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ABSTRACT 

Based on the arbitrary constant solution, a series of explicit doubly periodic solutions and triply periodic solutions for 
the Korteweg-de Vries (KdV) equation are first constructed with the aid of the Darboux transformation method. 
 
Keywords: KdV Equation; Doubly Periodic Solution; Triply Periodic Solution; Darboux Transformation 

1. Introduction 

The famous KdV equation 

6t x xxxu uu u   0               (1) 

is a shallow water wave equation early derived by 
Korteweg de and Vries, its first application was discov- 
ered in the study of collision-free hydro-magnetic waves 
in 1960. Subsequently, it has arisen in a number of phy- 
sical contexts, such as stratified internal waves, ion- 
acoustic waves, plasma physics, lattice dynamics and so 
on. Following the further studies of these physical prob- 
lems, its exact solutions have attracted much attention 
and have been extensively studied [1-7]. However, in 
contrast to solitary wave solutions, the analytic periodic 
solutions represent only a small subclass of its known 
solutions, and multi-periodic solutions are scarce. It is 
always useful to seek more and various multi-periodic 
solutions for recovering interactions among some simple 
periodic waves in a nonlinear medium. 

We know that the Darboux transformation method is 
the main method to construct exact multi-soliton solu- 
tions, and this method is scarcely used for solving multi- 
periodic solutions [8-10]. In the paper, not only explicit 
doubly periodic solutions are available, but also a group 
of explicit triply periodic solutions is obtained by means 
of the Darboux transformation method. 

2. Doubly Periodic Solutions 

According to [11], the linear system 
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is the Lax pair for Equation (1), with the Darboux matrix 
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where   4 2 xxA u u u     
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,  are 
the spectral parameters. The monograph [11] further points 
out, if  is a known solution to Equation (1), then 
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where, i  and i  are arbitrary constants, but 

i i
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u

 is the 
fundamental solution matrix to the lax pair on . i

Only solving the fundamental solution matrix of the 
lax pair corresponding to constant solution 0 , it is 
possible to construct multi-periodic solutions to the KdV 
Equation (1). Substituting  into the system (2) yields 
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If setting  0= 4 2 x u t   , then we can assert that 
both the system (6) and the following linear system 
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have exactly the same solutions. Under the condition for 

0u  , by the eigenvalue method, we obtain the com- 
plex-valued fundamental solution matrix to the above 
system 
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where   0a a u    . Because the real and 
imaginary parts of a complex-valued solution are also 
solutions, we thus take 
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as the fundamental solution matrix to the the system (6), 
where   a     . 

For simplicity, we setting  
    2
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From (5), we have 
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in the above formula, choosing 0 01, 0    and 

0 00, 1   , respectively, we get 

0 0 tant a 0                  (9) 

and 

0 0 0cot ,c a               (10) 

respectively, with (4), the periodic wave solutions 

2 2
1 1 0 0 02 secu u a     

and 
2 2

1 2 0 0 02 cscu u a     

are obtained. 
Now we construct the doubly periodic solutions gen- 

erated from , thanks to (4), we see that 1u

 2
2 1 0 0 0 1= 2 2 2 2 ,u u 2             (11) 

we first give 1 , then substitute 0  and 1  into (11). 
Again according to [11], we can obtain the fundamental 
solution matrix to the lax pair associated with the known 
periodic wave solution  in the following manner 1u
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where  2
0 0 0cos sinP a         ,  

 2
0 0 0sin cosQ a        

1 11, 0
. After combining (5) 

and (12), choosing    , we get 
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Substituting (9) and (13) into (11), we have new dou- 
bly periodic solution 
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Again substituting (10) and (13) into (11), we obtain 
another new doubly periodic solution 
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Similarly, choosing 1 10, 1   , we have 
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which implies the doubly periodic solutions 
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Specially, although 2 3u   is a doubly periodic solu- 
tion, its structure is very similar to a given two-soliton 
solution in [1]. 

3. Triply Periodic Solutions 

As shown in [11], the fundamental solution matrix to the 
lax pair associated with the doubly periodic wave solu- 
tion  can be given by 2u
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substituting (12) into (19), in exactly the same manner as 
in Section 2, we get 
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Owing to (4) and (11), we have 
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Here, we set tani iF a  , cot , 0,1, 2i i iG a i  . 
Substituting 0 1,t t  2t and   into (20), we obtain trip- 
ly periodic solution 
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