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ABSTRACT 

With the evolution of the communication standards, Software Defined Radio (SDR) is faced with an increasingly im-
portant problem to balance more and more complex wireless communication algorithms against relatively limited proc-
essing capability of hardware. And, the competition for computing resources exacerbates the problem and increases 
time-delay of SDR system. This paper presents an integrated optimization method for the real-time performance of SDR 
on Linux OS (operating system). The method is composed of three parts: real-time scheduling policy which ensures 
higher priority for SDR tasks, CGROUPS used to manage and redistribute the computing resources, and fine-grade sys-
tem timer which makes the process preemption more accurate. According to the experiments, the round-trip data trans-
fer latency decreases low enough to meet the requirement for TD-SCDMA via the application of the method. 
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1. Introduction 

Software Defined Radio, which holds the promise of 
fully programmable wireless communication systems [1], 
has shown more and more importance in the develop-
ment of wireless communication systems. An SDR based 
on general-purpose processor (GPP) enables us to dy-
namically modify software to realize different commu-
nication standards, instead of time-consuming hardware 
redesign, which consequently reduces the developing 
time [2]. In comparing with traditional wireless commu-
nication system based on DSP or FPGA, an SDR system 
based on GPP is a more flexible and convenient to de-
velop for researchers [3,4], because high-level program-
ming language (e.g. C/C++) is generally easier to de-
velop and debug than Verilog or VHDL. 

Although SDR offers many benefits to the develop-
ment of wireless communication system, it cannot be ig-
nored that the increasing computational expense brought 
about by the updates of wireless communication protocol, 
has posed immense challenge to the limited computing 
resources of hardware. Inevitably, the real-time per-
formance of an SDR based on GPP would be affected by 
this problem. And worse still, when a system is com-
posed of many SDR tasks, like C-RAN [5] (the whole 
function of BTS is designed to implemented on GPP), 
the competition for hardware capacity from these tasks 
would be beyond what the multi-core solutions could 
handle. Without efforts to manage and redistribute the 

computing resources, the problems mentioned above 
would make the real-time performance of the SDR sys-
tem unguaranteed. 

As known, in a personal computer, it is an important 
task for OS to manage and allocate the computing re-
sources to different kinds of processes according to their 
priorities. Similarly, redistributing and rescheduling 
processes in an SDR system, which enables us to pre-
serve enough computing resource to those time-critical 
tasks, is a main method to improve the real-time per-
formance. 

As a traditional process scheduling tool of Linux ker-
nel, the principle and implementation of scheduling pol-
icy on Linux OS have been illustrated in many papers 
and books like Understanding The Linus Kernel [6]. 
Through applying different scheduling policies offered 
by Linux kernel to various processes, the tasks with 
real-time priority will be allocated more CPU time than 
other tasks and take precedence on execution. Consider-
ing the strict demand for latency from the time-critical 
processes in an SDR system, instead of scheduling all 
processes equally, adjusting priorities by selecting ap-
propriate process-scheduling strategies, will make great 
contributions to improving the real-time performance 
without upgrading hardware. 

Despite that scheduling strategy promoting the 
real-time performance of the SDR system, it still leaves 
much to be desired. For example, setting different priori-
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ties to the processes is a relatively imprecise allocation to 
CPU time. And what’s worse, without constraints to 
CPU consumption, a process may consume extra and 
even the whole CPU resources when no other processes 
could preempt it. There are many scenarios where this 
excess CPU share can cause unacceptable utilization or 
latency [7]. For an SDR system, it would introduce 
scheduling latency when a time-critical process has been 
woke up to preempt CPU resources against the process 
currently running.  

Therefore, CGROUPS (Control Groups), which is a 
new resource management tool provided by the Linux 
kernel [8], should be taken into application. By imposing 
caps on the CPU usage time of other tasks, CGROUPS 
enables us to spare more CPU bandwidth to the SDR 
tasks and reduce the frequency of process switches. More 
specifically, the CPU share can be changed dynamically 
as needed. 

As mentioned above, real-time priority guarantees that 
the time-critical process will occupy the computing re-
sources when competing with other tasks; meanwhile, 
CGROUPS reduces the occurrence of those competitions 
by constraining the CPU usage of other tasks. In addition 
to that, a high-resolution timer [9] configured in Linux 
Kernel would minimize scheduling latency via making 
process switches more immediate; and in consequence, 
optimize the overall real-time performance of SDR sys-
tem. 

In this paper, real-time priority, CGROUPS and high- 
resolution timer are utilized in combination. According 
to the experiments, this integrated method could con-
straint the data transfer latency to meet the requirement 
of 3G standards like TD-SCDMA. 

The rest of this paper is organized as follows. Section 
2 describes the system model used to analyze the data 
transfer latency of an SDR system. Section 3 proposes 
the integrated method to optimize the real-time perform-
ance of SDR based on GPP. And then, we analyze the 
latency requirement for TD-SCDMA in section 4. In sec-
tion 5, we design and conduct some experiments based 
on proposed system model to validate the effectiveness 
of the optimization method. Finally, in section 6, we 
draw conclusions based on analysis of experiment re-
sults. 

2. System Model 

To validate the effectiveness of the integrated method to 
optimize the real-time performance of SDR systems run-
ning on Linux OS, a system model based on GPP is de-
signed and implemented. 

As shown in Figure 1, the system model is composed 
of three parts: baseband processing board, adapter board 
and RF front end. We choose PC on Linux OS as the 
baseband processing platform, which is major responsi-

ble for data processing. The adapter board mainly im-
plemented by FPGA serves as an important role in con-
trolling the RF front end and transferring data between 
the PC and the RF front end. The RF front end acts as a 
transceiver.  

In baseband processing board, our SDR task is com-
posed of three main processes. Firstly, the physical-layer 
process is responsible for the PHY processing like 
modulation and demodulation. Secondly, the high-layer 
process is designed to implement the algorithms of Data 
Link Layer and Network Layer. Finally, the data inter-
face process serves as a role of interacting with adapter 
board through USB 2.0. Besides, to better validate the 
effectiveness of resource management via use of the 
method proposed, there still exist some other tasks (the 
number of tasks is greater than the number of CPU cores 
of PC), which bring the increase of computing resources 
consumption. 

In this model, the latency of data transfer between RF 
front end and baseband processing board reflects the 
real-time performance of the SDR system. Further, there 
are three factors that might have major effects on the 
latency. Firstly, because of the limited interface band-
width of USB 2.0, transfer delay between RF front end 
and processing board is inevitable. Secondly, baseband 
processing board would spend a period of time in proc-
essing data from RF front end, which is called processing 
time. Finally, the scheduling latency under Linux OS 
would be introduced when process switches occur. Tak-
ing data interface process as example, when there need 
read data from RF front end, Linux kernel would spend 
some time in reallocating computing resources to data 
interface process from the process currently running on 
CPU. 

3. Integrated Optimization Method 

As mentioned above, the transfer delay, processing time 
and scheduling latency limit the real-time performance of 
an SDR system. Generally, transfer delay is fixed be-
cause the packet size and interface bandwidth have been 
defined by transfer protocol and hardware. And then, the 
processing time is mainly determined by the algorithmic 
complexity and computing capacity. Therefore, a general 
optimization method should be aimed to redistribute the 
 

 

Figure 1. System model. 
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computing resources to reduce the cost of process sched-
uling and process switches. 

Considering such features, three main methods will be 
taken in combinations, that is, real-time schedule policy 
for time-critical tasks, constraint of the CPU consump-
tion on disturbance tasks via use of CGROUPS, and re-
configuration of fine-grain timer in Linux kernel. 

3.1. Real-time Priority 

On Linux OS, processes are divided into three categories: 
interactive processes, batch processes, and real-time 
processes [6]. Meanwhile, because of the features of dif-
ferent processes, there exist three scheduling algorithms: 
SCHED_NORMAL, SCHED_RR, and SCHED_FIFO. 
The SCHED_NORMAL policy is designed to schedule 
conventional, time-shared processes. Then, SCHED_RR 
and SCHED_FIFO are aimed at real-time processes. 

In order to reduce process response time and avoid of 
process starvation, the Linux kernel schedules processes 
based on time sharing technology [10] and allows proc-
esses being preempted according to priority order. When 
a process gets ready to run in CPU, the kernel checks 
whether its priority is greater than the priority of the cur-
rently running process. If true, the execution of current 
will be interrupted and the scheduler is invoked to select 
the process of a higher priority to run. And additionally, 
the real-time processes enjoy higher priority than any 
other ordinary processes, so that, a real-time process will 
not be interrupted by ordinary process unless it has fin-
ished executing, while it can preempt other ordinary 
process if need as shown in Figure 2. 

Considering such feature of process scheduling, we 
can specify a real-time scheduler for these time-critical 
processes in order to get the real-time performance im-
proved. In an SDR system, data interface process running 
in baseband processing board is designed to interact with 
RF front end, which has strict requirement for latency; 
that is, it must read or write data in specified time slot 
following air interface specifications. Otherwise, if the 
data transfer is delayed, the speed and quality of data 
processing will be diminished, as a result, the real-time 
performance of SDR system will be affected.  
 

 

Figure 2. Process preemption. 

Therefore, the data interface process should be speci-
fied as real-time process, which makes sure that the data 
interface has a higher priority than other ordinary proc-
esses running on the same platform. The data transfer 
will not be interrupted by other processes, and what’s 
more, when some data packages need to be read from RF 
front end, the data interface process will seize the CPU 
even if an ordinary process is currently running. 

3.2. Computing Resource Redistribution 

CGROUPS is an abbreviation of Control Groups, which 
provides a mechanism for aggregation and partitioning 
sets of tasks, and all their future children, into hierarchi-
cal groups with specialized behavior [11]. A set of tasks 
(processes or threads) are associated with a set of pa-
rameters for one or more subsystems. A subsystem is a 
module that makes use of the task grouping facilities 
provided by CGROUPS to treat groups of tasks in par-
ticular ways and redistribute computing resource such as 
CPU, memory, IO of block device as designed. There are 
five main subsystems in CGROUPS and the details will 
be introduced below.(Table 1) 

The initial goal of CGROUPS is to provide a unified 
framework for resource management, not only integrat-
ing the existing subsystems, but also providing the inter-
face to the new subsystems which may be developed in 
the future. Nowadays, CGOUPS has been taken into ap-
plications in a variety of scenarios, especially in some 
network services such as Taobao-a leading online C2C 
auction company in China [12], where it is used as a tool 
of redistributing computing resource for large servers and 
OS-Level virtualization [16].  

What’s important for SDR systems, is that we can use 
the cpu subsystem to assign a specific CPU shares to 
processes running on the same OS and place constraints 
to CPUS usage of those less important tasks. In cpu sub-
system, there are two main configuration options to allo-
cate CPU resource: cpu.cfs_period_us and cpu.cfs_ 
quota_us [13].  

Reconfiguration of CPU bandwidth by set certain 
value (from 1000 to 1000000 microseconds) to cpu.cfs_ 
quota_us and cpu.cfs_period_us, works immediately and 
 

Table 1. Subsystem of CGROUPS and function. 

Subsystems Function 

cpu Allocate the cpu occupancy for a set of tasks 

cpuset Assign cpus and mem to a set of tasks 

memory Memory resource controller 

devices Device whitelist controller 

blkio Set limits to the IO of block device 
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efficiently. The cpu.cfs_quota_us specifies a maximum 
CPU time that a set of tasks could use in a period of time 
which is set in cpu.cfs_period_time. For example, when 
the cpu.cfs_quota_us is set to 10000 while the cpu.cfs_ 
period_us is 100000, tasks in this group will use 10ms 
(milliseconds) in 100ms at most, which means the usage 
of CPU is limited to 10 percent.  

Through establishing constrains to CPU usage via us-
ing cpu.cfs_quota_us and cpu.cfs_period_us, we can 
prevent the over much consumption from some processes 
and spare more resources to the time-critical processes in 
our SDR system. Via use of CGROUP, we could better 
isolate the execution of tasks in SDR system than multi- 
cores solutions, because the competition for computing 
resource could not be relieved when the number of tasks 
is greater than the number of cores. 

3.3. Fine-grain Timer in Linux Kernel 

The passing of time is important to the Linux kernel, 
because there exist lots of kernel functions which are 
time-driven except of event-driven. These periodic tasks 
occur on a fixed schedule, depending on the System 
Timer which is a programmable piece of hardware that 
issues an interrupt at a fixed frequency [10]. Then, sys-
tem time gets updated and those tasks get performed by 
interrupt service routine handling for this timer.  

Indeed, System Timer plays as similar role as the 
alarm clock of a microwave oven [10], which makes us-
ers aware of that the cooking time interval has elapsed, 
while System Timer reminds computers that one more 
time interval has elapsed based on some fixed frequency 
established by the kernel. The frequency of the system 
timer is programmed on system boot based on a static 
preprocessor define, HZ.  

The main benefit of a higher HZ is the greater accu-
racy in process preemption, consequently, the scheduling 
latency decreased, which improve the real-time per-
formance of SDR system. As mentioned above, the Sys-
tem Timer interrupt is responsible for decrementing the 
running process’s timeslice count. When the count 
reaches zero, a flag called NEED_RESCHED is set and 
the kernel runs the scheduler as soon as possible. Now 
assume that a given process is running and has 2 ms of 
its timeslice remaining. In 2 ms, the scheduler should 
preempt the running process and begin executing a new 
more important process. Unfortunately, this event does 
not occur until the next timer interrupt, which might not 
be in 2 ms. At worst the next timer interrupt might be 
1/HZ of a second aware. With Hz = 100, a process can 
get nearly 10 extra ms to run; by contrast, with Hz = 
1000, the extra time would be limited under 1ms.  

Due to the decrease of latency created by preemption 
delay, the real time performance of SDR system would 
get improved by greater accuracy in process preemption. 

Taking data interface process as example, even if it has a 
higher priority, the delay of data transfer is still out of 
control when scheduling latency is introduced. In con-
clusion, fine-grain system timer makes these time-critical 
processes wait less time to seizing the CPU and response 
more timely. 

4. Latency Requirement For TD-SCDMA 

As a 3G standard, TD-SCDMA has a stricter demand for 
data transfer latency. In order to calculate the maximum 
transfer delay that could be tolerated, some detail of 
physical channel signal format need to be elaborated in 
advance. 

The radio frame of 1.28 Mcps TD-SCDMA has a 
length of 10ms, composed of two 5ms subframes. In each 
subframe, there are seven traffic time slots and three spe-
cial time slots as shown in Figure 3. The 5ms subframe 
contains 6400 chips. The traffic time slots are 864 chips 
long. A physical channel is transmitted in a burst, which 
is transmitted in a particular timeslot within allocated 
radio frames. 

Using the subframes structure, TD-SCDMA can oper-
ate on both symmetric and asymmetric mode by properly 
configuring the number of downlink and uplink time 
slots [15]. Figure 4 takes the H-ARQ [15] as an example 
of asymmetric mode. The HS-DSCH related ACK/ 
NACK must be transmitted on the associated HS-SICH 
in the next but one subframe. The time between the last 
HS-DSCH and the HS-SICH would be spent in process-
ing and uplink data. If we take the first downlink time 
slot as zero time reference, responses should be ready 
before 3.45ms, which is the total time of downlink (in-
cluding the DwPTS). And 3.45 ms is the threshold of 
arrival time. 

In other words, if the uplink data has not been ready 
before the time for the uplink time slot transmission 
comes, it means the response failure. In the next section, 
 

 

Figure 3. Subframe structure. 
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existence of four infinite loops as disturbance programs 
on PC (PC has two CPU cores). Consequently, the ratio 
of response failure is 0.7841, on the contrary to 0.00024 
without any interference on the same platform. It proves 
that the existence of resource competition will make sys-
tem performance especially latency deteriorated because 
less computing resources would allocated to data inter-
face process, when the number of tasks is greater than 
that of CPU cores. 

experiments are proposed to measure the round-trip la-
tency and calculate the ratio of latency over 3.45 ms, i.e. 
response failure. 

5. Experiment Result and Analysis 

To validate the effectiveness of the proposed methods, 
we conduct some experiments based on the system 
model mentioned in Section 2. 

In order to measure the round-trip time of the SDR 
platform, the whole procedure of data transmission be-
tween PC and RF front end is illustrated as Figure 5. It 
begins when the downlink data is received from the air 
interface and ends when the uplink response is ready to 
be sent by RF front end. Firstly, Downlink data arrive at 
PC a little later than the air interface because of the delay 
of USB2.0 transmission and process schedule, which is 
shown in the third and fourth line of Figure 5. The PC 
processes the downlink data and then sends the associ-
ated response i.e. ACK/NACK as shown in the fifth and 
sixth line of Figure 5. 

When data interface process has read the last data 
packet and is waiting for the next, for avoiding of process 
starvation, the kernel will allocate CPU to disturbance 
tasks. But the issue is, when the data interface process is 
woke up to read data from adapter board, the kernel has 
to cost a period of time to reallocate CPU to it as ana-
lyzed in section 3.3. Therefore, even after we set 
real-time priority to data interface process, the ratio of 
round-trip latency over 3.45ms is only reduced to 0.582, 
which still far more than 0.00024 in ideal environment. 

Next, a series of experiments are conducted to validate 
the effectiveness of the proposed methods. We set real- 
time priority to data interface process, and then, record 
the response failure ratios in different CPU usage con-
straints (i.e. no constraints, 80%, 60%, 40%, 20%, 10%) 
to disturbance programs by reconfiguring cpu.cfs_ 
quota_us in cpu subsystem. The value of system timer 
frequency is set as 128 Hz, 512 Hz, 1024 Hz. 

As the analysis in section 4, the round-trip latency 
must be constrain to 3.45ms at least, otherwise, some 
uplink responses would not be ready in the RF front end 
before the uplink time slots, i.e. the response fail. In ex-
periments, time between the first downlink time slot and 
the arrival time of the uplink responses, would be re-
corded as round-trip latency to calculate the ratio of re-
sponse failure. The results are shown in Figure 6. The constraints to 

CPU usage are reflected in x-axis and the ratios of re-
sponse failure are drawn in y-axis; meanwhile, system 
timer of 128Hz, 512Hz and 1024Hz are represented by  

In order to quantitatively analyze the influence of the 
competition for computing resource on performance of 
SDR system, we run our data interface program with the  
 

 

Figure 5. Procedure of data transmission in experiments. 
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Figure 6. Experiment result. 
 
blue curve, green curve and red curve respectively. The 
System Timer of 1024 Hz performs better than that of 
512 Hz and 128 Hz (default value in PC), because that 
increasing the timer frequency to 1024 Hz lowers the 
worst-case scheduling delay to just nearly 1 m. Besides, 
along with more stringent constrains to CPU usage of 
disturbance programs, the ratio of response failure has 
decreased obviously, which proves that via using 
CGROUPS, we can spare more computing resource to 
our SDR tasks. Better yet, when the CPU consumption of 
disturbance programs is limited to 10 percent and the 
frequency of System timer is raised to 1024 Hz from 128 
Hz, the round-trip latency will achieve a satisfactory ratio 
of response failure, 0.00056, that is magnitude equal to 
that in environment lack of competition and lower 
enough to meet the requirement of TD-SCDMA. 

6. Conclusions 

In this paper, we use real-time priority, CGROUPS and 
high-resolution system timer in combination as above, to 
optimize the real-time performance of SDR system. 
Taking TD-SCDMA as example, we justify it by ex-
periments that the integrated use of these methods can 
provide a latency guarantee to data transfer to meet the 
requirement for this 3G system even under the competi-
tion for computing resource from other tasks. 
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