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ABSTRACT 

One of the most important responsibilities of a supply chain manager is to decide “how much” (or “many”) of inventory 
items to order and how to transport them. This paper presents four mixed-integer linear programming models to help 
supply chain managers make these decisions for multiple products subject to multiple constraints when suppliers offer 
quantity discounts and shippers offer freight discounts. Each model deals with one of the possible combinations of 
all-units, incremental quantity discounts, all-weight and incremental freight discounts. The models are based on a 
piecewise linear approximation of the number of orders function. They allow any number of linear constraints and de- 
termine if independent or common (fixed) cycle ordering has a lower total cost. Results of computational experiments 
on an example problem are also presented. 
 
Keywords: Inventory; Mixed-Integer Linear Programming; Quantity and Freight Discounts; All-Units and Incremental 

Discounts; Multiple Products and Multiple Constraints 

1. Introduction 

Supply chain management has been receiving an ever- 
increasing attention from both academicians and business 
managers for the past several decades. The main reason 
for this attention seems to be the realization that a well 
coordinated supply chain will lead to lower costs, and 
hence greater profits, for its members compared to the 
costs incurred by members of a supply chain that is not 
coordinated. 

Two of the major cost components in a supply chain 
are inventory and transportation costs. According to 2013 
Annual State of Logistics Report [1] of Council of Sup- 
ply Chain Management Professionals (CSCMP), the av- 
erage investment in all business inventories (agriculture, 
mining, construction, services, manufacturing, wholesale, 
and retail trade) reached to almost $2.3 trillion in 2012, 
which was equivalent to 8.5 percent of the Gross Domes- 
tic Product (GDP) of the same year. In this total there are 
inventory carrying costs and transportation (all modes) 
costs, $434 billion and $897 billion, respectively. One of 
the conclusions of the report was: “Record high invento- 
ries could become a drag on the economy if we do not 

start drawing them down.” Clearly, managing and re- 
ducing these costs will not only help the economy but 
also reduce the operating costs of any company and boost 
its profits. 

The importance of inventory carrying costs and trans- 
portation costs has been well understood and appreciated 
by the operations research community as evidenced by 
the extensive list of publications on the optimization of 
inventory and transportation decisions. This paper aims 
to make a contribution to an area of this rich field of re- 
search that has not seen much development. 

Specifically, this paper presents a zero-one mixed-in- 
teger linear programming model for the optimization of 
lot-sizing decisions for buyers ordering multiple products 
subject to multiple linear constraints when they are of- 
fered quantity (price) discounts by suppliers and freight 
discounts by shippers. The model provides an approxi- 
mate optimal solution based on a linear approximation of 
the number of orders function, which can be achieved as 
closely as the analyst desires. This paper is an extension 
of our earlier research [2]. While published models deal 
with small number of constraints and either fixed (com- 
mon) or independent cycle solutions, the proposed mod-
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els may include any number of linear constraints and 
determine which of the two cycle types leads to a lower 
total cost. Finally, we present models that, when avail- 
able, take advantage of quantity discounts and freight 
discounts of both kinds (i.e., all-units and incremental). 

The paper is organized as follows: A survey of litera- 
ture is presented in the next section. The third section 
provides preliminaries. The fourth section presents vari- 
ables and parameters, and four mixed-integer linear pro- 
gramming models. Section five presents computer im- 
plementation and results of computational experiments. 
A summary and conclusions are given in section six. 
Two appendices provide relevant mathematical back- 
ground that forms the foundation for the four models. 

2. Literature Review 

There is an extensive literature on quantity discount mo- 
dels. A comprehensive review of literature until 1995 can 
be found in Benton and Park [3] where papers dealing 
with both all-units and incremental quantity discounts are 
reviewed. Another review can be found in Munson and 
Rosenblatt [4]. The focus in this paper is on modeling 
lot-sizing decisions for multiple products subject to mul- 
tiple linear constraints when both quantity (i.e. unit price) 
and freight (i.e., unit shipment) discounts of both kinds 
(i.e., all-units and incremental) are available to a buyer. 
Therefore, we limit our review to a narrow portion of the 
literature. 

2.1. Single Product, Quantity and Freight 
Discounts, Unconstrained Case 

Tersine and Barman [5] derived lot-sizing optimization 
algorithms for quantity and freight discount situations for 
both all-units quantity discounts and all-weights freight 
discounts. These authors extended their algorithms to an 
incremental case in a separate paper [6]. Arcelus and 
Rowcroft [7] developed an all-units quantity and all- 
weight freight discounts model for lot-sizing decision 
with the possibility of disposal. Diaby and Martel [8] 
developed a mixed-integer linear programming model for 
optimal purchasing and shipping quantities in a multi- 
echelon distribution system with deterministic, time- 
varying demands. Tersine, Barman, and Toelle [9] pro- 
posed a composite model that included a variety of rele- 
vant inventory costs and developed algorithms for the 
optimization of lot-sizing decision where all-units or in- 
cremental quantity discounts and all-weight and incre- 
mental freight discounts were combined into a single res- 
tructured discount schedule. Burwell, et. al. [10] incur- 
porated all-units quantity and all-weight freight dis- 
counts in a lot sizing model when demand is dependent 
upon price. They developed an algorithm to determine 
the optimal lot size and selling price for a class of de- 

mand functions. Darwish [11] investigated the effects of 
transportation and purchase price in all combinations of 
all-units/incremental discounts and all-weight/incremental 
freight discounts for stochastic demand. Mendoza and 
Ventura [12] developed exact algorithms for deciding 
economic lot sizes under all-units and incremental quan- 
tity discounts and two modes of transportation: truck 
load and less than truck load. Toptal [13] developed a 
model for lot sizing decisions involving stepwise freight 
costs and all-units quantity discounts. 

2.2. Multiple Products, All-Units and 
Incremental Quantity Discounts, 
Constrained Case 

None of the papers reviewed in this section incorporated 
both quantity and freight discounts; however, they dealt 
with multiple products and at most two constraints. Ben- 
ton [14] was the first to consider the problem for multiple 
products with budget and space constraints. In this paper, 
the author developed a heuristic procedure for order quan- 
tity when all-units quantity discounts were available from 
multiple suppliers. Rubin and Benton [15] considered the 
same problem as Benton [14] and presented a set of al-
gorithms that collectively found the optimal order vec- 
tor. In a more recent paper, Rubin and Benton [16] ex- 
tended their solution methods to the same setup with in- 
cremental quantity discounts. 

Guder, et al. [17] presented a method for determining 
optimal order quantities subject to a single resource con- 
straint under incremental quantity discounts. The method 
involves the evaluation of every feasible price level 
combination for each item. The authors point out that due 
to the combinatorial nature of the method, it is impracti- 
cal for a large number of items; however, they offer a 
heuristic algorithm for large problems. To the best of our 
knowledge, there is no published model for ordering 
multiple products subject to more than two constraints 
when both quantity and freight discounts are available. 

3. Preliminaries 

We assume an inventory system involving multiple 
products with known and constant independent demand, 
instantaneous replenishment, and constant lead times 
where no shortages are allowed. Without loss of general- 
ity we assume a zero lead time. Ordering cost for each 
product is a fixed amount that is independent of order 
size. Inventory holding (carrying) cost for each product is 
a percent of the purchase price, per unit per year; the 
same percentage applies to all products. 

In this paper four models are presented corresponding 
to all four combinations of quantity and freight discounts. 
For example, Model I has been developed to determine 
the optimal order quantity when all suppliers offer all- 
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units quantity discounts and all shippers offer all-units 
freight constraints. Model III is for a situation in which 
suppliers offer all-units price discounts while shippers 
offer incremental freight discounts. The decision maker’s 
objective is to minimize the total annual inventory hold- 
ing, ordering, and purchase cost subject to multiple linear 
constraints, such as a limit on total inventory investment 
at any time, warehouse space, volume, and/or weight, an 
upper limit on the number of orders, etc. 

The four models rely on the functional relationship 
between the number of orders and order quantity which 
enables us to handle multiple constraints and multiple 
price-breaks through a linear model. We develop a zero- 
one mixed-integer linear programming model based on 
the piece-wise approximation of the number of orders 
function of each product. The approximation can be car- 
ried to any finite degree of closeness. 

Let Xj = Order quantity, and Dj = Annual demand for 
product j. Then the number of orders function 

 j j j jN f X D X   is strictly convex (Figure 1) and 
can be approximated with a series of linear functions. 
Although the function is continuous everywhere for 1 ≤ 
Xj ≤ Dj, this interval has ej subintervals corresponding to 
discount intervals and therefore the number of orders 

curve has segments that correspond to these intervals. 
Considering any such segment of the curve, any line 
segment such as L = a  bX, passing through the end 
points of the interval will always be above the curve and 
L will always overestimate the true number of orders in 
that interval. The error of estimation, E, will be given by 

 E L N a bX D X     . 
The maximum error can be reduced to any finite num- 

ber by increasing the number of line segments. Once a 
decision maker chooses the maximum tolerable error 
(TE), the range of possible order sizes (Xj) is split into as 
many intervals as necessary so that no line segment 
overestimates N by more than TE. One way this number 
may be selected is by dividing the tolerable excess cost 
resulting from the overestimation of the true number of 
orders, by the sum of the ordering cost. We follow a 
procedure that splits an interval at the point (Xio) where 
the error E is maximum, thereby reducing overestimation 
by the greatest amount. The details of the linearization of 
the number of orders function are given in Appendix A. 

Suppliers frequently offer their products at lower prices 
to those who buy them in large quantities. In this system 
the supplier identifies intervals of possible order quanti- 
ties and a price for each interval, which is progressively 

 

 

Figure 1. Piecewise linear approximation of the number of orders function in the hth discount step, h = 1, 2,···, ej.   
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lower for higher quantity intervals. A quantity dis- 
count schedule for a product can be represented as 
follows: 

1 1 1

2 2 2

  for   

  for   

  for   
j j

j j j j

j j j j

j

e j e j j

P K X U

P K X U
P

P K X

 


  

 


 

where Pj is the price paid for product j, Phj is the price to 
be paid if the order quantity Xj falls in discount interval h, 
and Khj and Uhj’s are quantities that define discount in- 
tervals. Similarly, a freight discount schedule can be re- 
presented as: 

1 1 1

2 2 2

  for   

  for   

  for   
j j

j j j j

j j j j
sj

e j e j j

C K X U

C K X U
C

C K X

  

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 

  

  

  


 

 

The most frequently encountered discount schedules 
are all-units and incremental. An all-units discount scheme 
assumes that the lowest price for which an order quantity 
qualifies will be paid for all the units purchased. In an 
incremental discount system the lowest price is paid only 
for the units in the relevant interval and higher prices for 
quantities in lower intervals. Next, decision variables and 
parameters of Model I are presented. 

4. Models for Optimizing Lot-Sizing 
Decisions 

4.1. Decision Variables 

Xhij = order quantity for product j in subinterval i of the 
price discount interval h, 

Xj = order quantity to be adopted for product j, 

hjX  = order quantity for product j in the shipping cost 

discount interval h, 

jX  = order quantity for product j suggested from the 
shipping cost discount schedule, 

Nj = number of orders to be adopted for product j, 
POj = amount paid for order size Xj, product j (i.e., 

dollar amount paid for one order, excluding shipping and 
ordering costs), 

Pj = price to be paid for product j, 
Csj = shipping cost per unit paid for product j, 
Tj = cycle time for product j, 
Yhj = auxiliary variables for product j: 

Yhj = 1, if ,  ;  0j hj hj hjX n m Y    , otherwise, 

auxiliary variables for product :

1 if , ; 0, otherwise,

hj

hj j hj hj hj

Y j

Y X n m Y



    



   
 

Yhij = auxiliary variables for product j: 

Yhij = 1, if ,  ;  0j hij hij hijX n m Y    , otherwise, 

Lhij = number of orders if the order size is in subinter- 
val i of price discount interval h for product j, 

hijL   number of orders if the order size is in subin- 
terval i of freight discount interval h for product j. 

4.2. Model Parameters 

TC = total annual inventory cost, 
k = number of products, 
Coj = ordering cost for product j, 1, 2, ,j k  , 
Ccj = holding (carrying) cost per unit per year for pro- 

duct j, 
Cshj = shipping cost per unit if the order quantity jX  

falls in the shipping cost discount interval h, 
1, 2, , jh e  , 

I = percent of average price as holding cost, 
Phj = price to be paid if the order quantity Xj falls in 

price discount interval h, 1, 2, , jh e  , 
ej = number of price discount intervals available for 

product j, 

je  = number of shipping cost discount intervals avai- 
lable for product j, 

ehj = number of subintervals into which the number of 
orders (Nj) curve has been divided for the hth price dis- 
count interval, 

Dj = annual demand for product j, 

min min , 1, 2, , ,jD D j k    

wrj = amount of resource r consumed by one unit of 
product j, where w1j = P1j, 

v = number of constrained resources, 
Br = availability of resource r, 
ahij = y-intercept of the line passing through the end 

points of subinterval i of price discount interval h, 
bhij = slope of the line passing through the end points 

of subinterval i of price discount interval h, 
nhj, mhj = lower and upper end points of price discount 

interval h, respectively, 
,hj hjn m    = lower and upper end points of freight cost 

discount interval h, respectively, 
nhij , mhij = lower and upper end points of subinterval i 

of price discount interval h, respectively, 
Sj = the multiple of the yearly demand that is allowed 

to be satisfied by a single order of product j; a constant, 
usually set equal to 1, 

M = a very large positive constant, 

 min , 1,2,3, ,rR r v   , 

R is the maximum cycle time that is feasible for the 
problem and corresponds to the most restrictive resource 
constraint; R is calculated and selected outside the model, 

1  is the maximum cycle length allowed when the high- 
est price is paid for every product, 
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1

2B

Q
   where 
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and 

1
1 1

k k

j j j
j j

B P X PO
 

   , 

budget available for total inventory investment, if all- 
units discounts apply, or 

 1
1 1

k k

j j j
j j

B AP X PO
 

   , 

budget available for total inventory investment if incre- 
mental discounts apply, 

r  = maximum cycle length allowed by the rth re- 
source constraint, 

2
  r

r
r

B

Q
   

where 
 2

1

1

1

k

rj jk
j

r rj j k
j

rj j
j

w D

Q w D
w D







 
 
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 
 
 





, 2,3, , ,r v   

and for a possible shipping cost resource constraint m (r 
= m), 1 1mj s j s jw C AC  . 

This formula for r  is the multi-constraint version of 
Equation (18) of Rosenblatt [18] (see also Page and Paul 
[19]). 

4.1.1. Model I. All-Units Discounts for both Price and 
Freight 

 

1

min , , ,

2

j j j sj

k

oj j j j j sj j
j

TC N PO P C

I
C N PO P D C D



        


      (1) 

Subject to: 

, 1, 2, , ,

1, 2, , , 1, 2, , ,

hij hij hij hij hij j

hj

L a Y b X h e

i e j k

  

 


 

        (2) 

1

, 1, 2, , , 1, 2, , ,
hje

hj hij j
i

Y Y h e j k


          (3) 

1

1, 1, 2, , ,
je

hj
h

Y j k


                     (4) 

1 1

, 1, 2, , ,
j hje e

j hij
h i

N L j k
 

                 (5) 

, 1, 2, , ,

1, 2, , , 1, 2, , ,

hij hij hij j

hj

X n Y h e

i e j k

 

 



 
               (6) 

, 1, 2, , ,

1, 2, , , 1, 2, , ,

hij hij hij j

hj

X m Y h e

i e j k

 

 


 

               (7) 

1 1

, 1, 2, , ,
j hje e

j hij
h i

X X j k
 

                 (8) 

1

, 1, 2, , ,
je

j hj hj
h

P P Y j k


                  (9) 

, 1, 2, , , 1,2, , ,hj hj hj jX n Y h e j k          (10) 

, 1,2, , , 1, 2, , ,hj hj hj jX m Y h e j k          (11) 

1
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h
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
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1
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h
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
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
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1 1 1
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hij hj
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   

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1

, 1, 2, , ,
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sj shj hj
h

C C Y j k


 

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1 2 1Z Z                             (16) 

min

1
, 1,2, , ,jT j k

D
                    (17) 

1 2 , 1, 2, , ,j jT RZ S Z j k                (18) 

0, 1, 2, , ,j j jT D X j k                  (19) 

1 1 21 , 1, 2, , 1,j jT T Z MZ j k          (20) 

1 1 21 , 1, 2, , 1,j jT T Z MZ j k          (21) 

1 1

, 1, 2, , ,
j hje e

j hj hij
h i

PO P X j k
 

             (22) 

1 1 2
1

k

j
j

PO MZ B Z


                      (23) 

1 2
1

, 2,3, , ,
k

rj j r
j

w X MZ B Z r v


           (24) 

Other linear constraints can be included in the model. 
For example, if there is a resource constraint on shipping 
cost with available resource Bm (r = m) 

1 2
1 1

,
e jk

shj hj m
j h

C X MZ B Z
 

 


  

1 2

, , , , , , , , , 0,   and  

, , , , 0,1  integers

j hij j j hj j sj j hij j

hij hj hj

T X X X X P C N L PO i j

Y Y Y Z Z

 



 

  

Z1, Z2 = auxiliary variables: if Z1 = 1 and Z2 = 0, fixed 
cycle approach to be used; for Z1 = 0 and Z2 = 1, inde- 
pendent cycle approach to be used, 
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Equation (1), the objective function, is the sum of the 
objective functions for all products and consists of four 
components: annual ordering cost (NjCoj), annual carry- 
ing cost ([I/2] POj),. annual purchase cost (PjDj), and 
annual shipping cost (CsjDj). Each one of Equation (2) 
represents the line segment approximating the number of 
orders curve for the ith subinterval of the hth discount 
interval for the jth product. Constraints (3) and (4), to- 
gether, make certain that only one line segment’s equa- 
tion is nonzero; at the optimal solution this will be the 
line approximating the selected subinterval of the optimal 
discount interval. Constraints (5) determine the number 
of orders for each product. Constraints (6) and (7) deter- 
mine the order quantity (Xhij) for each subinterval of each 
discount interval for each product; because of the binary 
variable Yhij only one of these order quantities will be 
different from zero for each product. Constraints (8) de- 
termine the order quantity Xj as the sum of Xhij’s, only 
one of which is nonzero. Constraints (9) determine the 
unit price to be paid for each product. Constraints (10), 
(11), (12) and (13) determine the order quantity for 
product j in the shipping cost discount interval h; because 
of the binary variable hjY  only one of these order quan- 
tities will be different from zero for each shipping dis- 
count interval h. Constraints (14) make sure that the or- 
der quantity selected from price discount intervals for 
each product is equal to the order quantity selected from 
shipping discount intervals. Constraints (15) determine 
the unit shipping cost for each product. Z1 and Z2 in 
constraint (16) are binary variables that help determine 
whether a common cycle or an independent cycle solu- 
tion will be chosen. Constraints (17), (18), and (19) de- 
termine the length of the order cycle and the order size. 
Constraints (20) and (21) ensure that if a common cycle 
is chosen, the cycle times of all products will be equal; 
otherwise, these constraints will be redundant. For a com- 
mon cycle solution, orders may be phased in by using the 
formula proposed by Guder and Zydiak [20]. Constraints 
(22) determine the amount to be paid for each order of 
each product. Constraint (23) makes sure that if inde- 
pendent cycle solution (Z2 = 1) is selected, the total in- 
vestment in inventory does not exceed the budget. Simi- 
larly, constraints (24) ensure that limits on other re- 
sources are not exceeded. These constraints will become 
redundant if a fixed cycle solution (Z1 = 1) is selected. 
For a fixed cycle solution, orders may be phased in by 
using the formula proposed by Güder and Zydiak [20]. 

4.2.2. Model II. Incremental Discounts for both Price 
and Freight 

 

   
1

min , , ,
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j j j sj

k

oj j j j j sj j
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i e j k
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 


 

          (2) 
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, 1,  2, , , 1, 2, , ,
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i
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where 

jAP = average price to be paid for product j, 

sjAC = average shipping cost per unit for product j. 
Model II has been developed for the case where both 

quantity and freight discounts are of an incremental kind. 
The objective function (1) is the sum of the objective 
functions for all products and consists of four compo- 
nents: annual ordering cost, annual carrying cost, annual 
purchase cost, and annual shipping cost. However, due to 
the nature of incremental discounts, total freight cost and 
total purchase cost need to be calculated with an average 
unit freight cost (constraint 19) and an average unit price 
(constraint 10). Derivations of these formulas are given 
in Appendix B. Also, it should be noted that the amount 
paid for an order (9) in this model is calculated differ- 
ently from Model I as explained in Appendix B. 

4.2.3. Model III. All-Units Price Discounts and 
Incremental Freight Discounts 
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      (1) 
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4.2.4. Model IV. Incremental Price Discounts and 
All-Units Freight Discounts 
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5. Computer Implementation and Results of 
Computational Experiments 

Computer implementation of these models requires a 
program that approximates the number of orders function 
by piece-wise linearization. We have developed a Visual 
Basic for Applications (VBA) for Excel program SplitV5 
for this purpose. This program splits the number of or- 
ders function for each discount interval (price and/or 
freight) into subintervals that are approximated by linear 
equations and generates a data file for solution by Solver. 
A tolerance level TE of 0.1 was used in our examples. 
We used the Express Solver Engine of Frontline Systems 
Inc. for solving the resulting mixed-integer linear pro- 
gramming problems. 

Computational experiments were performed using an 
example problem with three products and three con- 
straints: a budget constraint for inventory investment, a 
warehouse space constraint, and a truck weight capacity 
constraint. When a fixed cycle solution (Z1 = 1) is se- 
lected these constraints become redundant. The third 
constraint was added to the problem to demonstrate the 
flexibility of our models in that they can handle any 
number of linear constraints in addition to the two re- 
source constraints. Problem parameters are shown in 
Table 1. 

Seven sets of experiments were conducted with the 
four models, each set having a different set of resource 
quantities (i.e., budget, space, and truck weight capacity). 
As a start to the experiments large enough values were 
initially selected for these three quantities to find a feasi- 
ble solution for Model I. As expected, all three con- 
straints were nonbinding for this problem. Then the right- 
hand-sides (RHS) of the three constraints were reduced 
the by the amount of their slacks and the problem was 
solved again using Model I; the purpose was to see how 
the models behaved when all three constraints were 
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binding. This guaranteed binding constraints for Model I. 
The solution to this first problem with a budget amount 
of $110,484 is shown in the first row of Table 2. Then 
the same problem was solved using each of the remain- 
ing models. Model II produced a fixed (common) cycle 
solution, while the other three had independent cycle 
solutions. All three constraints were also binding for 
Model III. The same approach of manipulating the right- 
hand-sides in some, but not all, problems were used to 
create optimal solutions in which some constraints were 
binding. Then an additional six problems were set up and 
solved; the results are shown in Table 2. 

In solving the second problem, all tau’s (calculated 
outside the model) were determined to be equal, imply- 
ing full usage of available resources if a fixed cycle solu- 
tion were to be chosen as optimum, as indicated in Table 

2. Furthermore, since cycle times, T’s, are the same for 
all models selecting a fixed cycle solution, as in the sec- 
ond problem, their economic order quantities are the 
same and can be verified by constraints (18-21) in Mo- 
del I, which are common to all models. 

Page and Paul’s [19] simulations with a single re-
source constraint suggested that as the constraint gets 
tighter, the fixed cycle solution gives a lower total cost 
solution. As can be seen from Table 2, this prediction 
did not hold for the test problems. Independent cycle so- 
lutions were observed even for problems with relatively 
low levels of resources (Problems 6 and 7). Fixed cycle 
solutions, on the other hand, resulted even when resource 
levels were relatively high; overall, 16 of 24 problems 
had fixed cycle solutions. Additional experiments in- 
dicated that our problems had no feasible solution 

 
Table 1. Parameters of the example problem. 

PRODUCT 1 2 3 

ANNUAL DEMAND 1600 1800 2200 

COST PER ORDER (Coj) 40 90 110 

HOLDING COST PERCENT (I) 0.20 0.20 0.20 

SPACE OCCUPIED (w2j) 4 3 2 

WEIGHT (w3j) 20 15 10 

QUANTITY INTERVALS FOR PRICE DISCOUNTS (nhj, mhj) 100 - 200 50 - 150 200 - 400 

 201 - 500 151 - 400 401 - 800 

 501 - 900 401 - 1100 801 - 1400 

 901 - 1600 1101 - 1800 1401 - 1700 

   1701 - 2200 

 Ph1 Ph2 Ph3 

PRICES ($) 40 22 55 

 35 20 49 

 32 16 45 

 30 14 42 

   40 

FREIGHT DISCOUNT INTERVALS   , hj hjn m   1 - 400 1 - 350 1 - 500 

 401 - 900 351 - 1000 501 - 1200 

 901 - 1600 1001 - 1800 1201 - 2200 

FREIGHT COST PER UNIT ($) Csh1 Csh2 Csh3 

 2.00 5.00 3.50 

 1.90 4.50 3.00 

 1.70 4.20 2.50 
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Table 2. Results of computational experiments with four models (Z1 = 1 common cycle; Z2 = 1 independent cycle). 

 
TYPE OF 
CYCLE 

BUDGET
($) 

SPACE 
(CU.FT.) 

TRUCK  
CAPACITY

(LBS.) 
X1 X2 X3

OBJECTIVE 
FUNCTION 

($) 

UNUSED  
BUDGET  

($) 

UNUSED  
SPACE  

(CU. FT.) 

UNUSED  
TRUCK CAP. 

(LBS.) 

MODEL I Z2 = 1 110,484 10,309 44,937 901 1101 1701 188,389 0 0 0 

MODEL II Z1 = 1    1122 1263 1543 224,333 0 2690 12,758 

MODEL III Z2 = 1    901 1101 1701 190,789 0 0 0 

MODEL IV Z 2 = 1    119 1456 1701 227,759 0 2063 8179 

MODEL I Z 1 = 1 90,484 6240 26,354 919 1034 1264 202,103 0 0 0 

MODEL II Z 1 = 1    919 1034 1264 227,506 0 0 0 

MODEL III Z 1 = 1    919 1034 1264 204,861 0 0 0 

MODEL IV Z 1 = 1    919 1034 1264 224,084 0 0 0 

MODEL I Z 1 = 1 70,000 4736 20,000 698 785 959 205,103 1332 0 0 

MODEL II Z 1 = 1    698 785 959 232,905 1332 0 0 

MODEL III Z 2 = 1    201 401 801 209,350 20,504 1,127 3363 

MODEL IV Z 1 = 1    698 785 959 229,394 1332 0 0 

MODEL I Z 2 = 1 50,000 3500 14,563 201 54 801 221,471 5742 933 1400 

MODEL II Z 1 = 1    508 571 698 238,189 0 52 0 

MODEL III Z 1 = 1    508 571 698 214,107 0 52 0 

MODEL IV Z 1 = 1    508 571 698 234,713 0 52 0 

MODEL I Z 1 = 1 40,000 2000 8447 295 331 405 224,691 10,999 0 0 

MODEL II Z 2 = 1    100 56 532 249,732 6290 367 0 

MODEL III Z 1 = 1    295 331 405 224,722 10,999 0 0 

MODEL IV Z 2 = 1    100 54 534 247,647 6242 371 0 

MODEL I Z 2 = 1 30,000 3257 12,088 201 166 401 224,602 0 1153 2603 

MODEL II Z 2 = 1    100 819 200 243,668 0 0 0 

MODEL III Z 1 = 1    305 343 419 224,809 0 1188 3350 

MODEL IV Z 2 = 1    100 819 200 242,068 0 0 0 

MODEL I Z 1 = 1 20,000 1500 5825 203 229 279 237,500 0 121 0 

MODEL II Z 2 = 1    130 114 200 249,506 1290 238 334 

MODEL III Z 1 = 1    203 229 279 237,526 0 121 0 

MODEL IV Z 2 = 1    119 61 238 250,611 810 364 573 

 
when any resource amounts are below $14,319, 988 cu. 
ft., and 4171 lbs. for budget, space, and truck weight 
constraints, respectively. A feasible solution did not exist 
even if only one of the resources was below its limit. 
However, when any resource amount was set to its limit-
ing value and others at well above their limiting values, a 
fixed cycle solution was found with all four models. 
Consequently, these results may provide some support to 

Page and Paul’s [19] conclusion when resources are “se- 
verely” restricted. 

As resource amounts available to the supply chain 
manager increase, we expected our models to have lower 
total inventory cost solutions. This is expected, because 
greater resource amounts enable the model to take ad- 
vantage of lower unit costs and/or lower unit shipping 
costs by ordering larger quantities. As can be seen from 
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Table 2, this prediction turned out to be true for five of 
the problems, but not for Problems 2 and 6. However, 
Problem 6 did not conform to the pattern of decreasing 
resources: truck capacity increased from Problem 5 to 
Problem 6. 

Due to the advantageous nature of all-units discount 
schedules for buyers compared to incremental discount 
schedules, we expected Model I always to produce lower 
total cost solutions. This was true for six of the seven test 
problems except the fourth problem (Budget = $50,000). 
Similarly, we expected Model II (both incremental dis- 
counts) to give the highest total cost optimal solution 
among the four models. This prediction turned out to be 
true only for five problems, but not for Problems 1 and 7. 

6. Summary and Conclusions 

The four models presented in this paper can help supply 
chain managers to find approximate optimal answers to 
the important question of “how many” to order when 
they make the decision for multiple products subject to 
multiple constraints and when quantity and freight dis- 
counts are available from suppliers and shippers. The 
four models cover all possible combinations of all-units 
and incremental discounts schedules for quantity and 
freight. We believe these models are viable tools for ma- 
nagers with a basic understanding of linear programming. 
Also, to the best of our knowledge there is no other pub- 
lished model that can solve the types of problems which 
these models can solve. 

The computational experiments we performed in gen- 
eral gave the expected results with some exceptions. Spe- 
cifically, whether they are for price or freight, all-units 
discounts schedules, in general, lead to a lower total in- 
ventory cost for buyers. Secondly, high resource amounts 
(i.e., budget, warehouse space, and truck weight capacity) 
at a supply chain manager’s disposal, in general, seem to 
lead to a lower total inventory cost. Finally, extremely 
low resource levels seem to lead to common cycle solu- 
tions for all combinations of all-units and incremental 
discounts. 
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Appendix A 

Linear Approximation of the Number of Orders 
Function 

The number of orders function is strictly convex and can 
be approximated with a series of linear functions. In the 
presence of quantity discounts this function should be 
viewed as consisting of segments corresponding to dis- 
count intervals (Figure 1). Consider such a segment of 
the function approximated by a linear function (Figure 
2). The error of estimation, Ehij, for subinterval i of quan- 
tity discount h for product j is given by 

 
hij hij j

hij hij hij j hij

E L N

a b X D X

 

  
        (A.1) 

The maximum error can be reduced to any finite num- 
ber by increasing the number of line segments. Once the 
maximum error a decision maker is willing to tolerate 
(TE) is determined, the next task is to split each quantity 
discount interval into as many sub-intervals of order 
quantities (X) as necessary so that no line segment over- 
estimates N by more than TE. An efficient way is to split 
the intervals at the point where the error Ehij is at maxi- 
mum, thereby reducing overestimation by the greatest 
amount. 

Suppose we start with the first discount interval as in- 
terval 1, which is approximated by the line segment 

 
1 1 1 1

p
ij ij ij ijL a b X   , where the superscript p represents 

the iteration number and is set equal to 0 at the beginning 
of the process (Figure 2). Since the process can be ap- 
plied to only one discount interval of one product at a 
time, the subscripts h and j will be dropped in the discus- 
sion. Also, some values will be identified by the iteration 
at which they are calculated. For example, (2)

1b  repre- 
sents the slope of the line that approximates the curve in 
subinterval 1 at the second iteration. We assume that the 
range of N values a decision maker wants to consider is 
determined by the range of discount intervals; if the up- 
per limit of the last (i.e., lowest price) interval is open, as 
is usually the case, it is set equal to SD. Therefore, the 
range of N values for each product will be from (1/S) to 
D. However, since we will be linearizing the function 
separately for each quantity discount interval, the range 
of N values will be determined by the discount schedule. 
For example, ordinates of the first discount interval for 
product j can be determined as  0

1 1LN D n  , and 
 0

1 1RN D m  for the left and right end points, respec- 
tively, where  0

1 1 jn q , and  0
1 2 jm q , quantities that 

define the first discount interval. 
From Equation (A.1), and by ordinary differentiation, 

the error for any subinterval i, Ei, is maximum at 

io iX D b  with the corresponding io iN Db ; 
where the subscript o refers to the point at which the er- 

ror of estimation is maximum (Emax). 
For any subinterval i, let iL iN D n  and iR iN D m  

represent the ordinates of the left and right end points, 
respectively. Then, given the coordinates of the end 
points (ni, NiL) and (mi, NiR) of any subinterval i, the 
equation of a line segment 

i i i iL a b X                   (A.2) 

passing through these end points can be constructed: 

iL iR
i

i i

N N
b

n m





                (A.3) 

iL iR
i i i

i i

N N
a X L

n m


 


.          (A.4) 

The value of ai can be calculated by substituting the 
coordinates of one of the end points of the subinterval in 
(A.5) as explained shortly. 

The maximum error, maxiE , for any subinterval i, can 
be computed as 

max 2i i iE a Db  .            (A.5) 

by substitution of io iX D b  and io ioN D X  in 
Equation (A1). 

If the maximum error is above the tolerable error (TE), 
the subinterval will be split into two at Xio. Let’s assume 
that EiMax  TE for the first discount interval; hence, we 

split this interval into two subintervals at  0
1 1 oX D b .  

The coordinates of the end points of the two newly con- 
structed subintervals are (Figure 2): 

Subinterval 1:  

              
    

11 1 1 1 1
1 1 1 1 1 1

0 0
1 1

,   and  ,   or  ,  

 and  ,

L Rn N m N n D n

D b Db
  (A.6) 

  Subinterval 2:  

         
         

1 1 1 1
2 2 2 2

10 0 1
1 1 2 2

,   and  ,    

or  ,   and  ,

L Rn N m N

D b Db m D m
   (A.7) 

where  

     1 1 0
1 2 1  om n X  , 

and  

       1 1 0 0
1 2 1 1  R L oN N N Db   . 

Also, note that the left end of the first subinterval and 
the right end of the last subinterval of a discount interval 
will always remain the same regardless of the number of 
subintervals created. These are the end points that de- 
fined the first discount interval at iteration 0. In other      
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Figure 2. Splitting the first discount interval. 
 
words, set    1 0

1 1 1 jn n q   and    1 0
2 1 2 jm m q  . The 

next step would be to construct the equations of the lines 
approximating the newly created subintervals. The slope 
and the y-intercept can be calculated according to equa- 
tions (A.3) and (A.4) and by substitution from (A.6) 

 
   

   

   

   

1 01 1
1 1 11 1

1 1 1 1 0
1 1 1 1

 L R
D n DbN N

b
n m n D b


 

 
         (A.8) 

     
   

   
 

1 0
1 1 1 11 1

1 1 1 1 1 1
1 0

1 1

D n Db
a b X L X L

n D b


   


.  (A.9) 

To calculate the value of  1
1a  we need to evaluate 

equation  1
1L  at either end point of the subinterval it 

approximates. For example, if we evaluate  1
1L  at the 

right end of the first interval, we know from (A.7) that  
   1 0

1 1L Db  and  0
1 1 oX D b . Substituting these  

values in (A.9)  1
1a  will be determined 

 
   

   
    

1 0
1 0 01 1

1 1 1
1 0

1 1

D n Db
a D b Db

n D b


 


. (A.10) 

Similarly, the slope and y-intercept for the line seg- 
ment approximating the second subinterval can be cal- 
culated, for example, using the coordinates of its left end, 
as 

 
   

   

   

   

101 1
1 1 22 2

2 1 1 0 1
2 2 1 2

L R
Db D mN N

b
n m D b m


 

 
       (A.11) 

 
   

   
    

10
1 0 01 2

2 1 1
0 1

1 2

Db D m
a D b Db

D b m


 


.  (A.12) 

Next, we calculate the maximum error and check if it 
is below TE. For example, the maximum error for the 
two subintervals created at the end of Step 1 would be: 
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   1 1
1max 1 12E a Db   

and 

   1 1
2max 2 22E a Db  . 

This process of splitting discount intervals into subin- 
tervals can be repeated until the maximum error in every 
interval or subinterval is below TE. For a more detailed 
discussion of this algorithm, see Moussourakis and Hak- 
sever [21]. 

Appendix B 

Computation of Average Price (AP) and Total 
Purchase Cost of an Order (PO) 

Holding cost is assumed to be a percentage (I) of the 
amount paid for an order and can be calculated as 
I(AP)(X/2) for each product. However, a straightforward 
computation of the average cost would introduce nonlin-
earities into the objective function. In order to avoid this 
situation we compute the average price as follows: 

 

    

1 1 2 2 1

3 3 2 1

1
hj j j j j j

j

j j j hj j h j

AP P U P U U
X

P U U P X U 

 




 

    
 

 

1 1 2 2 2 1 3 3

3 2 1

1
hj j j j j j j j j

j

j j hj j hj h j

AP P U P U P U P U
X

P U P X P U 

   

    

 

   

    

1 1 2 2 2 3

1 1

1
hj j j j j j j

j

hj hj jh j h j

AP U P P U P P
X

U P P P X 

   

    

 

  

 

1

1
1

1

1
;

; 1,2, , ; 2,3, ,

h

hj qj qj hjq j
qj

j hj jh j

AP U P P P
X

U X U j k h e








 
   

 

   



 
, 

where 

1 1j jAP P , 

hjAP   average price per unit paid if the hth discount 
interval has been adopted, 

hjU  = upper end point of discount interval 
, 1, 2, , jh h e  , 

hjP   price to be paid for the units that are in discount 
interval , 1, 2, , .jh h e   

Total purchase cost for product j can be computed as 

    
1

1
1

1 h

j j qj qj j jq j h j
qj

AP D U P P P X D
X










 
   

  
 , 

where h* = adopted discount interval. 
Let 

 

1

1
1

, 1,2, , ; 2,3, , ,
h

hj qj qj jq j
q

g U P P j k h e





         

1 0 1, 2, , ,,jg j k    

hjg  = constant inputs, calculated outside the model. 
Then, substituting NjXj for Dj, 

  h j
j j j jh j

j

j j j j jh j h j h j h j

g
AP D P N X

X

g N P N X g N P D





   

 
  
  

   

 

hence, 

1
j jh j h j

j

AP g N P
D

   . 

Since Nj is defined as: 
1 1

j hje e

j hij
h i

N L
 

  , substituting  

this expression into the formula for APj, and facilitating 
the picking of the price for the adopted discount interval 
through Yhj lead to constraints 

1 1 1

1
, 1, 2, , .

j hj je e e

j hj hij hj hj
h i hj

AP g L P Y j k
D   

       

Relying on the above stated relationships, POj, total 
dollar amount to be paid for one order of product j, can 
be determined: 

 

  
1

1

1

1

j j j

h

qj qj j jq j h j
j q

PO AP X

U P P X P X
X












 
   
  


 

  
1

1

1

h

j qj qj j jq j h j h j h j
q

PO U P P P X g P X



  






     . 

And finally constraints POj can be obtained as: 

1 1 1

, 1, 2, , .
j j hj

hj

e e e

j hj hj hij
h h i

PO g Y P X j k
  

      

Similar to the computation of the total purchase cost, 
the total shipping cost for product j can be calculated as 

    
1

1
1

1
,

h

sj j qj sqj j js q j sh j
qj

AC D U C C C X D
X










 
   

  




  

where adopted discount interval,h   and 

 

1

1
1

, 1, 2, , ;

2,3, , ,

h

qj sqj s q j
q

j

g U C C j k
hj

h e






    



  


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1 0, 1, 2, , ,jg j k    

hjg  = constant inputs, calculated outside the model, 
and following a similar procedure to the one used for 
APj, 

 

,

h j
sj j j jsh j

j

j j j j jh j sh j h j sh j

g
AC D C N X

X

g N C N X g N C D





   

 
  
  

   




 


 

    

 

where 
1 1

,
j hje e

j hij
h i

N L
 

 
 

   average shipping cost can be 

calculated: 

* *

*

1 1 1

1

1
1, 2, , .

j hj j

sj jh j sh j
j

e e e

hj hij hjsh j
h i hj

AC g N C
D

g L C Y j k
D   

 

    
  



 ，

 

 
 
 




