one can form functional approximation 
algorithms to elucidate distribution of elements within 
the Z utopia hyperplane. 

The crucial difference between the use of Boolean 
mathematics to describe systems and the higher math- 

ematic logic based methods employed is that the latter is 
devoid of semantic definition, establishing certainty in a 
previously distorted view [41, ch. 5], [42, ch. 4], [43, ch. 
1]. In order to visualize the distribution of elements 
within a stochastic population we used a Gaussian proc- 

ess model, from which enhanced detail of the Z matrix 
can be extrapolated. 

We implemented an efficient, minimized algorithmic 
approach using key elements of the water-energy dy- 

namic for 2 candidate areas. We distributed a spectrum 
of life-forms, within given environments ideal for plant 
growth and comparatively more extreme conditions [3, 
27]. Creation of the closed loop system for the areas 
covered allowed bounds of life-form spectrum distribu- 
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tions to be perceived as a continuum and primary nodes 
of life-forms identified, of which Ecuador is the most 
diverse and Macedonia is less diverse. 

Further use of optimization methods enabled dispersal 
of the primary nodal number to give the secondary nodal 
number of life-forms. The distribution of the sub-cate- 

gories of life-forms is of a binomial, poisson nature in 
agreement with previous climatic studies [15]. The dis- 

tribution is summarized using linear and quadratic rules. 
Using the multi-modal Rastrigin’s function showed 

that each dispersed life-form is expressed continuously 
for each individual life-form element, with zero mean 
and 0 - 1 variance (of the Z plane) within alternate envi- 

ronments. This method may be used to estimate propor- 

tions of individual species occurrences according to life- 
form [28]. 

We propose the additional use of alternate functions 
(e.g. Sphere function, Schwefel’s function, Rosenbrock’s 
function) in order to indicate the functional approxima- 
tion of all characters of plant species individual occur- 
rence, either involving a simulative base, field data or an 
integration of the two (as in this paper). Using this 
method further unveils the dimensions of multi-objective 
orientated characters such as those of plant metabolites. 
Substantiation of the methods and patterns of this paper 
are useful not only to explore mathematical relations 
(niches and functional traits) but also to reinforce the re- 
quirement for enhanced protection of the areas covered 
by this study. Additionally modelling of climatic vari- 
ables and the characters of plants modeled therein is en- 
hanced in terms of accuracy and pattern distribution. 
Examples of the potential uses of this work include the 
finer scale structuring of phylogenetic trees, the pattern- 
ing of prey-taxis relations [44-46], and measurement of 
quantitative trait loci such as those involved in biochemi- 
cal pathways [47, ch. 8], [48]. Further, the informative 
value of the Z matrix is enhanced and expanding/con- 
tracting relational values may be explored [13,49]. Ac- 
cessibility of mathematic methods to plant science and 
biogeography is facilitated. This is an important element 
to emphasize, especially with regard to vulnerable loca- 
tions and indigenous populations in Ecuador, which are 
under threat of development [50]. Identification and ex- 
pression of elements within priority conservation areas 
under threat of destructive human activity is of increas- 
ing importance, given the nature of the activities and the 
immediate effect on the concentrated biodiversity. There 
are thought to be more than two distinct niche processes 
operating in convergence and divergence of plant strate- 
gies [27,51]. It has been proven that strategy differentia- 
tion in plant species contributes to the maintenance of 
diversity in highly diverse locations. This work may as- 
sist with national policy formation in justification of di- 
rection of resources towards increased conservation and 

protection of vulnerable locations [52]. A starting place 
for implementation of conservation policy could manifest 
through local or national government partnerships with 
increased numbers of research based organizations, in 
order that the mathematical substantiation provided in 
this paper could be further investigated.  
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