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ABSTRACT 

In this study, an interval probability-based inexact two-stage stochastic (IP-ITSP) model is developed for environmental 
pollutants control and greenhouse gas (GHG) emissions reduction management in regional energy system under uncer-
tainties. In the IP-ITSP model, methods of interval probability, interval-parameter programming (IPP) and two-stage 
stochastic programming (TSP) are introduced into an integer programming framework; the developed model can tackle 
uncertainties described in terms of interval values and interval probability distributions. The developed model is applied 
to a case of planning GHG -emission mitigation in a regional electricity system, demonstrating that IP-ITSP is applica-
ble to reflecting complexities of multi-uncertainty, and capable of addressing the problem of GHG-emission reduction. 
4 scenarios corresponding to different GHG -emission mitigation levels are examined; the results indicates that the 
model could help decision makers identify desired GHG mitigation policies under various economic costs and envi-
ronmental requirements. 
 
Keywords: Interval Probability; Inexact Two-stage Stochastic Programming; Electricity Generation; GHG-Mitigation; 

Energy System 

1. Introduction 

For many decades, the constantly increment of regional 
electricity demand has forced managers to contemplate 
and propose ever more comprehensive, complex and 
ambitious plans for electric power systems. However, 
most CO2 emissions are emitted mainly from electricity 
generation processes of burning fossil fuels such as coal, 
oil and natural gas [1]. A number of impact factors, such 
as population growth, rapid urbanization and industriali-
zation, and global economic development, would inevi-
tably result in conflicts among economic objective, elec-
tricity demand/supply, and environmental requirement. 
Moreover, such planning efforts are complicated with a 
variety of uncertain parameters as well as their interac-
tions [2]. It is thus deemed necessary to develop effective 
optimization methods for supporting regional electric 
power systems management with GHG-emission mitiga-
tion under such complexities. 

Previously, a number of mathematical techniques have 
been introduced to deal with these uncertainties [3-6]. 

Among these techniques, inexact two stage stochastic 
programming model (ITSP) integrated with interval pa-
rameter programming (IPP) and two stage stochastic 
programming (TSP) has received extensive attentions to 
express uncertain parameters with random and dynamic 
feature as probability distributions and discrete intervals 
over the past years [7]. Generally, all of the stochastic 
programming models require probabilistic specifications 
for uncertain parameters. However, in many practical 
situations, discrete probability distributions of future 
events may be predicted using existing statistics and ex-
pert judgment. For long run decision making problems, 
these probabilities are in most cases subjective and diffi-
cult to estimate. For example, in electric power manage-
ment system, it is often associated with difficulties in 
acquiring the probability distribution of the random 
variables/ parameters due to the insufficient available 
data or the existence of multiple uncertainties. When 
only limited or imprecise information is available while 
the stochastic programming method is used, the detailed 
probabilistic distributions need to be generated based on 
unrealistic assumptions, resulting in potential errors with 
the modeling inputs and outputs. Interval probability 
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distribution, which was based on the interval numbers 
and stochastic mathematics method, was effective for 
dealing with uncertainties on probability distribution [8]. 
Interval probability distribution relates to the case where 
over the interval of possible probabilities some values are 
more possible than others. Previously, a number of inex-
act optimization methods coupled with interval probabil-
ity distribution were developed for dealing with uncer-
tainties presented as intervals and/or random variables 
[8]. Nevertheless, no previous study was reported on 
interval probability distribution-based two stage stochas-
tic programming for GHG-emission management in re-
gional electric power systems. 

Therefore, as an extension of the pervious study, the 
objective of this study is to develop an interval probabil-
ity distribution- based two stage stochastic programming 
(IP-TSP) and applies it to the planning of regional elec-
tric power systems with GHG-emission mitigation. The 
IP-TSP will integrate optimization techniques of interval 
parameter programming, two stage stochastic program-
ming, and interval probability distribution into a general 
framework to handle multiple uncertainties. In a hypo-
thetical regional electric power system, the developed 
method will be used to analyze various policy scenarios 
that are associated with different levels of economic 
consequences when the promised electricity generation 
targets are violated. The results will help managers to not 
only make decisions of electricity generation schemes 
but also gain insight into the tradeoffs between system 
risk and economic objectives. 

2. Methodology 

2.1. Interval Probability Distribution 

Traditional methods of the stochastic decision making 
are based on the assumption that we know the probabili-
ties of different situations ‚In some situations, it would 
be difficult generating the exact value of the probabilities, 
and more uncertainties would exit in the energy systems 
to affect the probability distribution of the stochastic pa-
rameters. The interval would be able to effectively reflect 
the uncertainties of the possible value of probability. In 
order to make decisions under such interval probabilities, 
Reference [8] developed a natural way of decision mak-
ing under interval probabilities. For example, there exists 
exactly one averaging operation with interval probabili-
ties, and this averaging operation has the form: 
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Thus, the interval probabilities can be transferred into 
deterministic probabilities. 

2.2. Interval Probability Distribution- based 
Two-stage Stochastic Programming 

In the two stage stochastic program, the conditional 
probabilities, are supposed to have a predefined exact 
value. However, in some situations these probabilities are 
difficult to evaluate and only an estimation of their pos-
sible value may be available. Therefore, these probabili-
ties may be considered as interval probability distribu-
tions. Thus, an interval probability distribution- based 
inexact two-stage stochastic programming (IP-TSP) can 
be formulated as follow: 
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K

 are interval numbers that is the 
probability of occurrence for scenario k, with  0kp 

and 
1

1k
k

p


 ; ˆ ikw  are random variables associated 

with probability k . In model (1), the decision variables 
are divided into two subsets. The 

p

jtx  represents the 
first-stage variables, which have to be decided before the 
random variables are disclosed; jkt  are related to the 
recourse actions against any infeasibilities after uncer-
tainties are disclosed. 

y
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For Model (3), if jx  are considered as uncertain in-
puts, the existing methods for solving inexact linear pro-
gramming problems cannot be used directly [7]. In this 
study, an optimized set of target values will be identified 
by having j  in Model (3) be decision variables. Ac-
cordingly, let j j j jx x  x  , where j j jx x x     
and jt [0,1]   ; j  are decision variables that are used 
for identifying an optimized set of target values ( jx ) in 
order to support the related policy analyses [7]. Accord-
ing to Reference [9], the IP-ITSP model can be trans-
formed into two deterministic submodels that correspond 
to the lower and upper bounds of the objective function 
value, respectively. 

3. Application to Ghg-Emission Mitigation in 
a Regional Electric Power System 

Consider a typical regional-scale electric power system 
wherein a manager is responsible for allocating energy 
resources/services from multiple facilities to multiple 
end-users through multiple technologies within a plan-
ning horizon. The decision maker can formulate the 
problem as minimizing the expected cost of various en-
ergy activities in the region over the planning horizon. 
Moreover, decision makers always seek to control the 
emissions of environmental pollutants (e.g., sulfur diox-
ide (SO2), nitrogen oxides (NOx), particulate matter (PM)) 
and greenhouse gas (GHG) in order to meet the regional 
environmental requirement [10]. In the energy conver-
sion sector, every conversion technology has an electric-
ity generation target. If the target is not exceeded, a 
regular cost will be brought to the system; otherwise, the 
system will be subject to penalties resulted from the extra 
labor, management, operation and maintenance costs, or 
capacity expansion and higher costs for imported energy. 
The future electricity demand during the planning hori-

zon is often modeled as an uncertain parameter associ-
ated with an interval probability distribution. Most of the 
other parameters (such as technological efficiency, eco-
nomic parameters and utilization factors) are expressed 
as intervals. Therefore, The FP-ITSP approach is consid-
ered appropriate for addressing this planning problem. 
Table 1 presents the available electricity demands under 
different interval probability distributions. Electricity 
generation target, environmental pollutants control and 
the related economic data are shown in Table 2. Besides, 
coal-fired power has a residual capacity of 1.0 GW, 
natural gas-fired power has a residual capacity of 0.28 
GW, hydropower has a residual capacity of 0.26 GW. 
The representative costs and technical data are investi-
gated based on governmental reports and other related 
literature [4-6,10]. 

Based on a detailed analysis of the study system, four 
major sets of objectives were considered when modeling 
this system to achieve the following aims: (a) the lowest 
cost of purchasing coal, nature gas, crude oil, diesel and 
gasoline, (b) the lowest operation cost for coal-fired 
power, gas-fired power, hydropower, wind power, solar 
power, and nuclear power, (c) the lowest capacity expan-
sion cost, and (d) the lowest air pollutant mitigation cost. 
In detail, the objective functions and constraints were 
formulated as follows 
 
Table 1. The available electricity demands under different 
interval probability distributions. 

Demand levels 
Activity 

Low Medium High 

The amount
of available
electricity 

[105.00, 125.00] [120.00, 145.00] [140.00, 168.00]

Probability [0.15, 0.35] [0.45, 0.60] [0.05, 0.15] 

 
Table 2. Electricity generation target and the related economic data. 

Electricity generation target and the related economic data 

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

Generation target of each power conversion technology (103GWh) 

[15, 100] [0, 55] [0, 35] [0, 25] [0, 15] [0, 10] 

Regular costs for power generation by each power conversion technology ($106/103GWh) 

[4.00, 6.00] [5.00, 7.00] [5.50, 7.50] [2.50, 3.50] [2.00, 3.00] [10.00, 14.00] 

Surplus costs for power generation by each power conversion technology ($106/103GWh) 

[2.00, 3.00] [2.50, 4.50] [3.50, 5.50] [1.50, 2.50] [1.00, 2.00] [6.00, 9.00] 

Cost of removal SO2 in each power conversion process ($/tonnes) 

[38.50, 45.50] [32.50, 40.50] 0 0 0 0 

Cost of removal NOx in each power conversion process ($/tonnes) 

[55.50, 75.00] [42.50, 65.50] 0 0 0 0 

Cost of removal PM2.5 in each power conversion process ($/tonnes) 

[120.50, 135.50] 0 0 0 0 0 
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where f   is the expected system cost (million dollar); 
 is the electricity conversion technology, k = 1 for 

coal-fired power, 2 for natural gas fired power, 3 for hy-
dropower, 4 for wind-power, 5 for solar power and 6 for 
nuclear power;  is the capacity expansion option, m 
=1, 2, 3…, v;  is the level of power load, h = 1, 2, 3…, 
H; i

k

m
h

Z   is the energy sources supply (PJ), i = 1 for im-
port electricity, i = 2 for coal supply, i = 3 for natural-gas 
supply, i = 4 hydropower supply, i = 5 for solar power 
supply, i = 6 for wind power supply, i = 7 for nuclear 
power supply; iPES   is energy sources supply cost 
($million/PJ); kPV   is the variable cost for converting 
technologies k; kPP  is penalty cost of converting tech-
nologies k for excess electricity generation ($million/ 
GWh); khQ  is the excess power generation by technol-
ogy k in scenario h; h  is the probability of electricity 
demand; kmh

p
Y   is the binary variable for technology k 

with expansion option m; k  is the allowable power 
generation by technology k in load level h; km  is the 
capacity expansion size option m for electricity genera-
tion technology k (GW); km  is the capital cost for 
electricity generation technology k expansion size m 
($Million/GW); k

W 

IC

EC

COT   is the CO2 emission intensity of 
power generation technology k (kiloton/GWh); kSOT   
is the SO2 emission intensity of power generation tech-
nology k (kiloton/GWh); k  is the NOx emission 
intensity of power generation technology k (kiloton/ 
GWh); t

NOT 

PMT  is the PM10 emission intensity of power 
generation technology k (kiloton/GWh); kCTS   is the 
SO2 removal cost of power generation technology k (dol-
lar/kiloton); kCTN   is the NO2 removal cost of power 
generation technology k (dollar/kiloton); tCTM   is the 
PM10 removal cost of power generation technology k 
(dollar/kiloton); kFE  is the conversion efficiency(TJ/ 
GWh); hDTE  is the electricity demand in load level h 
(GWh); k  is the residual capacity of electricity gen-
eration technology k (GW); S

RC
  is the SO2 removal effi-

ciency of power generation technology k; N
  is the 

NOx removal efficiency of power generation technology 
k; O

  is the PM10 removal efficiency of power genera-
tion technology k; EM   is the total allowable CO2 
emissions (kiloton); ES   is the total allowable SO2 

emissions (kiloton); EN   is the total allowable NO2 

emissions (kiloton); EPM   is the total allowable PM10 
emissions in period t (kiloton). 
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4. Results Analysis 

Table 3 presents the electricity generation targets under 
different GHG reduction scenarios. As a part of interme-
diate energy conversion, the electricity generation tech-
nologies include coal-fired power, natural gas-fired pow-
er, hydropower, wind power, solar power, and nuclear 
power. Due to the higher cost during the power genera-
tion process, the pre-regulated electricity generated by 
natural gas-fired power, solar power, and nuclear power 
conversion technologies would always zero under dif-
ferent GHG reduction emission scenarios, and the major 
power generation technologies include coal-fired power, 
hydropower, and wind power. The pre-regulated electric-
ity generated by coal- fired power would decrease as the 
level of GHG-reduction increasing. For example, it 
would decrease from 42.11× 103 GWh (without GHG- 
reduction) to 16.85× 103 GWh (60% GHG-reduction). 
Under the four scenarios, the amount of pre-regulated 
electricity generated by hydropower would be 13.45 × 
103GWh, 17.66 × 103 GWh, 23.74 × 103 GWh, and 
32.16 × 103 GWh under the scenarios of 0%, 20%, 40% 
and 60% GHG-reduction emission levels, respectively. 
The pre-regulated electricity generated by wind power 
would always 25.00× 103 GWh under different GHG 
reduction emission scenarios. 

If the electricity targets cannot meet the random de-
mand, during different excess GHG reduction emission 
scenarios, electricity has to be produced under different 
demand levels. The excess generation quantities of each 
power conversion technology would be different from 
under different demand levels and different GHG-reduc- 
tion levels as shown in Table 4. In case of insufficient 
electricity supply, wind power would be firstly as the 
recourse activities to compensate the deficits of electric-
ity shortages, the coal-fired power and hydropower 
would only be supplements. Moreover, as the electricity 
demand level increasing, excess electricity generated by 
the three power technologies would increase. For exam-
ple, under 0% GHG-reduction level, the excess electric-
ity generated by wind power technologies would be 0, [0, 
1.95] × 103 GWh, and [0, 11.5] × 103 GWh during the 
low, medium, and high level of electricity demand, re-
spectively. In addition, as the GHG-reduction level in-
creasing, the excess power generation would also in-
crease, for example, under the high level of electricity 
demand, the excess electricity generated by hydropower 
technologies would be 13.45 × 103 GWh, 17.66 × 103 
GWh, 20.00 × 103 GWh, and [20.00, 21.81] × 103 GWh 
during 0%, 20%, 40% and 60% of GHG-reduction emis-
sion levels, respectively. 

 
Table 3. Solutions of electricity generation targets under GHG reduction scenarios. 

Electricity generation targets (103 GWh) 
GHG-emission 
reduction level Coal-fired power 

(k = 1) 
Natural gas-fired power

(k = 2) 
Hydropower 

(k = 3) 
Wind-power 

(k = 4) 
Solar power 

(k = 5) 
Nuclear power

(k = 6) 

0% 42.11 0 13.45 25.00 0 0 

20% 33.68 0 17.66 25.00 0 0 

40% 25.26 0 23.74 25.00 0 0 

60% 16.85 0 32.16 25.00 0 0 

 
Table 4. Solutions of the excess power generation of each conversation technology. 

Excess power generation of each conversation technology(103  GWh) 
Level CO2 emission reduction level 

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

0% 0 0 0 [3.45, 6.95] 0 0 

20% 0 0 0 [7.66, 11.16] 0 0 

40% 0 0 0 [10.00, 13.50] 0 0 
L 

60% 0 0 0 [10.00, 13.50] 0 0 

0% [0, 1.95] 0 0 [18.45, 25.00] 0 0 

20% [0, 6.16] 0 0 [22.66, 25.00] 0 0 

40% [0, 8.50] 0 0 25.00 0 0 
M 

60% [0, 8.50] 0 0 25.00 0 0 

0% [0, 11.50] 0 13.45 25.00 0 0 

20% [0, 11.50] 0 17.66 25.00 0 0 

40% [0, 11.50] 0 20.00 25.00 0 0 
H 

60% [0, 9.69] 0 [20.00, 21.81] 25.00 0 0 

Copyright © 2013 SciRes.                                                                                  EPE 



Y. L. XIE  ET  AL. 821

 
As shown in Figure 1, compared the six power gen-

eration technologies’ contribution to the different levels 
of electricity demand, it indicates that different power 

conversion technologies have varied generation quanti-
ties under changed GHG-emission reduction scenarios. 
As the previous section analysis, natural gas-fired power,  
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Figure 1. Amount of power generation with 0%, 20%, 40% and 60% GHG reduction. 
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solar power and nuclear power would be zero under dif-
ferent levels of GHG-reduction emission. This is because 
nuclear power would enhance the diversity of power 
generation, and thus increase the stability and security of 
the study system, solar power would be limited by space 
and resource during the study area, and the related cost of 
gas-fired power conversion technology is slightly higher 
than coal-fired power. Under 0% of GHG-reduction 
emission, coal-fired power would be the most important 
electricity supply source, wind power would be the most 
important electricity generation technologies under 20%, 
40%, and 60% GHG-emission reduction. As the GHG- 
emission reduction level increasing, the total amount of 
coal-fired power would decrease, especially, under the 
scenario of 60% GHG-emission reduction, the hydro-
power generation would be bigger than coal-fired power.  
For example, under 60% GHG-emission reduction, the 
total power generation of coal-fired power technologies 
would be 16.84× 103 GWh, [16.84, 25.34] × 103 GWh, 
and [16.84, 26.53] × 103 GWh in the scenarios of low, 
medium, and high demand level, respectively; the hy-
dropower would be 32.16× 103 GWh, 32.16× 103 GWh, 
and [52.16, 53.97] × 103 GWh under the three demand 
levels; the amount of wind power generation would 
[35.00, 38.50] × 103 GWh, 50.00× 103 GWh, 50.00× 
103 GWh under the low, medium, and high level of elec-
tricity demand, respectively. It indicates that although 
coal-fired power conversion technology has relatively 
low operating and penalty costs and comparatively low 

capital cost for capacity expansion, it has a higher GHG- 
emission during the electricity generation process; more 
and more environment-friendly power conversion tech-
nologies would be chosen for electricity generation to 
satisfy the ever-increasing electricity demands and en-
hancing GHG-emission reduction requirements. 

Moreover, imported power would be purchased to fill 
the power shortage by the energy system decision makers. 
In this study, in order to enhance the regional power sys-
tem reliability, it assumes that [20,30] % of the total 
electricity demand would be the maximum amount of 
imported power. Under different scenarios, because of the 
due to lower cost, the imported electricity would reach to 
the maximum limitation, being [21.00, 37.50] × 103GWh. 
As shown in Figure 2, the system cost would rise up 
along with increasing GHG-emission reduction. The 
system cost would be $ [491.84, 727.52] × 106, $ 
[500.57, 744.41] × 106, $ [510.91, 759.24] × 106, and $ 
[523.26, 772.37] × 106 under 0%, 20%, 40%, and 60% 
GHG-reduction, respectively. The cost of GHG mitiga-
tion (per kiloton) would increase, being $[1.09, 1.30] × 
106, $[1.19, 1.38] × 106, and $[1.15, 1.31] × 106, under 
20%, 40%, and 60% GHG-emission reduction, respec-
tively. It indicates that under the scenarios of GHG-re- 
duction, the coal-fired power generation technologies 
with lower cost in electricity generation process would 
be replaced by hydropower, wind power which has a 
higher operation cost, besides, the increasing electricity 
demand leads to various power generating facilities to be  
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Figure 2. Costs under different GHG reduction scenarios. 
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expanded, bringing about a high capital cost. 

5. Conclusion 

An interval probability-based inexact two-stage stochas-
tic (IP-ITSP) model is developed for regional electricity 
system and greenhouse gas (GHG) emissions reduction 
management under uncertainties. The method is based on 
interval probability, interval-parameter programming 
(IPP) and two-stage stochastic programming (TSP). Un-
certainties in the energy system could present as both 
interval probability distributions and interval values to be 
incorporated within a general optimization framework. 
The developed model is applied to a case of planning 
GHG-emission mitigation in a regional electricity system, 
demonstrating that IP-ITSP is applicable to reflecting 
complexities of multi-uncertainty, and capable of ad-
dressing the problem of GHG-emission reduction. 4 sce-
narios corresponding to different GHG -emission mitiga-
tion levels are examined; Solutions provide an effective 
linkage between the predefined environmental policies 
and the associated economic implications (e.g., losses 
and penalties caused by improper policies). The solutions 
contain a combination of deterministic, interval and dis-
tributional information, and can thus facilitate the reflec-
tion for different forms of uncertainties. The results indi-
cate that the model can help managers obtain multiple 
decision alternatives, as well as provide bases for further 
analyses of tradeoffs between energy management cost 
and GHG-emission reduction. 
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