
Communications and Network, 2013, 5, 292-297
http://dx.doi.org/10.4236/cn.2013.53B2054 Published Online September 2013 (http://www.scirp.org/journal/cn)

On the Optimization of Real Time Performance of
Software Defined Radio on Linux OS

Zhen Wang, Limin Xiao, Xin Su, Xin Qi, Xibin Xu
State Key Laboratory on Microwave and Digital Communications, Tsinghua National Laboratory for Information Science and

Technology, Research Institute of Information Technology, Tsinghua University, Beijing, China
Email: wangzhen11@mails.tsinghua.edu.cn

Received July, 2013

ABSTRACT

With the evolution of the communication standards, Software Defined Radio (SDR) is faced with an increasingly im-
portant problem to balance more and more complex wireless communication algorithms against relatively limited proc-
essing capability of hardware. And, the competition for computing resources exacerbates the problem and increases
time-delay of SDR system. This paper presents an integrated optimization method for the real-time performance of SDR
on Linux OS (operating system). The method is composed of three parts: real-time scheduling policy which ensures
higher priority for SDR tasks, CGROUPS used to manage and redistribute the computing resources, and fine-grade sys-
tem timer which makes the process preemption more accurate. According to the experiments, the round-trip data trans-
fer latency decreases low enough to meet the requirement for TD-SCDMA via the application of the method.

Keywords: SDR; Real-time Priority; CGROUP; System Timer

1. Introduction

Software Defined Radio, which holds the promise of
fully programmable wireless communication systems [1],
has shown more and more importance in the develop-
ment of wireless communication systems. An SDR based
on general-purpose processor (GPP) enables us to dy-
namically modify software to realize different commu-
nication standards, instead of time-consuming hardware
redesign, which consequently reduces the developing
time [2]. In comparing with traditional wireless commu-
nication system based on DSP or FPGA, an SDR system
based on GPP is a more flexible and convenient to de-
velop for researchers [3,4], because high-level program-
ming language (e.g. C/C++) is generally easier to de-
velop and debug than Verilog or VHDL.

Although SDR offers many benefits to the develop-
ment of wireless communication system, it cannot be ig-
nored that the increasing computational expense brought
about by the updates of wireless communication protocol,
has posed immense challenge to the limited computing
resources of hardware. Inevitably, the real-time per-
formance of an SDR based on GPP would be affected by
this problem. And worse still, when a system is com-
posed of many SDR tasks, like C-RAN [5] (the whole
function of BTS is designed to implemented on GPP),
the competition for hardware capacity from these tasks
would be beyond what the multi-core solutions could
handle. Without efforts to manage and redistribute the

computing resources, the problems mentioned above
would make the real-time performance of the SDR sys-
tem unguaranteed.

As known, in a personal computer, it is an important
task for OS to manage and allocate the computing re-
sources to different kinds of processes according to their
priorities. Similarly, redistributing and rescheduling
processes in an SDR system, which enables us to pre-
serve enough computing resource to those time-critical
tasks, is a main method to improve the real-time per-
formance.

As a traditional process scheduling tool of Linux ker-
nel, the principle and implementation of scheduling pol-
icy on Linux OS have been illustrated in many papers
and books like Understanding The Linus Kernel [6].
Through applying different scheduling policies offered
by Linux kernel to various processes, the tasks with
real-time priority will be allocated more CPU time than
other tasks and take precedence on execution. Consider-
ing the strict demand for latency from the time-critical
processes in an SDR system, instead of scheduling all
processes equally, adjusting priorities by selecting ap-
propriate process-scheduling strategies, will make great
contributions to improving the real-time performance
without upgrading hardware.

Despite that scheduling strategy promoting the
real-time performance of the SDR system, it still leaves
much to be desired. For example, setting different priori-

Copyright © 2013 SciRes. CN

Z. WANG ET AL. 293

ties to the processes is a relatively imprecise allocation to
CPU time. And what’s worse, without constraints to
CPU consumption, a process may consume extra and
even the whole CPU resources when no other processes
could preempt it. There are many scenarios where this
excess CPU share can cause unacceptable utilization or
latency [7]. For an SDR system, it would introduce
scheduling latency when a time-critical process has been
woke up to preempt CPU resources against the process
currently running.

Therefore, CGROUPS (Control Groups), which is a
new resource management tool provided by the Linux
kernel [8], should be taken into application. By imposing
caps on the CPU usage time of other tasks, CGROUPS
enables us to spare more CPU bandwidth to the SDR
tasks and reduce the frequency of process switches. More
specifically, the CPU share can be changed dynamically
as needed.

As mentioned above, real-time priority guarantees that
the time-critical process will occupy the computing re-
sources when competing with other tasks; meanwhile,
CGROUPS reduces the occurrence of those competitions
by constraining the CPU usage of other tasks. In addition
to that, a high-resolution timer [9] configured in Linux
Kernel would minimize scheduling latency via making
process switches more immediate; and in consequence,
optimize the overall real-time performance of SDR sys-
tem.

In this paper, real-time priority, CGROUPS and high-
resolution timer are utilized in combination. According
to the experiments, this integrated method could con-
straint the data transfer latency to meet the requirement
of 3G standards like TD-SCDMA.

The rest of this paper is organized as follows. Section
2 describes the system model used to analyze the data
transfer latency of an SDR system. Section 3 proposes
the integrated method to optimize the real-time perform-
ance of SDR based on GPP. And then, we analyze the
latency requirement for TD-SCDMA in section 4. In sec-
tion 5, we design and conduct some experiments based
on proposed system model to validate the effectiveness
of the optimization method. Finally, in section 6, we
draw conclusions based on analysis of experiment re-
sults.

2. System Model

To validate the effectiveness of the integrated method to
optimize the real-time performance of SDR systems run-
ning on Linux OS, a system model based on GPP is de-
signed and implemented.

As shown in Figure 1, the system model is composed
of three parts: baseband processing board, adapter board
and RF front end. We choose PC on Linux OS as the
baseband processing platform, which is major responsi-

ble for data processing. The adapter board mainly im-
plemented by FPGA serves as an important role in con-
trolling the RF front end and transferring data between
the PC and the RF front end. The RF front end acts as a
transceiver.

In baseband processing board, our SDR task is com-
posed of three main processes. Firstly, the physical-layer
process is responsible for the PHY processing like
modulation and demodulation. Secondly, the high-layer
process is designed to implement the algorithms of Data
Link Layer and Network Layer. Finally, the data inter-
face process serves as a role of interacting with adapter
board through USB 2.0. Besides, to better validate the
effectiveness of resource management via use of the
method proposed, there still exist some other tasks (the
number of tasks is greater than the number of CPU cores
of PC), which bring the increase of computing resources
consumption.

In this model, the latency of data transfer between RF
front end and baseband processing board reflects the
real-time performance of the SDR system. Further, there
are three factors that might have major effects on the
latency. Firstly, because of the limited interface band-
width of USB 2.0, transfer delay between RF front end
and processing board is inevitable. Secondly, baseband
processing board would spend a period of time in proc-
essing data from RF front end, which is called processing
time. Finally, the scheduling latency under Linux OS
would be introduced when process switches occur. Tak-
ing data interface process as example, when there need
read data from RF front end, Linux kernel would spend
some time in reallocating computing resources to data
interface process from the process currently running on
CPU.

3. Integrated Optimization Method

As mentioned above, the transfer delay, processing time
and scheduling latency limit the real-time performance of
an SDR system. Generally, transfer delay is fixed be-
cause the packet size and interface bandwidth have been
defined by transfer protocol and hardware. And then, the
processing time is mainly determined by the algorithmic
complexity and computing capacity. Therefore, a general
optimization method should be aimed to redistribute the

Figure 1. System model.

Copyright © 2013 SciRes. CN

Z. WANG ET AL. 294

computing resources to reduce the cost of process sched-
uling and process switches.

Considering such features, three main methods will be
taken in combinations, that is, real-time schedule policy
for time-critical tasks, constraint of the CPU consump-
tion on disturbance tasks via use of CGROUPS, and re-
configuration of fine-grain timer in Linux kernel.

3.1. Real-time Priority

On Linux OS, processes are divided into three categories:
interactive processes, batch processes, and real-time
processes [6]. Meanwhile, because of the features of dif-
ferent processes, there exist three scheduling algorithms:
SCHED_NORMAL, SCHED_RR, and SCHED_FIFO.
The SCHED_NORMAL policy is designed to schedule
conventional, time-shared processes. Then, SCHED_RR
and SCHED_FIFO are aimed at real-time processes.

In order to reduce process response time and avoid of
process starvation, the Linux kernel schedules processes
based on time sharing technology [10] and allows proc-
esses being preempted according to priority order. When
a process gets ready to run in CPU, the kernel checks
whether its priority is greater than the priority of the cur-
rently running process. If true, the execution of current
will be interrupted and the scheduler is invoked to select
the process of a higher priority to run. And additionally,
the real-time processes enjoy higher priority than any
other ordinary processes, so that, a real-time process will
not be interrupted by ordinary process unless it has fin-
ished executing, while it can preempt other ordinary
process if need as shown in Figure 2.

Considering such feature of process scheduling, we
can specify a real-time scheduler for these time-critical
processes in order to get the real-time performance im-
proved. In an SDR system, data interface process running
in baseband processing board is designed to interact with
RF front end, which has strict requirement for latency;
that is, it must read or write data in specified time slot
following air interface specifications. Otherwise, if the
data transfer is delayed, the speed and quality of data
processing will be diminished, as a result, the real-time
performance of SDR system will be affected.

Figure 2. Process preemption.

Therefore, the data interface process should be speci-
fied as real-time process, which makes sure that the data
interface has a higher priority than other ordinary proc-
esses running on the same platform. The data transfer
will not be interrupted by other processes, and what’s
more, when some data packages need to be read from RF
front end, the data interface process will seize the CPU
even if an ordinary process is currently running.

3.2. Computing Resource Redistribution

CGROUPS is an abbreviation of Control Groups, which
provides a mechanism for aggregation and partitioning
sets of tasks, and all their future children, into hierarchi-
cal groups with specialized behavior [11]. A set of tasks
(processes or threads) are associated with a set of pa-
rameters for one or more subsystems. A subsystem is a
module that makes use of the task grouping facilities
provided by CGROUPS to treat groups of tasks in par-
ticular ways and redistribute computing resource such as
CPU, memory, IO of block device as designed. There are
five main subsystems in CGROUPS and the details will
be introduced below.(Table 1)

The initial goal of CGROUPS is to provide a unified
framework for resource management, not only integrat-
ing the existing subsystems, but also providing the inter-
face to the new subsystems which may be developed in
the future. Nowadays, CGOUPS has been taken into ap-
plications in a variety of scenarios, especially in some
network services such as Taobao-a leading online C2C
auction company in China [12], where it is used as a tool
of redistributing computing resource for large servers and
OS-Level virtualization [16].

What’s important for SDR systems, is that we can use
the cpu subsystem to assign a specific CPU shares to
processes running on the same OS and place constraints
to CPUS usage of those less important tasks. In cpu sub-
system, there are two main configuration options to allo-
cate CPU resource: cpu.cfs_period_us and cpu.cfs_
quota_us [13].

Reconfiguration of CPU bandwidth by set certain
value (from 1000 to 1000000 microseconds) to cpu.cfs_
quota_us and cpu.cfs_period_us, works immediately and

Table 1. Subsystem of CGROUPS and function.

Subsystems Function

cpu Allocate the cpu occupancy for a set of tasks

cpuset Assign cpus and mem to a set of tasks

memory Memory resource controller

devices Device whitelist controller

blkio Set limits to the IO of block device

Copyright © 2013 SciRes. CN

Z. WANG ET AL. 295

efficiently. The cpu.cfs_quota_us specifies a maximum
CPU time that a set of tasks could use in a period of time
which is set in cpu.cfs_period_time. For example, when
the cpu.cfs_quota_us is set to 10000 while the cpu.cfs_
period_us is 100000, tasks in this group will use 10ms
(milliseconds) in 100ms at most, which means the usage
of CPU is limited to 10 percent.

Through establishing constrains to CPU usage via us-
ing cpu.cfs_quota_us and cpu.cfs_period_us, we can
prevent the over much consumption from some processes
and spare more resources to the time-critical processes in
our SDR system. Via use of CGROUP, we could better
isolate the execution of tasks in SDR system than multi-
cores solutions, because the competition for computing
resource could not be relieved when the number of tasks
is greater than the number of cores.

3.3. Fine-grain Timer in Linux Kernel

The passing of time is important to the Linux kernel,
because there exist lots of kernel functions which are
time-driven except of event-driven. These periodic tasks
occur on a fixed schedule, depending on the System
Timer which is a programmable piece of hardware that
issues an interrupt at a fixed frequency [10]. Then, sys-
tem time gets updated and those tasks get performed by
interrupt service routine handling for this timer.

Indeed, System Timer plays as similar role as the
alarm clock of a microwave oven [10], which makes us-
ers aware of that the cooking time interval has elapsed,
while System Timer reminds computers that one more
time interval has elapsed based on some fixed frequency
established by the kernel. The frequency of the system
timer is programmed on system boot based on a static
preprocessor define, HZ.

The main benefit of a higher HZ is the greater accu-
racy in process preemption, consequently, the scheduling
latency decreased, which improve the real-time per-
formance of SDR system. As mentioned above, the Sys-
tem Timer interrupt is responsible for decrementing the
running process’s timeslice count. When the count
reaches zero, a flag called NEED_RESCHED is set and
the kernel runs the scheduler as soon as possible. Now
assume that a given process is running and has 2 ms of
its timeslice remaining. In 2 ms, the scheduler should
preempt the running process and begin executing a new
more important process. Unfortunately, this event does
not occur until the next timer interrupt, which might not
be in 2 ms. At worst the next timer interrupt might be
1/HZ of a second aware. With Hz = 100, a process can
get nearly 10 extra ms to run; by contrast, with Hz =
1000, the extra time would be limited under 1ms.

Due to the decrease of latency created by preemption
delay, the real time performance of SDR system would
get improved by greater accuracy in process preemption.

Taking data interface process as example, even if it has a
higher priority, the delay of data transfer is still out of
control when scheduling latency is introduced. In con-
clusion, fine-grain system timer makes these time-critical
processes wait less time to seizing the CPU and response
more timely.

4. Latency Requirement For TD-SCDMA

As a 3G standard, TD-SCDMA has a stricter demand for
data transfer latency. In order to calculate the maximum
transfer delay that could be tolerated, some detail of
physical channel signal format need to be elaborated in
advance.

The radio frame of 1.28 Mcps TD-SCDMA has a
length of 10ms, composed of two 5ms subframes. In each
subframe, there are seven traffic time slots and three spe-
cial time slots as shown in Figure 3. The 5ms subframe
contains 6400 chips. The traffic time slots are 864 chips
long. A physical channel is transmitted in a burst, which
is transmitted in a particular timeslot within allocated
radio frames.

Using the subframes structure, TD-SCDMA can oper-
ate on both symmetric and asymmetric mode by properly
configuring the number of downlink and uplink time
slots [15]. Figure 4 takes the H-ARQ [15] as an example
of asymmetric mode. The HS-DSCH related ACK/
NACK must be transmitted on the associated HS-SICH
in the next but one subframe. The time between the last
HS-DSCH and the HS-SICH would be spent in process-
ing and uplink data. If we take the first downlink time
slot as zero time reference, responses should be ready
before 3.45ms, which is the total time of downlink (in-
cluding the DwPTS). And 3.45 ms is the threshold of
arrival time.

In other words, if the uplink data has not been ready
before the time for the uplink time slot transmission
comes, it means the response failure. In the next section,

Figure 3. Subframe structure.

Subframe #n

Last
HS-
DSC

H

HS-
SIC
H

Subframe
#n+1

Subframe
#n-1

Threshold of arrival time (3.45
ms)

Zero time reference

Baseband processing time + Uplink time

Figure 4. H-ARQ.

Copyright © 2013 SciRes. CN

Z. WANG ET AL.

Copyright © 2013 SciRes. CN

296

existence of four infinite loops as disturbance programs
on PC (PC has two CPU cores). Consequently, the ratio
of response failure is 0.7841, on the contrary to 0.00024
without any interference on the same platform. It proves
that the existence of resource competition will make sys-
tem performance especially latency deteriorated because
less computing resources would allocated to data inter-
face process, when the number of tasks is greater than
that of CPU cores.

experiments are proposed to measure the round-trip la-
tency and calculate the ratio of latency over 3.45 ms, i.e.
response failure.

5. Experiment Result and Analysis

To validate the effectiveness of the proposed methods,
we conduct some experiments based on the system
model mentioned in Section 2.

In order to measure the round-trip time of the SDR
platform, the whole procedure of data transmission be-
tween PC and RF front end is illustrated as Figure 5. It
begins when the downlink data is received from the air
interface and ends when the uplink response is ready to
be sent by RF front end. Firstly, Downlink data arrive at
PC a little later than the air interface because of the delay
of USB2.0 transmission and process schedule, which is
shown in the third and fourth line of Figure 5. The PC
processes the downlink data and then sends the associ-
ated response i.e. ACK/NACK as shown in the fifth and
sixth line of Figure 5.

When data interface process has read the last data
packet and is waiting for the next, for avoiding of process
starvation, the kernel will allocate CPU to disturbance
tasks. But the issue is, when the data interface process is
woke up to read data from adapter board, the kernel has
to cost a period of time to reallocate CPU to it as ana-
lyzed in section 3.3. Therefore, even after we set
real-time priority to data interface process, the ratio of
round-trip latency over 3.45ms is only reduced to 0.582,
which still far more than 0.00024 in ideal environment.

Next, a series of experiments are conducted to validate
the effectiveness of the proposed methods. We set real-
time priority to data interface process, and then, record
the response failure ratios in different CPU usage con-
straints (i.e. no constraints, 80%, 60%, 40%, 20%, 10%)
to disturbance programs by reconfiguring cpu.cfs_
quota_us in cpu subsystem. The value of system timer
frequency is set as 128 Hz, 512 Hz, 1024 Hz.

As the analysis in section 4, the round-trip latency
must be constrain to 3.45ms at least, otherwise, some
uplink responses would not be ready in the RF front end
before the uplink time slots, i.e. the response fail. In ex-
periments, time between the first downlink time slot and
the arrival time of the uplink responses, would be re-
corded as round-trip latency to calculate the ratio of re-
sponse failure. The results are shown in Figure 6. The constraints to

CPU usage are reflected in x-axis and the ratios of re-
sponse failure are drawn in y-axis; meanwhile, system
timer of 128Hz, 512Hz and 1024Hz are represented by

In order to quantitatively analyze the influence of the
competition for computing resource on performance of
SDR system, we run our data interface program with the

Figure 5. Procedure of data transmission in experiments.

Z. WANG ET AL. 297

10 20 30 40 50 60 70 80 90 100
10

-4

10
-3

10
-2

10
-1

10
0

ra
tio

 o
f

re
sp

on
se

 f
ai

lu
re

constrains to CPU usage of distrubance programs (percent)

experiment result

System timer 128Hz

System timer 512Hz
System timer 1024Hz

Figure 6. Experiment result.

blue curve, green curve and red curve respectively. The
System Timer of 1024 Hz performs better than that of
512 Hz and 128 Hz (default value in PC), because that
increasing the timer frequency to 1024 Hz lowers the
worst-case scheduling delay to just nearly 1 m. Besides,
along with more stringent constrains to CPU usage of
disturbance programs, the ratio of response failure has
decreased obviously, which proves that via using
CGROUPS, we can spare more computing resource to
our SDR tasks. Better yet, when the CPU consumption of
disturbance programs is limited to 10 percent and the
frequency of System timer is raised to 1024 Hz from 128
Hz, the round-trip latency will achieve a satisfactory ratio
of response failure, 0.00056, that is magnitude equal to
that in environment lack of competition and lower
enough to meet the requirement of TD-SCDMA.

6. Conclusions

In this paper, we use real-time priority, CGROUPS and
high-resolution system timer in combination as above, to
optimize the real-time performance of SDR system.
Taking TD-SCDMA as example, we justify it by ex-
periments that the integrated use of these methods can
provide a latency guarantee to data transfer to meet the
requirement for this 3G system even under the competi-
tion for computing resource from other tasks.

7. Acknowledgements

This work was supported by State Key Laboratory team
building project ”the key technology research of inte-
grated wireless communication”, S&T Major Project
(2012ZX03003007-004) and National Science Foun-

ation of Beijing (4110001). d

REFERENCES
[1] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y.

Zhang, H. Wu, W. Wang and G. M. Voelker. Sora: High
Performance Software Radio Using General Purpose
Multi-core Processors. In NSDI 2009.

[2] S. Mamidi, E. R. Blem, M. J. Schulte, et al., (2005, Sep-
tember). Instruction Set Extensions for Software Defined
Radio on a Multithreaded Processor. In Proceedings of
the 2005 International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems, pp.
266-273.

[3] J. Zhang, K. Tan, S. Xiang, Q. Yin, Q. Luo, Y. He, J.
Fang and Y. Zhang, “Experimenting Software Radio with
the SORA Platform,” In ACM SIGCOMM Computer
Communication Review, Vol. 40, No. 4, 2010, pp.
469-470. doi:10.1145/1851275.1851268

[4] P. Guo, X. Qi, L. Xiao and S. Zhou, “A Novel GPP-based
Software-Defined Radio architecture,” In Communica-
tions and Networking in China (CHINACOM), 2012, 7th
International ICST Conference on, pp. 838-842.

[5] C-RAN http://labs.chinamobile.com/cran/

[6] D. P. Bovet and M. Cesati, Understanding the Linux
Kernel. O’Reilly Media, 3 Edition.

[7] P. Turner, B. B. Rao and N. Rao, “CPU Bandwidth Con-
trol for CFS,” In Proceedings of the Ottawa Linux Sym-
posium-OLS, Vol. 10, 2010, pp. 245-254.

[8] H. Ishii, Fujitsu’s Activities for Improving Linux as Pri-
mary OS for PRIMEQUEST. Fujitsu Science Technology
Journal, Vol. 47, No. 2, 2011, pp. 239-246.

[9] S. T. Dietrich, D. Walker. The evolution of real-time
linux. In Proc. 7th Real-Time Linux Workshop, 2005, pp.
3-4.

[10] R. Love. Linux Kernel Development. Addison-Wesley, 3
Edition.

[11] CGROUPS.
http://www.kernel.org/doc/Documentation/cgroups/cgrou
ps.txt

[12] The Practice of Resource Control Using Cgroup in Tao-
Bao main servers.
http://wenku.baidu.com/view/19668a5677232f60ddcca11
3.html

[13] CPU subsystem.
https://access.redhat.com/knowledge/docs/en-US/Red_Ha
t_Enteprise_Linux/6/html/Resource_Management_Guide/
sec-cpu.html.

[14] C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam, W.
Fun. (2008, August). Fairness and Interactive Perform-
ance of O (1) and CFS Linux Kernel Schedulers. In In-
formation Technology, ITSim 2008. International Sym-
posium on, Vol. 4, pp. 1-8.

[15] 3GPP TS 25.221 V9.4.0 “Physical Channels and Map-
ping of Transport Channels onto Physical Channels,”
November, 2011.

[16] M. Rosenblum, The Reincarnation of Virtual Machines.
Queue, Vol. 2, No. 5, p. 34.

doi:10.1145/1016998.1017000

Copyright © 2013 SciRes. CN

http://dx.doi.org/10.1145/1851275.1851268
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://wenku.baidu.com/view/19668a5677232f60ddcca113.html
http://wenku.baidu.com/view/19668a5677232f60ddcca113.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enteprise_Linux/6/html/Resource_Management_Guide/sec-cpu.html.
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enteprise_Linux/6/html/Resource_Management_Guide/sec-cpu.html.
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enteprise_Linux/6/html/Resource_Management_Guide/sec-cpu.html.
http://dx.doi.org/10.1145/1016998.1017000

