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ABSTRACT 

We try to find a physical source for the inertial force, which contradicts the acceleration of an object. We find that when 
an object is accelerated, its gravitational field curves, and the stress force created in this curved field acts on the object 
against the accelerating force, thus supplying part of the inertial force that contradicts the acceleration. We also find that 
this force includes a term which is similar to the “fine structure constant” used in quantum mechanics. As well, we find 
that this term equals unity for a black hole object. Further work is needed in order to find whether the complete inertial 
force can be found in this way. The experimental results that may prove this approach are still very limited. 
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1. Introduction 

When a material object is accelerated, it “performs” a 
force (an inertial force) that counters the external force 
that accelerates the object. This fact is most clearly 
shown in the way that the second law of Newton is for-
mulated by D’Alambert (1743): 

0F ma− =                  (1) 

For many years, the questions were discussed about 
what the nature of this inertial force is, and whether it is 
created by an interaction. 

Mach Principle (1883) states that the inertial properties 
of matter reflect the interaction of the accelerated mass 
with the entire material contents of the universe. 

In a more popular language—the inertial force that 
acts against the accelerating (external) force is created by 
the interaction of the accelerated object with the distant 
galaxies. This principle actually treats acceleration as a 
relative phenomenon, where only the relative accelera-
tion between the local object and the distant galaxies 
matters, without stating explicitly which one of them is 
“really” accelerated. This principle contradicts the New-
tonian approach to acceleration, where acceleration was 
considered relative to an absolute space, thus giving ac-
celeration an absolute measure. Using Mach principle, 
Einstein could formulate, first, the Principle of Equiva-
lence (PE), which states the equivalence of the gravita-
tional mass and the inertial mass, and later, the General 
Theory of Relativity (GTR), that formulates gravitation  

in the form of a geometric structure of space (see Whee- 
ler for details [1]). D. W. Sciama [2] showed that if we 
assume that the interaction that causes acceleration falls 
with the distance like 1/r, then the contribution of distant 
galaxies prevails the contribution of nearby matter, and 
this can explain the isotropic nature of inertia. Up to date, 
the validity of Mach principle has not been established 
experimentally, and further more, it is not clear whether 
this principle should be considered as a “must” compo-
nent of GTR. However, many scientists “like” this prin-
ciple, and tend to include it in the general theory. 

In order to understand better the nature of the forces 
involved when an object is accelerated, we should con-
sider the forces created in curved fields (electric and gra- 
vitational fields). 

2. The Reaction Force in a Curved Field 

When we consider the process of acceleration of electric 
charges, we should recall that there is an extra force in-
volved, which usually is not mentioned in standard works 
on this topic: This force is the stress force created in the 
curved electric field of the accelerated charge, which is 
curved due to the acceleration. We already know about 
an interaction connected with acceleration, which creates 
very important phenomena—the electromagnetic radia-
tion. When a charge is accelerated, it radiates, and the 
power carried by the radiation is proportional to the ac-
celeration (squared). 



A. HARPAZ 396 

Similar to the electric field, the gravitational field of 
an accelerated mass curves too, and the phenomena con-
nected with curved fields, are similar both for electric 
and gravitational fields. 

In a curved field, there are force components which 
are perpendicular to the direction of the field, in addition 
to the regular parallel force components. Suppose that we 
have a force field Q, over a certain volume of space. The 
non-parallel force density, (f), of this field is given by: 

( ) 4f Q Q= ∇× × π , which by using vector identities can 
be written as [3,4]: 

( ) ( ) 2

2 2 2

4 4

d

d 8 4 8c

Q Q Q Q Qf

Q Q n Qs
s R

∇ × × ∇ ⋅ ⋅ ∇ ⋅= = −
π π

  ∇ ⋅= + − π π π 

8π
     (2) 

Where n is the unit vector normal to the field lines, 
and Rc is the radius of curvature of the field lines, and we 
put for Q: Q = Q⋅s, where s is a unit vector along the 
field lines. 

The first and third terms of Equation (2) cancel each 
other, and we are left with the second term, which is the 
stress force density, sf , given by:  

2

4s
c

Q nf
R

=
π

                 (3) 

which is the stress force that acts perpendicularly to the 
curved field lines. 

When we relate this expression to a gravitational field 
of a mass m, then 22Q Gm r= 4 , and if the field is 
curved, then the stress force density is:  

2 2

44 4s
c c

Q n Gmf
R r R

= =
π π

            (4) 

In order to calculate the radius of curvature we have to 
calculate the expressions for the gravitational field of a 
mass particle m, moving with a constant acceleration in 
its own system of reference. Such a motion is called “a 
hyperbolic motion”, as it describes a hyperbola in Rin-
dler coordinates (Rindler [5]). We shall use the method 
suggested by Gupta and Padmanabhan [6], where they 
calculate first the field equations of a particle (an electric 
charge) in its own system of reference, and then trans-
form these equations to the system of free space, in 
which the particle is accelerated. In using this method for 
the calculation of electric field of an accelerated charge, 
they recovered the field equations as calculated by Schott 
[7], and by Fulton and Rohrlich [8]. We shall use this 
same method for the calculation of the gravitational field 
of an accelerated mass particle. 

3. Gravity and Inertial force 

The gravitational field of a mass particle in its own sys-
tem of reference is spherically symmetric around the 

mass, usually displayed as straight lines of force ema-
nating from the mass. When the particle is in motion, the 
field it emanates does not move with the particle motion. 
The field is emanated from the particle at each point 
along the particle path. After being emanated, the field 
“knows” nothing about further motions of the emitting 
particle. It expands in space at a constant velocity with-
out any dependence on the particle further motion.  

In the attached figure (Figure 1), the field emanated 
from the particle at the point z1, t1, reaches the point x, t2, 
while the particle moved from the point z1, t1 to point z2, 
t2. The particle may be stopped, or even be reversed dur-
ing this time, but the field will continue its expansion, 
“knowing” nothing about the particle further behavior. 

When the particle is accelerated, its field is not accel-
erated with the mass and it curves, because the field is an 
independent physical entity, and it continues to expand in 
space, at its own constant velocity (C in vacuum). This 
approach was actually suggested by Einstein [9], and also 
supported by Landau and Lifshitz [10]. 

Thus, when a field is emanated by a source in motion, 
the field does not participate in the source motion, and 
the relation between the particle and its emitted radiation, 
depends on the relation between the particle velocity 
(which may be of any kind of motion), and the radiation 
velocity, which depends on the surrounding space. More 
details about this topic, may be found in earlier papers, 
dealing with it [11,12]. 

By using the method of Gupta and Padmanabhan [6] 
mentioned above, the equations for the gravitational field 
of the accelerated mass in free space are calculated (al-
though they dealt mainly with the calculations of elec-
tromagnetic fields, this method can be also used to cal-
culate the gravitational field of particles at motion). The 
gravitational field is calculated first in the rest system of 
the particle, and then, these equations are transformed to 
the system in which the particle is accelerated in. These 
equations, given in cylindrical coordinates (z, ρ, Ɵ), are: 

 3

3

8 Gm zQρ
ρ− ∝= ᶍ             (5) 

 
z1, t1 z2, t2 

x, t2

 

Figure 1. The field induced by a particle at motion. 
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where   ᶍ ( ) ( 22 2 2 22 2 2 2c t z )ρ ρ= ∝ + − − + ∝  and 
2c a∝ =  is the mass location at t = 0 (the turning point 

in Rindler coordinates. (Here a is the acceleration).  
From these equations, the equations for the field lines 

can be calculated as shown by Singal [13], and from 
these equations we calculated the radius of curvature of 
the field lines (to be inserted in Equation (4)). It comes 
out also that  is the characteristic radius of curvature 
of the gravitational field lines (see Figure 2 and Equation 
(7)). 

∝

The radius of curvature of the field lines, (Rc), as cal-
culated from Equations (5) and (6), is: 

2

sin sinc
cR

a
∝= =
θ θ

             (7) 

where Ɵ is the angle between the particle trajectory and 
the field line at the moment the field left the mass. The 
force density of the stress, fs in this case is: 

2 2

4 4

sin

4 4s
c

Gm Gm af
r R r c

= =
π π

θ
2

           (8) 

The components of fs which are perpendicular to the 
mass trajectory cancel, due to symmetry, and we are in-
terested in the components of fs which are parallel to the 
mass trajectory, which are: fs parallel = fs sin Ø, where Ø is 
the angle between the field line and the mass trajectory. 
Close to the mass trajectory, Ø ≅ Ɵ, and we have for 

 

 

Figure 2. The field lines of a particle accelerated linearly in 
free space. 

fs parallel: 
2 2

4 2

sin

4s
Gm af

r c
=

π
 θ

             (8’) 

This curvature stress force (the parallel part of the 
stress force) acts on the accelerated mass, against the 
accelerating force. In order to find the parallel stress 
force, fs, that acts on the accelerated mass against the 
accelerating force, we have to integrate on the stress 
force density, fs, over the space around the mass.  

We multiply fs by the volume element: dØsinƟdƟr2dr. 
The integration over the angles yields ‒8π/3, and we get: 

2

2 0

2

3

inf
s

Ga m rF
c r

−=  2

d
           (9) 

We perform the integration over r, for two parts of 
space: The space outside the mass [R > r, where R is the 
object’s radius (for simplicity, we deal with spherically 
symmetric objects only)], and the space inside the mass 
(r < R). In the outer integration, the limits on r are: R < r 
< inf, and in the inner part, the limits are 0 < r < R. In the 
inner part, the gravity at each r depends only on the mass 
included inward to this r. 

The outer integral (Fs0) in Equation (9) (from R to in-
finity) yields: 

2 2

0 2

2 2

3 3s
R

Gm a Gm aF
c r c R
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 
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 

2
         (10) 

For the inner integral, Fsi (assuming a constant density) 
we put: 
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 (0 ... R)  (11) 

Adding Equations (10) and (11), we find: 
2

0 2

4

5s s si
Gm aF F F
c R

= + = −           (12) 

This can be written as: 

2

2 2

22 2 1 2

5 5
G

s
EGmF ma ma

R mc mc
  = − = −    


      (13) 

where EG is the gravitational energy of the object. The 
term in the square brackets in Equation (13), is actually 
of the form of the fine structure constant used in quantum 
mechanics [14]: 

2
2

2 nE
mc

∝ =  

In a similar way, we may define a fine structure con-
stant for inertia  by:  Gα
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2
2

2 G
G

E
mc

∝ =  

To get: 

22

5s GF ma= − ∝              (13’) 

which shows that the stress force created in the curved 
gravitational field of the accelerated mass, is a part of the 
inertial force which acts against the acceleration.  

4. The Fine Structure Constant for the 
Acceleration of a Black Hole  

When the equations for the gravitational fine structure 
constant are implemented for a black hole, we do not cal- 
culate the reaction force created inside the object, since 
we have no hint about how do the mass inside the black 
hole is distributed. We calculate the reaction force in the 
space around the black hole, from its Schwarzschild ra- 
dius, up to infinity. We multiply fs by the Schwarzschild 
volume element:  

2d
d sin d

1 s

r r
r r

φ θ θ
−

, where sr  is the Schwarzschild  

radius of the mass. The integration over the angles again 
yields: 8 3− π . 

After the integration over the angles we have:  
2

2 2

2 d

3 1s

inf
s r

s

Gm a rF
c r r

= −
− r

        (14) 

The integral in Equation (14) yields:  

2 1 1 1 1
1 1

2 8 64 16

inf

s
25 1

s s sr

r r
r r
   − = + + + +     

 
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This result is obtained by expanding the square root 
like ( )1 2

1 x− . Thus we have for the stress force, Fs: 

2
2

25 25

4824s G
s

GMF ma ma
c r

= − = − ∝          (16) 

For a black hole, 22 sGm c r= , so , and we 
have: 

2 1Gα =

25

48sF ma= −                (16’) 

5. Conclusion  

We find that when a mass is accelerated in free space, its 
gravitational field curves, due to the fact that the field is 
not accelerated with the mass—it is induced on space 
from the points along the mass trajectory. Due to this 
curvature, a stress force is created in the curved gravita-

tional field, which acts on the accelerated mass as a reac-
tion force. The external (accelerating) force has to over-
come this reaction force, in order to maintain the accel-
eration. Calculation of this reaction force shows that, a 
kind of a “fine structure constant” appears in these cal-
culations, which is equal to: 24 5GE mc  (where G  is 
the gravitational energy of the accelerated mass). This 
reaction force is a part of the inertial force, which con-
tradicts the acceleration. 

E
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