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ABSTRACT 

In this paper, we provide a new way of characterizing the upper and lower bound for the concentration and the gradient 
of concentration in advection dispersion equation under the condition that source term, concentration and stirring term 
belong to BMO space. 
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1. Introduction 

Throughout the paper we fix a positive integer n and let  
nC C C    

denote the n-dimensional complex Euclidean space. For 
 and  1 2, , , nz z z z   1 2, , , n      in  we 

write 

nC

22

1

n

i
i

z z


   

and 
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where i  is the complex conjugate of i . 
Let n  denote the unit ball in  and let  be the 

Lebesgue volume measure on . For 
B nC v

nB 1    , we 
denote by v  the measure on  defined by  nB
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is a normalizing constant such that   1.nv B   For  
1 p   , we write 

, p
  for the norm on 
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where  nH B
B

 denote the space of all holomorphic 
functions in n . Reproducing kernels wK  and normal-
ized reproducing kernels wk  in  n

2A B  are given by, 
respectively, 
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h K h   for all . The orthogonal pro-  nw B

jection P  of  2 ,dnL B v  onto  2
nA B  is given by 
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for  2 ,dng L B v  and . When nw B 1n  , we 
write  for . D 1B  and ,


   for the inner product on 

2 ,dnL B v
For  1 ,dnf L B v  , we define the Berezin transform 

of f  to be the function f , that is  . The weighted Bergman space  p
nA B  

consists of holomorphic functions f  in  ,dnL B vp
 , 

that is, 
       

2
d .

n
zB

f z f w k w v w
   

If f  is bounded, then f  is a bounded function on 

n . Since the normalized reproducing kernels B zk  con-
verge weakly to zero as  tends , we have that if  z nB
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f  is compact, then  as . The con-
verse (in both case) is not necessarily true. 

  0f z 
nz B

The traditional advection dispersion equation is a 
standard model for contaminant transport. The advection 
dispersion equation is the basis of many physical and 
chemical phenomena, and its use has also spread into 
economics, financial forecasting and other fields. In gen-
eral, the numerical solution of advection dispersion equa-
tions has been dominated by either finite difference, fi-
nite element or boundary element methods. These meth-
ods are derived from local interpolation schemes and 
require a mesh to support the application. It is well 
known that the numerical solution of advection disper-
sion equation is a difficult task. Scholars try to find the 
new way to obtain the solution of advection dispersion 
equation. For the passive scalar, complicated behavior is 
often observed even for laminar velocity fields. This is 
the well-known effect of chaotic advection in [1,2]. Thus 
we can choose the source and stirring term of the advec-
tion dispersion equation to be any divergence-free, pos-
sibly time-dependent flow field. The mixing efficiency 
depends on specific properties of the stirring and source 
term. Schumacher, Sreenivasan and Yeung have obtained 
bounds on high-order derivative moments of a passive 
scalar for large values of the Schmidt number in [3]. 
Thiffeault, Doering and Gibbon have obtained bounds on 
mixing efficiency for the passive scalar under the influ-
ence of advection and diffusion with a body source in 
[4]. 

The advection dispersion equation for the concentra-
tion  , x t  of a passive scalar is 

.u k
t

  
    


s             (1) 

where  is the dispersion coefficient, k  ,s x t  is a 
source term, and  is the stirring term. It is clear 
that an exciting mixing configuration would have small 
concentration for a given source term and stirring term, 
indicating a steady state with low density of concentra-
tion. We use the fluctuations in the concentration as a 
useful measure of the degree of well-mixedness, as has 
long been the practice in [5,6]. 

 ,u x t

In this paper we apply some recent developments in 
the analysis of the BMO space to the advection disper-
sion equation. We further provide a new way of giving 
the upper and lower bound for the concentration and the 
gradient of concentration in the advection dispersion 
equation by using BMO theory. The bounds on mixing 
efficiency in this paper mainly depend on the stirring 
field and the source distribution, which is very important 
for allowing comparison of the relative effectiveness of 
various source term for specified stirring scenarios. 

Throughout the paper, we will use the letter  to de-

note a generic positive constant that can change its value 
at each occurrence. 

c

2. Some Lemmas and Basic Definitions 

For nz B , let z  be the automorphism of  such  nB

that  0z z   and 1
z z   , which is described in  

[7]. It has the real Jacobian equal to 
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for , nz w B . 
Thus we have the change-of-variable formula 

          
2

d d
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z zB B
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    ,  (2) 

for every  1 ,dnh L B v . 
By a well-known theorem of John-Nirenberg in [8,9], 

the classical BMO of the unit circle is independent of the 
pL  norm used to define it. It is also well known that a 

function  on the circle is in BMO if and only if the 
Hankel operators with symbol  and 

f
f f  are both 

bounded on the Hardy space of the circle. A new type of 
BMO, Denoted  BMO  , is introduced in [10,11] for 
any bounded domain   in the complex space . In 
this paper we define the BMO space in the Bergman 
metric by the 

nC

pL  norm. 

Let  ,dnf L B v 1  and , we say that 1p 
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nMO Bf B  whenever 
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Note that pBMO
  does not distinguish constants, 

while  
,

0pBMOp
f f f


    is a norm in  

 p
nBMO B . By the Theorem 5 in [12], we know the 

fact that  p
nO BBM  is equivalent to p

rBMO  in [12].  

For , nz w B
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nz B

 denote  

the Bergman metric on . For any  and , 
let 

nB 0r 

    ,nD z w B z w r    

be the Bergman metric ball with center  and radius  z

r . Let     D z v D z , which is equivalent to  

  12 n

z


1
 

  (see Lemma 1.24 of [13]). 

For  1 ,dnf L B v , the average of f  over  D z  
is defined by 
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D z
f z f w v
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Using the properties of Bergman metric, it follows that 

         1 ˆsup d
n

p

D zz B
f w f z v w

D z



    

if and only if pBMO
f


  . 

Thus, functions in  p
nBMO B  have bounded mean 

oscillation in the Bergman metric. Since  p
nBMO B  

functions are locally in  ,dp
nL B v  , it is not hard to see 

that  

     ,d , 1,p p
n n nL B BMO B L B v p 

   



 

     1 , 1 .q p
n n nBMO B BMO B BMO B p q      

Since the space  is the largest among the 
 for , from now on we will be mainly 

interested in functions belonging to this class. The study 
of BMO spaces plays an important role on modern 
analysis and applied science in [14,15]. For simplicity we 
will write 

 1
nBMO B

1p  p
nBMO B

pBMO  instead of .  p
nBMO B

pVMO   

consists of functions f  in pBMO  such that  

 
,

0z p
f f z


    as 1z  . 

Lemma 2.1 Suppose 1f BMO , then the following 
quantities are equivalent: 

(1) f̂  is bounded on ; nB

(2) f  is bounded on ; nB

(3) f  is bounded on ; nB

(4) f  is bounded on . nB
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then f̂  is bounded on  if and only if nB f  is 
bounded on . nB
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then f  is bounded on  if and only if nB f  is 
bounded on . nB

   43  : The proof is trivial. 
Lemma 2.1 implies the fact that we may regard the 

average function and Berezin transform as positive func-
tion, which is very important for us to research the pa-
rameters in advection dispersion equation by using BMO 
theory. 

3. Main Results 

In this section, we further obtain the upper and lower 
bound for the concentration and the gradient of concen-
tration in the advection dispersion equation. We give the 
reasons why the source term, stirring term and concen-
tration in the advection dispersion equation belong to 
BMO space. In fact, BMO space extends the mean- 
variance theory. According to the definition of average 
function and norm of BMO space, it is clear that the av-
erage function extends the mean theory and the norm of 
BMO space extends the variance theory. The parameters 
in advection dispersion equation are uniformly bounded 
in time, which is true under the physical assumption that 

,1
s


 is uniformly bounded in time. In addition, Lemma 

2.1 provides the reasons for regarding the concentration, 
source term and stirring term as BMO function. The 
formula 

     ,d , 1,p p
n n nL B BMO B L B v p 

     

also provides the reason for 1, ,u s BMO  . 
In [4], the advection dispersion operator is defined by 

.L u k
t


    


 

It is well known that the space  is Banach 
space instead of Hilbert space. So it is difficult to obtain 
the adjoint of the advection dispersion operator. Then we 
have to find new way of characterizing the upper and 
lower bound for the concentration and the gradient of 
concentration in the advection dispersion equation by 
using BMO theory. 

1 ,dnL B v 

Next, we will obtain the lower bound for 
,1

  and 

,1
  in the advection dispersion equation. 
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For an arbitrary smooth noralized function  , 
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(3) 

By the formula (3), the lower bound of concentration 
is proportional to the source term and is inversely pro-
portional to the stirring term and dispersion coefficient, 
holding the other parameters constant. We still have the 
freedom to choose   to optimize the lower bound of 
the concentration for a particular problem, that is, for 
given source term, dispersion coefficient and stirring 
term. 

By the poincare’s inequality and the fact 
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where 0 , denoted the average concentration of the re-
search domain, is positive constant. 

By the formula (4), we obtain 

,1 ,1 ,1
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(5) 

By the formula (5), the lower bound for the gradient of  

concentration is proportional to the source term and is 
inversely proportional to the stirring term and dispersion 
coefficient, holding the other parameters constant. We 
still have the freedom to choose   to optimize the 
lower bound for the gradient of concentration for given 
source term, dispersion coefficient and stirring term. The 
formula (5) is true under the condition that the average 
source term ŝ  is bounded on n . In other words, the 
formula (5) does not necessarily hold for emergencies. 

B

Next, we will obtain the upper bound for 
,1

  and 
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  in the advection dispersion equation. 
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(6) 

Open Access                                                                                           JAMP 



K. ZHANG  ET  AL. 

Open Access                                                                                           JAMP 

125

per and lower bound of the gradient of concentration. Compared with the formula (3), the formula (6) gives 
the error between concentration and average concentra-
tion, which has important significance in practice. 
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1 1 1,1
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An efficient mixing configuration would have small  
concentration 

,1
  for a given source term and stirring  

term, indicating a steady state with small variations in the 
concentration. In general we expect that increasing 
source term at fixed stirring term should augment con-
centration. 

For the concentration, we focus on the formula (8). As 
we increase the source amplitude, holding the other pa-  
rameters constant, the concentration 

,1
  must even-  

then 
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1
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(7) 

tually increase. However large concentration does not 
necessarily imply large source term, as the difference can 
be made up by the dispersion coefficient  or stirring 
term. This is what makes enhanced mixing possible. An  

k

increase of 
,1

  implies that the scalar is more poorly  

mixed. Formula (8) reflects that we can postpone the 
increasing of lower bound of concentration by raising the 
stirring term. The formula (5) and the formula (7) make trouble for 

us to research the factors on influencing the upper and 
lower bound for the gradient of concentration in the ad-
vection dispersion equation. As we increase the disper-
sion coefficient, holding the other parameters constant, 
the lower bound for the gradient of concentration must 
decrease and the upper bound for the gradient of concen-
tration must increase. One of the reasons for this phe-
nomenon is that the gradient of concentration can be af-
fected by several environmental factors such as tempera-
ture, PH, salinity, etc. (see, [16-20]). 

For the gradient of concentration, we focus on the 
formula (9). As we increase the source amplitude, hold-
ing the other parameters constant, the gradient of con-  
centration 

,1
  must eventually increase. However  

large gradient of concentration does not necessarily im-
ply large source term, as the difference can be made up 
by other factors. Formula (9) also reflects that we can 
postpone the increasing of the upper and lower bound of 
gradient of concentration by raising the stirring term. 

By formula (3) and formula (6), we obtain the upper 
and lower bound for the concentration in the advection 
dispersion Equation (8). 

By the formula (8) and (9), the concentration 
,1

  

and the gradient of concentration 
,1

  seem to have  

the same lower bound, which does not imply that the By the formula (5) and formula (7), we obtain the up-  
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formula (8) and formula (9) are wrong. By the poincare’s 
inequality, the concentration 

,1
  and the gradient of 

concentration 
,1

  must have the same form of the  

lower bound. 
Although our results are established on the unit ball 
 in , our results are obviously correct for any 

bounded domain  in . Since , so the 
results in this paper are correct for any bounded domain 
in . By the formula (8), if 

nB nC
 nC nR C

1

n

nR s VMO  and the aver-
age function  tends zero, then the lower bound of 
concentration in advection dispersion equation must 
eventually tend zero and at the same time the upper 
bound of concentration tends the average concentration 
of the whole research domain. By the formula (9), if 

ŝ

1s VMO  and the average function  tends zero, then 
the lower bound for the gradient of concentration in ad-
vection dispersion equation must eventually tend zero 
and at the same time the upper bound for the gradient of 
concentration does not necessarily tend zero. 

ŝ

By the formulas (8) and (9), we have freedom to choose 
  and calculate its  integral for optimizing 
the upper and lower bound for the concentration and the 
gradient of concentration. There is a long way to go 
before we have satisfactory results. 

1 ,dnL B v 

If   and   are time-dependent and still satisfy the 
formula (8), then we obtain the following result, namely, 
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If 1  and   are time-dependent and still satisfy the 
formula (9), then we obtain the following result, namely, 
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4. Conclusions 

It is encouraging that we may obtain the upper and lower  
bound for the dispersion coefficient k  and 

,1
  

using the same method under the conditions that concen-
tration, source term and stirring term are the control pa-
rameters. As a physically meaningful measure of mixing 

 

22
0 ,12

k



2

,1

,eqk



  where 

efficiency, we introduce the equivalent diffusivity   

in [21-23], namely,

 eqk

0  is the  

solution of the advection dispersion equation with the 
same source but no stirring term. By the upper and lower 
bound of dispersion coefficient, it is easy to obtain the 
upper and lower of the equivalent diffusivity. The effec-
tive diffusivity is defined in terms of a large-scale gradi-
ent of the concentration, whereas here we use the ampli-
tude of the source term, which makes more sense in the 
present context. In closing we note that all of our analysis, 
as well as the general result that the equivalent diffusivity 
depends on the source distribution being smooth enough 
to have a finite variance. Point sources, for example 
where  ~s z , may be of interest in applications but 
do not e variance. In this situation we may still 
define the mixing efficiency and an equivalent diffusivity 

have finit
 

via 
0 ,1



0 ,1

eqk k



 . Although we provide a new way to  

illuminate the quantitative relation among the concentra-

s left for future 
w

REFERENCES 
[1] H. Aref, “Sti ction,” Journal of 

tion, dispersion coefficient and gradient of concentration 
by using BMO theory, it is clear that the concentration, 
dispersion coefficient and gradient of concentration in 
advection dispersion equation can be affected by several 
environment factors(for example [24-29]). So how to 
fully consider the influence factors on the concentration, 
dispersion coefficient and gradient of concentration is the 
key for proceeding the subsequent job. 

The investigation of these works i
ork. 

rring by Chaotic Adve
Fluid Mechanics, Vol. 143, No. 1, 1984, pp. 1-21.  
http://dx.doi.org/10.1017/S0022112084001233 

[2] J. M. Ottino, “The Kinematics of Mixing: Stretching, Chaos, 

umacher, K. R. Sreenivasan and P. K. Yeung, 

and Transprot,” Cambridge University Press, Cambridge, 
1989. 

[3] J. Sch
“Schmidt Number Dependence of Derivative Moments 
for Quasi-Static Straining Motion,” Journal of Fluid Me- 
chanics, Vol. 479, No. 1, 2003, pp. 221-230.  
http://dx.doi.org/10.1017/S0022112003003756 

[4] J. L. Thiffeault, C. R. Doering and J. D. Gibbon, “A Bound 
on Mixing Efficiency for the Advection-Diffusion Equa- 
tion,” Journal of Fluid Mechanics, Vol. 521, No. 1, 2004, 
pp. 105-114.  
http://dx.doi.org/10.1017/S0022112004001739 

[5] P. V. Danckwerts, “The Definition and Measurement of 

rac- 
teristics of Fluorescein Dye and Temperature Fluctuations 

Some Characteristics of Mixtures,” Applied Scientific Re- 
search, Section A, Vol. 3, No. 4, 1952, pp. 279-296.  

[6] H. Rehab, R. A. Antonia, L. Djenidi and J. Mi, “Cha

Open Access                                                                                           JAMP 

http://dx.doi.org/10.1017/S0022112084001233
http://dx.doi.org/10.1017/S0022112084001233
http://dx.doi.org/10.1017/S0022112003003756
http://dx.doi.org/10.1017/S0022112003003756
http://dx.doi.org/10.1017/S0022112004001739
http://dx.doi.org/10.1017/S0022112004001739


K. ZHANG  ET  AL. 127

in a Turbulent Near-Wake,” Experiments in Fluids, Vol. 
28, No. 5, 2000, pp. 462-470.  
http://dx.doi.org/10.1007/s003480050406 

[7] W. Rudin, “Function Theory in the Unit Ball of 
Springer-Verlage, New York, 1980.  

C ,”n  

http://dx.doi.org/10.1007/978-1-4613-8098-6 

[8] J. Garnett, “Bounded Analytic Functions,” Aca
New York, 1981.  

demic Press

unications on Pure and Applied Ma-

, 

 
[9] F. John and L. Nirenberg, “On Functions of Bounded Mean 

Oscillation,” Comm
thematics, Vol. 14, No. 3, 1961, pp. 415-426.  
http://dx.doi.org/10.1002/cpa.3160140317 

[10] D. Békollé, C. A. Berger, L. A. Coburn and K
“BMO in the Bergman Metric on Bound

. H. Zhu
ed Symmetric 

, 

Domains,” Journal of Functional Analysis, Vol. 93, No. 2, 
1990, pp. 310-350.  
http://dx.doi.org/10.1016/0022-1236(90)90131-4 

[11] C. A. Berger, L. A. Coburn and K. H. Zhu, “BMO
Bergman Spaces of the Classical Domains,” Bu

 
lletin o

on the 
f 

the American Mathematical Society, Vol. 17, No. 1, 1987, 
pp. 133-136.  
http://dx.doi.org/10.1090/S0273-0979-1987-15539-X 

[12] K. H. Zhu, “BMO and Hankel Operators on Bergman 
Spaces,” Pacific Journal of Mathematics, Vol. 155, No. 2, 
1992, pp. 377-395.  
http://dx.doi.org/10.2140/pjm.1992.155.377 

[13] K. H. Zhu, “Spaces of Holomorphic Functions
Ball,” Springer-Verlage, New York, 2004. 

 in the

man Space of

 Unit 

 
[14] K. Zhang, C. M. Liu and Y. F. Lu, “Toeplitz Operators 

with BMO Symbols on the Weighted Berg
the Unit Ball,” Acta Mathematica Sinica, English Series, 
Vol. 27, No. 6, 2011, pp. 2129-2142.  
http://dx.doi.org/10.1007/s10114-011-0038-3 

[15] K. E. Petersen, “Brownian Motion, Hardy 
Bounded Mean Oscillation,” Cambridge Unive

Spaces and
rsity Press, 

 

Cambridge, 1977.  
http://dx.doi.org/10.1017/CBO9780511662386 

[16] M. Rosso, J. F. Gouyet and B. Sapoval, “Dete
of Percolation Probability from the Use of a C

rmination
oncentr

 
a- 

tion Gradient,” Physical Review B, Condensed Matter, 
Vol. 32, No. 9, 1985, pp. 6053-6054.  
http://dx.doi.org/10.1103/PhysRevB.32.6053 

[17] V. Markin, T. Tsong, R. Astumian and B. R
“Energy Transduction between a Concentrati

obertson, 
on Gradient 

and an Alternating Electric Field,” The Journal of Chemi- 
cal Physics, Vol. 93, No. 7, 1990, pp. 5062-5066.  
http://dx.doi.org/10.1063/1.458644 

[18] F. Stümpel and K. Jungermann, “Sensing by Intrahepatic
Muscarinic Nerves of a Portal-Arte

 
 rial Glucose Concen-

 Presence of a Con- 

ulation of the 

2432-1

tration Gradient as a Signal for Insulin-Dependent Glu- 
cose Uptake in the Perfused Rat Liver,” FEBS Letters, 

Vol. 406, No. 1, 1997, pp. 119-122. 

[19] A. Lasia, “Porous Electrodes in the
centration Gradient,” Journal of Electroanalytical Chem- 
istry, Vol. 428, No. 1, 1997, pp. 155-164.  

[20] M. Higa, A. Tanioka and K. Miyasaka, “Sim
Transport of Ions against Their Concentration Gradient 
across Charged Membranes,” Journal of Membrane Sci- 
ence, Vol. 37, No. 3, 1988, pp. 251-266.  
http://dx.doi.org/10.1016/S0376-7388(00)8  

raphy, [21] M. B. Isichenko, “Percolation, Statistical Topog
and Transport in Random Media,” Reviews of Modern 
Physics, Vol. 64, No. 4, 1992, pp. 961-1043.  
http://dx.doi.org/10.1103/RevModPhys.64.961 

[22] S. B. Pope, “Turbulent Flow,” Cambridge University 

BO9780511840531
Press, Cambridge, 2000.  
http://dx.doi.org/10.1017/C  

Thiffeault [23] N. J. Balmforth, W. R. Young, J. Fields, J. L. 
and C. Pasquero, “Stirring and Mixing: 1999 Program of 
Summer Study in Geophysical Fluid Dynamics,” Woods 
Hole Oceanographic Institution, 2000.  
http://dx.doi.org/10.1575/1912/94 

[24] B. Gaylord and S. D. Gaines, “Temperature or Transport 
Range Limits in Marine Species Mediated Solely by Flow,” 
The American Naturalist, Vol. 155, No. 6, 2000, pp. 
769-789. http://dx.doi.org/10.1086/303357 

[25] N. Margvelashvily, V. Maderich and M. Zheleznyak, 

128

“THREETOX—A Computer Code to Simulate Three-Di- 
mensional Dispersion of Radionuclides in Stratified Wa- 
ter Bodies,” Radiation Protection Dosimetry, Vol. 73, No. 
1-4, 1997, pp. 177-180.  
http://dx.doi.org/10.1093/oxfordjournals.rpd.a032  

f [26] D. T. Ho, P. Schlosser and T. Caplow, “Determination o
Longitudinal Dispersion Coefficient and Net Advection 
in the Tidal Hudson River with a Large-Scale, High Reso- 
lution SF6 Tracer Release Experiment,” Environmental 
Science and Technology, Vol. 36, No. 15, 2002, pp. 3234- 
3241. http://dx.doi.org/10.1021/es015814+ 

[27] G. H. O. Essink, “Salt Water Intrusion in a Three-Dimen- 

3/A:1010625913251

sional Groundwater System in the Netherlands: A Nu- 
merical Study,” Transport in Porous Media, Vol. 43, No. 
1, 2001, pp. 137-158.  
http://dx.doi.org/10.102  

. Garcia, C. [28] E. Sierra, F. G. Acien, J. M. Fernandez, J. L
Gonzalez and E. Molina, “Characterization of a Flat Plate 
Photobioreactor for the Production of Microalgae,” Che- 
mical Engineering Journal, Vol. 138, No. 1, 2008, pp. 
136-147. http://dx.doi.org/10.1016/j.cej.2007.06.004 

[29] L. Y. Chang and W. C. Chen, “Data Mining of Tree- 
Based Models to Analyze Freeway Accident Frequency,” 
Journal of Safety Research, Vol. 36, No. 4, 2005, pp. 365- 
375. http://dx.doi.org/10.1016/j.jsr.2005.06.013 

 

Open Access                                                                                           JAMP 

http://dx.doi.org/10.1007/s003480050406
http://dx.doi.org/10.1007/s003480050406
http://dx.doi.org/10.1007/s003480050406
http://dx.doi.org/10.1007/978-1-4613-8098-6
http://dx.doi.org/10.1002/cpa.3160140317
http://dx.doi.org/10.1002/cpa.3160140317
http://dx.doi.org/10.1002/cpa.3160140317
http://dx.doi.org/10.1016/0022-1236(90)90131-4
http://dx.doi.org/10.1016/0022-1236(90)90131-4
http://dx.doi.org/10.1016/0022-1236(90)90131-4
http://dx.doi.org/10.1090/S0273-0979-1987-15539-X
http://dx.doi.org/10.1090/S0273-0979-1987-15539-X
http://dx.doi.org/10.1090/S0273-0979-1987-15539-X
http://dx.doi.org/10.2140/pjm.1992.155.377
http://dx.doi.org/10.2140/pjm.1992.155.377
http://dx.doi.org/10.2140/pjm.1992.155.377
http://dx.doi.org/10.1007/s10114-011-0038-3
http://dx.doi.org/10.1007/s10114-011-0038-3
http://dx.doi.org/10.1007/s10114-011-0038-3
http://dx.doi.org/10.1017/CBO9780511662386
http://dx.doi.org/10.1017/CBO9780511662386
http://dx.doi.org/10.1017/CBO9780511662386
http://dx.doi.org/10.1103/PhysRevB.32.6053
http://dx.doi.org/10.1103/PhysRevB.32.6053
http://dx.doi.org/10.1103/PhysRevB.32.6053
http://dx.doi.org/10.1063/1.458644
http://dx.doi.org/10.1063/1.458644
http://dx.doi.org/10.1063/1.458644
http://dx.doi.org/10.1016/S0376-7388(00)82432-1
http://dx.doi.org/10.1016/S0376-7388(00)82432-1
http://dx.doi.org/10.1103/RevModPhys.64.961
http://dx.doi.org/10.1103/RevModPhys.64.961
http://dx.doi.org/10.1017/CBO9780511840531
http://dx.doi.org/10.1017/CBO9780511840531
http://dx.doi.org/10.1575/1912/94
http://dx.doi.org/10.1575/1912/94
http://dx.doi.org/10.1086/303357
http://dx.doi.org/10.1086/303357
http://dx.doi.org/10.1093/oxfordjournals.rpd.a032128
http://dx.doi.org/10.1093/oxfordjournals.rpd.a032128
http://dx.doi.org/10.1021/es015814+
http://dx.doi.org/10.1021/es015814+
http://dx.doi.org/10.1023/A:1010625913251
http://dx.doi.org/10.1023/A:1010625913251
http://dx.doi.org/10.1016/j.cej.2007.06.004
http://dx.doi.org/10.1016/j.cej.2007.06.004
http://dx.doi.org/10.1016/j.jsr.2005.06.013

