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ABSTRACT 

Uncertainty principle plays an important role in physics, mathematics, signal processing and et al. In this paper, based 
on the definition and properties of discrete linear canonical transform (DLCT), we introduced the discrete Hausdorff- 
Young inequality. Furthermore, the generalized discrete Shannon entropic uncertainty relation and discrete Rényi en-
tropic uncertainty relation were explored. In addition, the condition of equality via Lagrange optimization was devel-
oped, which shows that if the two conjugate variables have constant amplitudes that are the inverse of the square root of 
numbers of non-zero elements, then the uncertainty relations touch their lowest bounds. On one hand, these new uncer-
tainty relations enrich the ensemble of uncertainty principles, and on the other hand, these derived bounds yield new 
understanding of discrete signals in new transform domain. 
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1. Introduction 

Uncertainty principle [1-20] plays an important role in 
physics, mathematics, signal processing and et al. Un-
certainty principle not only holds in continuous signals, 
but also in discrete signals [1,2]. Recently, with the de-
velopment of fractional Fourier transform (FRFT), con-
tinuous generalized uncertainty relations associated with 
FRFT have been carefully explored in some papers such 
as [3,4,16], which effectively enrich the ensemble of 
FRFT. However, up till now there has been no reported 
article covering the discrete generalized uncertainty rela-
tions associated with discrete linear canonical transform 
(DLCT) that is the generalization of FRFT. From the 
viewpoint of engineering application, discrete data are 
widely used. Hence, there is great need to explore dis-
crete generalized uncertainty relations. DLCT is the dis-
crete version of LCT [5,6], which is applied in practical 
engineering fields. In this article we will discuss the en-
tropic uncertainty relations [7,8] on LCT.  

In this paper, we made some contributions such as fol-
lows. The first contribution is that we extend the tradi-
tional Hausdorff-Young inequality to the DLCT domain 
with finite supports. It is shown that these bounds are 
connected with lengths of the supports and LCT parame-
ters. The second contribution is that we derived the  

Shannon entropic uncertainty principle in LCT domain 
for discrete data, based on which we also derived the 
conditions when these uncertainty relations have the 
equalities via Lagrange optimization. The third contribu-
tion is that we derived the Renyi entropic uncertainty 
principle in DLCT domain. As far as we know, there 
have been no reported papers covering these generalized 
discrete entropic uncertainty relations on LCT. 

2. Preliminaries 
2.1. LCT and DLCT 

Before discussing the uncertainty principle, we introduce 
some relevant preliminaries. Here we first briefly review 
the definition of LCT. For given analog signal  

     1 2f t L R L R   and  
2

1f t   (where  
2

f t   

denotes the  norm of function 2l  f t ), its LCT [5,6] is 
defined as  
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where  
2 2
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   ,  and  

is the complex unit,  is the transform pa-  
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

rameter defined as that in [5,6]. In addition,  

    A BF F f t f t . 

If 1A B ,      1 , dA A
f t F u K u t




  u , i.e., the in-  

verse LCT reads:      1 , dA A
f t F u K u t

  u




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Let  
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be a discrete time series with length N and 
2

1X  . 
Assume its DLCT (discrete FLCT)  

 1 2 3
ˆ ˆ ˆ ˆ ˆ, , , ,  N

NX x x x x C     under the transform pa-
rameter  .  

Then the DLCT [5] can be written as 
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   

22

22 2

1

1

ˆ 1 e e e

, , 1 ,

ianidk iknN
b Nb bN

l

N

A
l

.

x k ibN x

u k n x n n k N







 

  





n



.     (2) 

Also, we can rewrite the definition (2) as 

ˆ
A AX U X , 

where  ,A A N N
Clearly, for DLCT we have the following property [5]: 

U u k n    . 

22
A A

In the following, we will assume that the transform 
parameter . Note the main difference between the 
discrete and analog definitions is the length: one is finite 
and discrete and the other one is infinite and continuous. 

ˆ 1X U X 



. 

0b 

2.2. Shannon Entropy and Rényi Entropy 

For any discrete random variable  1, ,nx n  
 np x

N  and 
its probability density function , the Shannon 
entropy [9] and the Rényi Entropy [10] are defined as, 
respectively 
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Hence, in this paper, we know that for any DLCT 
 1 2 3

ˆ ˆ ˆ ˆ ˆ, , , ,  N
A NX x x x x C   (with 

2
1X   and 

22
), the Shannon entropy and the Ré-

nyi Entropy [13] associated with DLCT are defined as, 
respectively 
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Clearly, if 1   as shown in [13], 

  ˆ ˆA A H x H x  . 

2.3. Discrete Hausdorff-Young Inequality  
on DLCT 

Lemma 1: For any given discrete time series 

 
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n , 

with length N and 
2

1X  ,  is the DLCT 
transform matrix associated with the transform parameter  
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, respectively), then we can  

obtain the generalized discrete Hausdorff-Young ine-
quality 
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Proof: Let  
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be a discrete time series with length N and its DLCT 
 1 2 3

ˆ ˆ ˆ ˆ ˆ, , , , N
C NX x x x x C   with ˆ

C CX U X  and the  

transform parameter 
a b

C
c d

 
  
 

. 

Since 
2

1X  , 
22

ˆ 1X U XB C  from Parseval’s   

theorem. Here 

1
2 2

12

N

nn
X x


     . Clearly, we can ob-  

tain the inequality [13]:  

1C CU X M X

   

with CM U


 . 
Here  supC C

l
U u


 l  with  

  , 1, ,C CU u l l   N .  

Hence, we have 
1C C

U X M X  with C CM U


. 
Then from Riesz’s theorem [11,12], we can obtain the 

discrete Hausdorff-Young inequality [11,12] 

 
2 p

p
C C pq

U X M X

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with 1 p 2   and  
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1 1
1

p q
  . 

Set , then  [5], we 
obtain 

1C AB
U U  1C AB B

U U U U  1A 

 1

2 p
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with 1 1C AAB B
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Let 1B
, then BY U X X U Y . In addition, from 

the property of DLCT [5] we can have  
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1
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 
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.  

Hence we can obtain from the above equations 
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1
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 
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. 

Since the value of X  can be taken arbitrarily in , 
 can also be taken arbitrarily in . Therefore, we 

can obtain the lemma.  

NC
Y NC

Clearly, this lemma is the discrete version of Haus-
dorff-Young inequality. In the next sections, we will use 
this lemma to prove the new uncertainty relations. 

3. The Uncertainty Relations 

3.1. Shannon Entropic Principle 

Theorem 1: For any given discrete time series  
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with length N and 
2

, 1X   ˆ ˆA Bx x  is the DLCT se-
ries associated with the transform parameter  
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  A BN N   

counts the non-zero elements of ˆAx  ( ˆBx , respectively), 
then we can obtain the generalized discrete Shannon en-
tropic uncertainty relation 
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where  
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which are Shannon entropies. The equality in (3) holds  

iff 
1
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A

x
N
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1
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x
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Proof: From lemma 1, we have 
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Take natural logarithm in both sides in above inequal-
ity, we can obtain 

  0T p  , 

where  
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Since 1 p 2   and 
2

 and Parseval equality, 
we know 

1X 
 2T 0 . Note  if   0T p  1 2p  . 
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,  

we can obtain the final result in theorem 1 by setting p = 
2.  

Now consider when the equality holds. From theorem 
1, that the equality holds in (3) implies that 

   ˆ ˆA BH x H x  reaches its minimum bound, which 
means that Minimize    ˆ ˆA BH x H x  subject to 

2 2
ˆ ˆ 1A Bx x  , i.e. 
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


,  

subject to    2 2

1 1A Bn n 
ˆ ˆ 1

N N
x n x n   . 

To solve this problem let us consider the following 
Lagrangian 
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then we have 1 2 2 1A BN N N a b a b     and In order to simplify the computation, we set  
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3.2. Rényi Entropic Principle 
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Theorem 2: For any given discrete time series  
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Solving the above equations, we finally obtain  
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 . From the definition of  

Shannon entropy, we know that if  ˆ lnA AH x  N  and 
 ˆ lnB BH x  N , then  
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In addition, we also can obtain  1 2 2 1A BN N N a b a b   .  

zero elements of ˆAx  ( ˆBx , respectively), then we can 
obtain the generalized discrete Renyi entropic uncer-
tainty relation 
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Corollary 1: For any given discrete time series  

 

        
1 2 3, , , ,

1 , 2 , 3 , ,

N

N

X x x x x

x x x x N C



 

 


 

which are Rényi entropies. 
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associated with the transform parameter 1 1

1 1

a b
A

c d

 
  
 

 

( , respectively),  counts the non-  2 2

2 2

a b
B

c d

 
 
 

btain  

  
    

1
2 2

1

11
2 22

1 2 2 1 1

ˆ

ˆ

N

Am

N

Bn

x m

N a b a b x n

 

  






   




.  A BN N

zero elements of ˆAx  ( ˆBx , respectively), if  
 

Take the square of the above inequality, we have 

       
1 11

2 2

1 2 2 11 1
ˆ ˆN N

A Bm n
x m N a b a b x n

  


 
     . 

Take the power 
1




 of both sides in above inequallity, we obtain 
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  
    

1
2 1

1

1
1 2 1

1 2 2 1 1

ˆ

ˆ

N

Am

N

Bn

x m

N a b a b x n

 

 




 


   




, 

i.e., 

    
  

1
1 2 1

1 2 2 1 1

1
2 1

1

ˆ
1

ˆ

N

Bn

N

Am

N a b a b x n

x m

 

 

 





  





.   (5) 

Take the natural logarithm on both sides of (5), we can 
obtain  

     
  

2 2

1 1

1 2 2 1

1 1
ˆ ˆln ln

1 1

ln .

N N

B An m
x n x m

N a b a b

 

  
  

 

  

 
 

Clearly, as 1   and 1  , the Renyi entropy 
reduces to Shannon entropy, thus the Renyi entropic un-
certainty relation in (4) reduces to the Shannon entropic 
uncertainty relation (3). Hence the proof of equality in 
theorem 2 is trivial according to the proof of theorem 1. 

Note that although Shannon entropic uncertainty rela-
tion can be obtained by Rényi entropic uncertainty rela-
tion, we still discuss them separately in the sake of inte-
grality. 

3.3. Another Shannon Entropic Principle  
via Sampling 

The discrete Shannon entropy can be defined as 

      lnk k
k

E s s s 




            (6) 

where  k x  is the density function of variable s . 
Discrete Rényi entropy can be defined as follows: 

    1
ln

1 k
k

H x x


  






       
       (7) 

when 1  , discrete Rényi entropy tend to discrete 
Shannon entropy. 

In order to obtain the discrete spectrum, the sampling 
must be done. For two continuous functions’ DLCT 

 AF u  and  BF v  with the transform parameter  

1 1

1 1

a b
A

c d

 
  
 

 ( 2 2

2 2

a b
B

c d

 
  
 

, respectively), we set the  

sampling periods 1  and 2T  and assume that they sat-
isfy the Shannon sampling theorem [16]. Set  

T

    

    

1

1

2

2

1 2

1 2

d

d

k T

k Ak T

l T

l Bl T

u F u

v F v





 



 











u

v
          (8) 

Therefore 

       1

1

12 2
d d

k T

A Ak T
k

F u u F u
   

 


   u   (9) 

       2

2

12 2
d d

l T

B Bl T
l

F v v F v
   

 


   v   (10) 

Since when 1  ,  f x x  is a convex function, 
and when 1  ,  g y y  is a concave function, we 
have the following inequalities 

      1 1

1 1

1 12 2

1 1

1 1
d d

k T k T

A Ak T k T
F u u F u

T T


   

 

 
 

 
  u  

(11) 

      2 2

2 2

1 12 2

2 2

1 1
d d

l T l T

B Bl T l T
F v v F v v

T T


   

 

 
  
 

   

(12) 

Therefore 
 

            1 1

1 1

1 12 2 2 1
1 1

1

1
d d d

k T k T

A A Ak T k T
k k k

F u u F u u T F u u T u
T


 

k
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  

 
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   


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            2 2

2 2

1 12 2 2 1
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1
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  

    
 

   


 , 

i.e., 

    2 1
1dA

k

F u u T u


k

 
 




                               (13) 

    2 1
2dB

l
lF v v T v

  
 
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
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Therefore  

     
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1 21 11 1
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1 2 2 1 1 2
1 2 2 1

1
k l
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       
 

 
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  




       (15) 
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Take the power of 



1

 on the both sides of above equation and use the relation between   and  , we have 
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


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               





               (16) 

Take logarithm on both sides of above equation 
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
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That is, 

 
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If  

   1 1 1 1, , , cos ,sin , sin ,cosa b c d        

and  

   2 2 2 2, , , cos ,sin , sin ,cosa b c d      ,  

then we have 
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when 2 π π 2n n   Z  and , we 
have the traditional case 

2 πl l  Z
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Specially, when 1  , 1  , have 
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(20) 

where,  
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1 1
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E F u u F
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2 2

2 21 1
d ln d

l T l T

B B Bl T l T
l

E F v v F
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   v v 


. 

4. Conclusion 

In this article, we extended the entropic uncertainty rela-
tions in DLCT domains. We first introduced the general-
ized discrete Hausdorff-Young inequality. Based on this 
inequality, we derived the discrete Shannon entropic un-
certainty relation and discrete Rényi entropic uncertainty 
relation. Interestingly, when the variable’s amplitude is 
equal to the constant, i.e. the inverse of the square root of 

number of non-zero elements, the equality holds in the 
uncertainty relation. In addition, the product of the two 
numbers of non-zero elements is equal to 1 2 2 1N a b a b  , 
i.e., 1 2 2 1N N N a b a b     . On one hand, these new 
uncertainty relations enrich the ensemble of uncertainty 
principles, and on the other hand, these derived bounds 
yield new understanding of discrete signals in new 
transform domain.  
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