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ABSTRACT 

We analyze correlations and patterns of oxidative activity of 3D DNA at DNA fluorescence in complete sets of chro- 
mosomes in neutrophils of peripheral blood. Fluorescence of DNA is registered by method of flow cytometry with 
nanometer spatial resolution. Experimental data present fluorescence of many ten thousands of cells, from different 
parts of body in each population, in various blood samples. Data is presented in histograms as frequency distributions of 
flashes in the dependence on their intensity. Normalized frequency distribution of information in these histograms is 
used as probabilistic measure for definition of Shannon entropy. Data analysis shows that for this measure of Shannon 
entropy common sum of entropy, i.e. total entropy E, for any histogram is invariant and has identical trends of changes 
all values of  at reduction of rank r of histogram. This invariance reflects informational homeostasis of 

chromosomes activity inside cells in multi-scale networks of entropy, for varied ranks r. Shannon entropy in multi-scale 
DNA networks has much more dense packing of correlations than in “small world” networks. As the rule, networks of 
entropy differ by the mix of normal D < 2 and abnormal D > 2 fractal dimensions for varied ranks r, the new types of 
fractal patterns and hinges for various topology (fractal dimension) at different states of health. We show that all distri- 
butions of information entropy are divided on three classes, which associated in diagnostics with a good health or 
dominants of autoimmune or inflammatory diseases. This classification based on switching of stability at transcritical 
bifurcation in homeostasis regulation. We defined many ways for homeostasis regulation, coincidences and switching 
patterns in branching sequences, the averages of Hölder for deviations of entropy from homeostasis at different states of 
health, with various saturation levels the noises of entropy at activity of all chromosomes in support regulation of ho- 
meostasis. 

  lnE r r
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1. Introduction 
We oriented on medical diagnostics of health status 
based on oxidative activity of DNA in cells for everyday 
clinical practice, for given person at given time. Oxida- 
tive activity of DNA is visualized in fluorescence. We 
analyze experimental data on DNA fluorescence in neu- 
trophils of peripheral blood at biochemical reaction of 
oxidative burst [1]. This is a high sensitive method for 
diagnosing many different and complex diseases, early 
diagnostics of illnesses, hidden diseases. Short list of  

clinical observations is given in [1-4]. Preparation and 
experimental procedures, including small additions of 
ethidium bromide for small volumes of blood ~2 ml, ex- 
citation and measurements of fluorescence are described 
in [1-6]. DNA fluorescence is described by histograms in 
flow cytometry method with spatial resolution of meas- 
urements at a few nanometers in the flow direction [5,6]. 
Statistics of fluorescence is presented in histograms for 
frequency of flashes P(I) as the functions of fluorescence 
intensity I for large populations of many ten thousands of 
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cells, living in different parts of human body. Chaotic 
Brownian motion and rotation of fluorescing cells, flow- 
ing through the laser beam in flow cytometry, ensured 
good statistics for illustration of real 3D chromosomal 
activity inside living cells. Accuracy and reproducibility 
of experimental results in histograms of fluorescence 
approximately equal to 2% that corresponds to the nor- 
mal, usual levels of inevitable and fatal errors and fluc- 
tuations of physical and biological nature [1-6]. Three 
original histograms, as the illustrations of typical exam- 
ples, are shown in Figure 1. 

The heterogeneous fluorescence of all chromosomes in 
the cells reflects simultaneously the genetic special, indi- 
vidual features and immune response to the pathogenic 
actions due to oxidative activity of DNA. Detailed accu- 
rate statistical analysis of these histograms currently is 
absent. Large-scale correlations for distributions of fluo- 
rescence flashes of DNA inside living cells differ from 
those that we would like to see by abnormal fractal di- 
mensions and non-trivial noise level at substantially non- 
Gaussian statistics [3-6]. These natural peculiarities of 
immunofluorescence are often accompanied by statis- 
tical instabilities of local intensity distributions [3-6], i.e. 
fast exponential growth of central moments of fluores- 
cence intensity. We need to develop a sequence of new 
nonlinear statistical methods for data analysis of im- 
munofluorescence. Standard smoothing eliminates de- 
stroys and removes various peculiarities of fractal net- 
works and correlations in the activity of DNA, changes 
real statistics, blurs and distorts many aspects of reality.  

According to tradition, now and in the latter time, 
dominating sciences about DNA based on various ap- 
proaches in biochemistry, structural biology, materials 
science and combinatorics for lonely DNA. In this case,  
 

 
(a)                          (b) 

Figure 1. Dependence of normalized frequency distribution 
of flashes P(I) on their intensity I (a); for clearest, only cen- 
tral part of histogram (b). The area under the final histo- 
grams of P(I) normalized to unit; rhombus points corre- 
spond to bronchial asthma. Total number of flashes is N0 = 
76 623; quadrate points correspond to the healthy donor. 
Common number of flashes is N0 = 40 109; triangle points 
correspond to the oncology disease. Common number of 
flashes is N0 = 40 752. 

informational activities of DNA in real life inside living 
cell, for full set of 3D chromosomes, their overall com- 
munications and information flows, switches in topology 
and informational networks in the presence of real 
changeability and noises in information transfer are lost, 
go off, pushed back far into the background, as the basic 
unsolved problems. What it means for information trans- 
fer of DNA activity inside living cells, for diagnostics 
and comparative analysis of health and diseases? 

In Part 2 of this article we defined informational ho- 
meostasis of Shannon entropy as the empirical result. In 
Part 3 we analyze a density of packing, new types and 
classes of fractal networks of DNA entropy. In Part 4 we 
analyze deviations of entropy from homeostasis and 
various switches for central moments and averages of 
Holder at variations regulation of homeostasis for differ- 
ent states of health. We observe saturation for averages 
of Holder if the number of averages coincides with full 
chromosome number; all chromosomes are involved in 
support of regulation of informational homeostasis. The 
levels of saturations have various switching at changing 
the state of health. In Part 5 we show that this switching 
connected with stability change in homeostasis regula- 
tion. We show that all distributions of information en- 
tropy are divided on three classes, which associated in 
diagnostics with a good health or dominants of autoim- 
mune or inflammatory diseases. This classification based 
on switching of stability at transcritical bifurcation in the 
nonlinear dynamical system of homeostasis regulation.  

2. Information on Oxidative Activity of DNA 
inside Cells. Shannon Entropy.  
Informational Homeostasis 

Oxidizing activity of DNA in the cells activates various 
(all possible) correlations with different combinations of 
non-coding and coding DNA fragments, both within one 
and the same chromosome, and between different chro- 
mosomes. Actual, 3D topology of chromosomal correla- 
tions in the nuclei of cells has quite notable changes over 
time, during only one month, for cells living inside given 
human, in the process of human life or at diseases de- 
velopment, during medical treatment, etc. [1-6]. Charac- 
teristics, changes and deviations various fractal correla- 
tions in networks of fluorescing DNA inside cells can be 
used for medical diagnostics [6]. How these results may 
to use for definition varied structures of informational 
activity of DNA? 

We all, all our chromosomes and all our cells are the 
open systems. How to estimate quality, quantity and 
changeability of DNA communications and DNA infor- 
mation transfer in life of given person? What about in- 
formation lnJ P   and information entropy for DNA 
activity inside cells? What need for comparison various 
data on informational activity of DNA inside cells for 
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one and the same human at various times and for differ- 
ent people? Here we have no clear criteria. How to de- 
termine the existence and level of information noise, 
switches, changeability and stability of information 
transfer inside living cells for any being? What it means 
for medical diagnostics from the point of view different 
types of oxidative metabolism of 3D DNA inside cells, 
for inner and inter chromosomal correlations at different 
states of health? The answers on these questions now are 
absent, that associated with deep and unsolved problems 
in fundamental mathematics, information theory, etc. 

To diagnostics features oxidizing activity of DNA in 
the blood cells for one and the same person at different 
times or in blood cells of different people need to com- 
pare various distributions of fluorescence, which are very 
diverse and changeable, as for three examples in Figure 
1. A huge role here is played by the irregularity, infre- 
quency and brokenness of histograms, which define basic 
information on DNA activity [5-7]. Any artificial smooth- 
ing results destroy this information. For comparison 
various distributions of fluorescence we must under- 
stand the origin and function of these distributions under 
what conditions and parameters they need to be com- 
pared. For example, at Gaussian distribution of random 
variables is important to know only the mean and vari- 
ance. If the statistics is very complex, such parameters 
and their combinations can be very, very, many. Here 
observed non-trivial noises of fluorescence and the ex- 
ponential divergence central moments for fluctuations of 
intensity at increasing the number of central moments 
[3-5]. This is a clear sign of turbulence [3]. In this case, 
when comparing different distributions and moments for 
fluctuations of intensity the number of corresponding 
moments also exponentially quickly grows with increas- 
ing the order of diverging statistical moments. The simi- 
lar procedures of comparisons haven’t the sense in nature 
and in science, excluding examples and illustrations the 
growth for rate of statistical instabilities in the interpreta- 
tion of complexity. Reproducible results and clear analy- 
sis real activity various DNA inside cells produce the 
need of clear, stable levels and criteria for comparison 
different distributions of DNA fluorescence.  

Let us introduce frequency distribution of Shannon 
entropy , based on the frequency distribu- 
tions of information l

lnl iE p  i

Lnl

p
J P 

p
Lnl

 (see Equations (1)-(3)). 
Three examples of frequency distributions of Shannon 
entropy i , based on the frequency distribu- 
tions of information l

lnl iE p 
J P   in Figure 2(a), are 

shown in Figure 2(b). We present comparison of distri- 
butions of immunofluorescence based on the universal, 
empirical invariant of information entropy  ,E J r   

 at given rank r. Rank r is defined by the maximal 
number of measuring channels max

ln r
I r . Detailed defi- 

nition of empirical invariant of information entropy 

 , lnE J r r  is presented below, in Equations (4)-(7). 
This empirical invariant shown in Figure 2(c), as only 
one¸ overall numerical value of total Shannon entropy 
 , lnE J r r  for given rank r, for DNA fluorescence 

inside any neutrophils, living in any people with different 
states of health. 

This invariant was observed during fluorescence of 
DNA in human neutrophils in different samples of blood 
[5,7], as in Figure 2(c). We observe only one unified 
value of total Shannon entropy , like the 
empirical invariant, as the identical sum in each given 
distribution of entropy, in given sample of blood, for all 
cells and any donor. This invariant has one and the same 
value of total Shannon entropy  at fluo- 
rescence for given rank r of histograms, i.e. given scale  

 , lnE J r r

 , lnE J r r

 

 
(a)                       (b) 

 
(c) 

Figure 2. (a) Logarithmic dependence LnP(I) for frequency 
of flashes P(I) on their intensity I(r = 256); The area under 
the initial histograms of P(I) normalized to unit; Original 
histograms for P(I) shown in Figure 1; (b) Normalized dis- 

tributions of information entropy   E J I

 , ln

 in the de- 

pendence on fluorescence intensity I(r = 256); rhombuses 
correspond to bronchial asthma. Total number of flashes is 
N0 = 76 623; squares correspond to the healthy donor, N0 = 
40 109; cross correspond to the oncology disease. Common 
number of flashes is N0 = 40 752; (c) Dependence of total 
Shannon information entropy E J r r  on logarithm 

of range r; initial histograms at range r = 256 shown in Fig- 
ures 1(a) and 2(b). 
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of clusters in networks of DNA entropy. This invariant 

a very strong roughness and dif- 
fe

defines the informational homeostasis of oxidative activ- 
ity of 3D DNA for full set of chromosomes inside living 
cells, at any biodiversity of cells for Shannon-Weaver 
index [5]. This invariant gives the overall zero level for 
countdown of information activity of DNA in cells for 
any person, at any state of health and for any genome of 
different people. 

In Figure 2(a) we see 
rences in information    LnJ I P I   over a wide 

range of changing the orde om zero up to 
ten; typical level of information is about J ~ 7. High level 
of noises instead of a smooth continuity for all local dis- 
tributions of information    Ln

r of values J(I) fr

J I P I   reflects main 
natural properties of DNA  provide main 
correlations in oxidative activity of DNA inside cells, in 
gene’s networks, in metabolism and cell viability. Any 
forced smoothing of experimental data here hampering 
any our attempts to adequate perception of real life DNA 
inside living cells and violates the homeostasis of en- 
tropy. 

Let 

 activity, which

us consider the probability density P(I). i.e. fre- 
quency distribution lP  the number of flashes, 

  0lP N l N , where s the number of measuring 
2, , 256 ; 0N is the total number of 

flashes; ber of flashes with the 
assigned I l ; dimensionless intensity I coin- 
cides with the number  measuring channel l, i.e. I l

l i

the 

of

channel, 1,l 
 N N l  is 

intensity 
num

 
 ; 

  1
P I I

   is the mean probability value; max min

symbol   denotes the statistical average for number 
flashes o orescence in all of r = 256 channels of in- 
tensity measurement. The mean value of 

f flu
P  is equal 

to 1/256 for r = 256 channels of intensity m surement. 
Three examples of frequency distributions of lP  for 
different donors with varied states of health are sho n in 
Figure 1.  

Distributio

ea

n of information 

w

lJ  defined as 

Lnl lJ P                  (1) 

Let us consider the normalized 
m

distribution of infor- 
ation  

256

1

l

l l
l

p J J




 l               (2) 

as the probabilistic measure for frequency distributions 

lE      (3) 

Data analysis of all experiments has shown the con- 
se

           (4) 

Thus, total Shannon entropy E(J) is empirical invariant, 

fo

of Shannon entropy lE  

    ln ,l l l lE p p E J I E J     

rvation of total Shannon entropy 
256i

 
1

consti
i

E J E


   

r all neutrophils in all donors [5,7]. Value of total en- 
tropy      , constE J E J r r   depends on given 
rank r of histo d) and Equation (7)). 
Rank r is defined by the maximal number of measuring 
channels max

gram (see Figure 2(

I r . At rank r = 256 all experimental data, 
for all do give one and the same value of nors 
 , 256 5.48E J r    with standard deviation ~2% , 

l for flow cytometry experimental 
errors ~2% at 256 measuring channels [1,2]. Decreasing 
maximal number of channels or rank r leads to decreas- 
ing the value of invariant  ,E J r  .Three illustrations of 
informational homeostasis tributions of informa- 
tion Lni l

within limits of typica

 for dis
J P   and entropy in Figures 2(a) and (b) are 

show  2(c) at different rank r. Other examples 
of informational homeostasis for different patients with 
various diseases had shown in [5].  

Invariance of total entropy E J

n in Figure

  defines special 
ro

, r
tropy le of distribution of Shannon en   E J I , as is 

for all functions, associated with the conservation laws, 
as the main dominant variable to describe the states and 
dynamics of informational activity of DNA inside cells. 

How will be changing the information J(I) due to re- 
duction of rank r or the range r at definition of Shannon 
entropy? Here, as everywhere, are used different terms a 
rank r and range r for the same value of r. Range of his- 
togram r interconnected with the selection of multistage 
clusters in networks with structure of bronchial tree; here 
range r coincides with the number of columns in a histo- 
gram or with the number of channels for measurements 
of fluorescence intensity at given maximal value of di- 
mensionless intensity, i.e. maxr I . In our experiments 
the number of channels is r ariations of range r, 
i.e. rank of histogram r, or variations the scale r, when 

maxr I

= 256. V

 , provide the changes in irregularity and broken- 
frequency distribution of fluorescence for histo- 

grams of various rank r. Various examples decreasing of 
histograms rank r presented in [3,5,7]. Integer r defines 
the total range r for distribution of entropy as maximal 
number of columns in reduced histogram. Each reduction 
of r leads to the redistribution of probability density 

ness of 

 ,P I r  and information  ,J I r . Reduced distribution 
bility of proba  ,P I r  describe in [3]. Reduced distri- 

bution of information is    , ln ,
d 

J I r P I r  . Normal- 
ized frequency of inform reduction 
of range r is  

ation lp r   during 

         
1

, Ln
l r

l l l l l
l

p r J r J r J r P r




      (5) 

Frequency distribution of entropy  lE r  for an arbi- 
trary rank r is  

    , lnl iE J r p r p r   l          (6) 

Total entropy n  is invariant   
1

, l
l r

l l
l

E J r p p




 
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id  in all cells. Total enentical for given r tropy  ,E J r  
pends only on rank n Figure 2(c). de r, as it is shown i

Dependence of  ,E J r  on rank r in Figure
logarithmic 

  

 2(c) is 


1

, ln ln
l r

E J r p p r


          (7) ln i l l
l

p r


Informational homeostasis of total Shannon
for oxidative activity of DNA is observed 

various states

tion 

no- 
flu of fractal 

 entropy 
 , lnE J r r  

in all cells of blood different old and young patients with 
 of health and all the time. It means exis- 

tence of informational homeostasis of DNA during all 
the life time of cells from birth to death. 

3. Manifold of Dense Fractal Networks of 
Shannon Entropy for Informa

Let us consider some fractal peculiarities of immu
orescence distribution. Different analogies 

networks such as bronchial tree, structure of oncology 
tumor, arterials tree, etc with networks and distributions 
of immunofluorescence are described in [3]. Many histo- 
grams of different origin are the similar to the histograms 
for fluorescence of neutrophils in Figure 1 [3]. Range of 
histogram r interconnected with the selection of multi- 
stage clusters in networks with structure of bronchial tree. 
Variations of range r, i.e. rank of histogram r, or varia- 
tions the scale r provide the changes in irregularity and 
brokenness of frequency distribution of fluorescence for 
histograms of various rank r. The quantitative measure of 
irregularity and brokenness for frequency distribution of 
flashes for any rank r, in all histograms may serve a 
Hurst index H. может служить. 

Hurst exponent H [8] is determined by means of re- 
gression equation  

 Ln Ln constR S H I              (8) 

where R/S is rescaled range (R = S), R is
mal deviation of P(I) from local mean le

ure 3 presented three distributions of fractal di- 
mensions D for frequency di
tro

 

 range or maxi- 
vel, S is standard 

deviation of P(I). Illustration of definition Hurst index 
was presented in [5,6]. Hurst index H for frequency of 
flashes P(I) corresponds to fractal (Hausdorff) dimension 
D [8] if 

2D H                     (9) 

In Fig
stributions of Shannon en- 

py in Figure 2(b). 
As the rule, networks of entropy are characterized by a 

mix of normal D < 2 and abnormal D > 2 fractal dimen- 
sions, as in Figure 3. Abnormal fractals D > 2 are typical 
for entropy’ networks in a good health and for oncology 
at different values of rank r and perfectly absent at bron- 
chial asthma, where D < 2 for all rank r. Networks of 

 

Figure 3. Dependence of fractal dimension D(r) on loga- 
rithm of range r in networks of Shannon entropy with dif- 
ferent scales for three different states of health con ected 

. Normal fractal dimension 
 corresponds to interval 1 < D < 2 and positive Hurst 

of the po

orks. The size of all and any frac- 
ta

e of information entropy 

n
with asthma, with good health and at oncology; initial his- 
tograms shown in Figure 2(b). 
 
information entropy for DNA fluorescence are formed by 
normal and abnormal fractals
D
index H > 0. Negative Hurst index H < 0 gives the 
anomalous fractal dimensions  2 2D H   . Abso- 
lute majority of the authors ignore any anomaly fractal 
dimensions. Nonetheless, negative Hurst index H < 0 
does not contradict of main definitions wer-law 
correlations for fractal distributions [9], subject to rejec- 
tion from the hypothesis of self-affinity. In the case of H 
< 0 an anomalous fractal dimension D > 2 can serve as a 
measure of fragmentation for correlations in complex 
networks [10]. 

Abnormal fractal dimensions D > 2 give not only 
fragmentation of correlations but also ensure more dense 
packing of fractal netw

l clusters d ~ N1/D, for certain number of nodes N, de- 
creases at increasing the value of D. We do not know 
characteristics of fragmentation of information entropy 
of DNA and we do not have the recipes and methods of 
its descriptions. Therefore, we guide by clear signs of 
new peculiarities and strong expressions of contradic- 
tions with the traditional images of modern standards, 
diagrams and descriptions of DNA activity inside cell. 
For example, we consider different unusual deviations of 
typical features from very popular networks of “small 
worlds” [11], that are often used to describe global DNA 
activity inside cells [12,13].  

According to Figure 3 there is no unambiguous and 
simple connection of network topology or fractal dimen- 
sion D with the certain valu
 , lnJ r r  at informational homeostasis. 
Consider an undirected network, and let us define d as 

the mean geodesic (i.e., shortest) distance between pairs 
odes in a network of flashes of fl

E

of vertex or n uorescence. 
The certain number N of synchronized nodes-flashes in 
networks of DNA fluorescence inside cells are charac- 
terized by the intensity I ~ N, where N defines a common 
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number of correlated nodes in network, if every node in 
fluorescence network has the approximately identical 
fragment of oxidative activity of DNA with approxi- 
mately identical quantity of fluorescing dye. More de- 
tailed determination of correlated nodes N in the clusters 
of fluorescence networks of DNA inside cells now is 
unknown. The correlation length d depends on the net- 
work topology. Random networks with a given degree 
distribution may be the networks of “small worlds” [14], 
as in one from most popular family of complex networks 
[11-13]. “Small world” behavior is typically character-
ized by logarithmic scaling for path length tends d ~ lnN 
[14]. On the other hand the expression of d ~ N1/D defines 
a linear size of D-dimensional lattice or the size of a 
fractal cluster d ~ N1/D. Therefore estimation of fractal 
dimension D of fluorescence in the networks of “small 
worlds” is   ~ ln ln lnD N N N . Standard definition of 
fractal dimension D [8,10] 

     0lim Ln LnD N d d       (10) 

also gives  
d

~ ln lnD N N ln N  in “small worlds” net- 
work. We use various experimental data in h
define Hurst index H and fractal dimension D

 (8)-(10). The tr

 topology for

) also ex- 
cl

ense 
pa

 

istograms to 
 according 

to Equations ansformation of “small 
worlds” due to reduction of range r = I ~ N leads to ex- 
pression ln ~ ln lnr D r . In these variables data in Fig- 
ure 3 are transformed to Figure 4(a). Using of variables 
for networks of “small worlds” gives varied distributions 
of fractal  Shannon entropy which have a 
view of the correlations presented in Figure 4. 

We observe more fast than linear and various growth 
of correlations at increasing rank r in Figure 4(a). Rich 
diversity of various hinges in Figures 4(b)-(d

oude posibility for an unambiguous and simple identi- 
fication any networks of entropy as networks of “small 
worlds”. Therefore, hypothesis about “small worlds” 
structure for information entropy of DNA, as a common 
universal principe, here is no good. Complex hinges in 
Figures 4(b)-(d) and their dependence on the state of 
health may to serve one of illustration of various frag- 
mentations in fractal networks. Strong variations of 
hinges in Figures 4(b)-(d) at variations states of health 
show that topology or fractal structure of entropy net- 
work has strong dependence on the states of health. 

Moreover, more dense and more real types of entropy 
networks presented in Figure 5. Packing of data in Fig- 
ures 5(a) and (b) corresponds to exponentially d

cking of “small worlds”. According to Figure 5 we 
never have ideal networks of “exponentially small 
worlds” in real life, but we have a very perfect networks 
of “exponentially small worlds” without fractals (D = 2) 
as a clear simple standard for comparisons of deviations 
of various fractal correlations with this ideal standard. In 
Figures 5(a) and (b) are observed more ordered situa- 

 
(a)                       (b) 

 
(c)                       (d) 

Figure 4. Large-scale distributions of fractal dimension D(
for variables corresponded to networks of ‘small worlds’; (a) 

r) 

     ln ~ lr D r tal dimension nlnr ; various hinges of frac

D(r) in the dependence of   ~ ln lnlnD N N N  for (b) 

asthma, (c) good health (d) oncology; initial histograms 
 

 
tions in topology structure of networks than in Figures 
4(a)-(d) for networks

shown in Figure 2(b).

 of “small worlds”. Therefore net- 
orks of “exponentially small worlds” are more suitable 

nd rather 
no

ig 
ra

w
for description of information entropy of DNA. 

Other type of correlations may be presented in net- 
works of “double logarithm scale” in Figure 6. 

According to Figures 5 and 6, branching a
table differences in networks corresponding to various 

states of health are observed for small rank r = 4 and b
nk r > 32. Rather good coincidence and local univer- 

sality of entropy networks for different states of health 
are observed at rank r = 8, 16, 32 in Figure 5 for “expo- 
nentially small worlds” and in Figure 6 for “double loga- 
rithm scale”. Stratification and individual deviations 
from common correlations at other values of rank r de- 
pend on the states of health; variations of health status 
correspond to variations in informational networks of 
DNA activity. In Figures 5(b) and 6(b) we observe two  
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(a)                          (b) 

Figure 5. Dependences of fractal dimension D(r) on double
logarithm of range r in the variables for ‘exponentiall

small worlds’ 

 
y 

(a)    ln ln ~ lnlnr D r r  (b)  

  ln ln ~ ln lnlnr D r r r  in multi-scale networks of “real 

worlds” and  in n ially sm
for information e

 of “exponentially small worlds”, 
without fractals (D = 2), corresponds to violet line with 
round dots; initial histograms shown in Figure 2(b). 
 

etworks of “exponent all worlds” 
ntropy of fluorescing DNA inside neutron- 

phils; the ideal network

 
(a)                        (b) 

Figure 6. Dependences of fractal dimension D(r) on double 
logarithm of range r in the variables for “double logarith-

mic scale” (a)  2
lnln ~ lnD r r  (b) lnln ~ ln lnlnD r r r  in 

 inside neutrophils; the ideal network

ratification and branching of fractal 
ructures for DNA information entropy shape and define 

nd Switches for Holder’s  
Averages  

wh uations 
du of stability near homeostasis. These 

multiscale networks of “real worlds” and in networks of 
“double logarithmic scale” for for information entropy of 
fluorescing DNA  of 
“double logarithmic scale”, without fractals (D = 2), corre- 
sponds to violet line with round dots; initial histograms 
shown in Figure 2(b). 
 
different branches for small and big values of rank r in 
the point of r = 16. St
st

various alternative ways of transmitting information. Dif- 
ferent alternative means of information communication 
for the global network of DNA inside cells ensure by 
local networks of different clusters with the same topol- 
ogy (identical D) at different scales of r or at varied 
values of entropy (E = lnr) in the dependence the states 
of health, as in Figure 3. The same fractal dimension D 
can match the clusters of different scales r with a 
different number of flashes. Currently we don’t now 
other clear details of fragmentation. We have no univer- 
sality in informational networks of DNA, only perfect 
etalon, as theoretical measure for estimations of informa- 
tion communications in the not existing in real life and 
ideal cells, which presented here as violet lines in Fig- 
ures 5 and 6 for an ideal case D = 2. Reality connected 
with variations of homeostasis regulation, i.e. with chang- 
ing noises of information entropy for DNA activity dur- 
ing life of cell. 

4. Noise of Entropy in Homeostasis Support. 
Patterns a

We have no of ideal, absolute, correct homeostasis, no- 
ere and never. We always observe various fluct
ring regulation 

fluctuations also very individual and consist many in- 
formation on stability regulation the dynamic equilibrium 
in homeostasis. Let us consider various deviations, fluc- 
tuations or noise of entropy  le r  near homeostasis of 
total information entropy  ,E J r  

           , 1, lnl l l l le r E r E J r E r p r p r     (10) 

Mean characteristics for individual distributions of 
noises in a blood sample defined by the central mo
and Holder’s averages for noises of entropy 

ments 
 le r .  

The central moments of  m
e r  for fluctuations of 

entropy  le r  near homeostasis defined by the statis- 
tical averages  

    ,
m

e r M e r m ,          (11) 

where m determ   ,M e r m . ines the order of moment 
Here symbol ...  denotes statistical 
tuations of entropy 

average for fluc- 
 le r . The power means or averages 

of Hölder for deviations of entropy  le r  a

 

re  

 
1

1

1
,

l r m
m

l
l

e m r e
r





     

Three illustrations for distribution of central moments 

 
          (12) 

  4 ,M e r m  and of averages of Hölder 
 4 ,e r m  at 

distr
rank r = 4 presented in Figure 7. These 

rank r = 4 for inf . 
Two branch  

ibutions are determined on the base of histograms of 
ormation entropy in Figure 8

es with even and odd numbers m of central 
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(a)                        (b) 

Figure 7. (a) Logarithmic distributions of central statistical 

moments   ,M e r m  

homeostasis for bronchial as

sented in F

for fluctuations of entropy

thma (rhombuses), fo

 e(r) near 

r a good 
health (quadrates), for oncology (triangles); initial histo- 
grams pre igure 8; lower and upper branches 
correspond to the even 2,4,6,m    and odd 1,3,5,m   ; 

(b) Distributions for averages of Hölder  ,e m r  with 

different number m at fluctuations of entropy e(r) near ho-
meostasis for bronchi hombuses), d 
health (quadrates), for oncology (triangles) histo- 
grams presented in Figure 8; upper and lower branches 
correspond to the even 2,4,6,m    and odd 

1,3,5,m   . 

 

al asthma (r  for a 
; initial 

goo

 

Figure 8. Dependence of normalized distributions of Shan- 
non entropy E(I, r = 4) on intensity I at rank r = 4. The con- 
tinuous lines correspond to the parabolic app s of roximation
probability density distributions, three types of lines cor- 
respond to different types of stability for transcritical bi- 
furcation in homeostasis regulation, at change the states of 
health; initial histograms shown in Figure 2(b).  
 
moments   ,M e r m  have unique universality with 
zero and clear exponential decreasing of   ,M e r m , 
as in Fi he exponential decreasing  gure 7(a). T


of

  ,M e r m the informational stability of 
DNA activity. Decreasing rate of  ,

 provides 
M m r  

to growth at increasing numbers m and r. A very slow 
erages of Hölder  

 have trends

growth for av ,e m r  in Figure 7(b) 
clearly defines individual level of ns and auto- 
correlations of entropy  ,e m r  at homeostasis for 

central moments 

fluctuatio

 u  quickgiven person, unlike of nified and  degradation of 

  ,M e r m , as in ure 7(a).  
Averages of Hölder 

Fig
 ,e m r  define various orders 

of autocorrelation, at vario ers of m, for fluctua- 
tions of entropy near the “centre of gravity” in stability 
regulation the dy brium in homeostasis. 

us numb

namic equili Ac- 
co  all devrding to Figure 7(b) iations of entropy, for 
various individual distributions of  ,e m r  from zero 
level, increase with increasing the number of m, with 
various saturations of chromosomal correlations of en- 
tropy at different states of health until the value of m = 
46, which defines the number of mes inside 
cells. Therefore, the value of  

chromoso
46,e m r  is the 

largest among all mean. Therefore, overall level of en- 
tropy noise defined by the values of  46,e m r  , 
according to a well known inequality 

     1, ,e m r e m r   for H es. This 
means, also, that all 46 chromosomes involved in support 
regulation of homeostasis inside cells, as on t.  

All distributions of 

older’s averag

e united full se
 ,e m r  in F

reasing of m. Two branches 
with even and odd numbers m correspond to the negative 
and positive values of 

igure 7(b) have an 
oscillatory behavior at inc

 ,e m r . These oscillations with 
pe  Figure

r is define  

riod 1 not specified in  7(b); the mandatory be- 
havior doesn’t needing in comments. 

Average noise level of information entropy in DNA 
activity at given range d by the standard devia- 

tion     
1 2

21
, ,

k m

e m r e k r
   

1km  
 ,e m rof  for  

formation transfer of DNA activity inside cells. These 
 of

m = 46. These are very important characteristics for in- 

levels    46,e m r   
rages of Höld

defined by f
46 for all ave er 

 all values o  m = 
 ,e m r , but not only the 

lower numbers of 1,2m  ; we have 46 chromosomes in 
the cells and many types of cross-correlations. Noise of 
entropy or evel for one chromosome, de- 
fined by the values of 

 average noise l
  46, re m , in DNA activity 

ensures contrast in ation transfer and correlations 
inside cells at given scale r for any networks of DNA 
activity. Value of 

 inform

  ,e m r  depends on health status. 
In Figure 7(b) maximal noise level 

  46, 4 18%e m r     corresponds to strong in- 
flammations at asthma. 

Distributions of  ,e m r  
s define stable and 

clear classification of noise
lation of homeostasis, for given 

pe .  

itching observed for distribution 
of

in Figure 7(b) depend on 
the health status. These distribution

 level in networks of entropy 
for DNA activity at regu

rson at given time
We observe very strong switching of branches for r = 

4 in the averages of Hölder in Figure 7(b) for asthma 
with respect the same branches for a good health and 
oncology. The same sw

 central moments   ,M e r m  in Figure 7(a). Analy- 
sis show that distributions of various other averages of 
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Hölder, for other values of rank r are rather close to each 
other. This means the similar noise levels of information 
entropy near homeo cology and in a good 
health for given donors at other values of rank r. In the 
latter case we observe very notable differences in fractal 
structures of networks of information entropy in Figures 
3-6 and difference in their stability (see bellow Figure 8). 
Therefore, we cannot assume that similarity in the aver- 
ages of Hölder linked with the coinciding characteristics 
of collective correlations inside and between chromo- 
somes in networks of a certain scale r for different states 
of health. This means only some similarity in the levels 
of noises for ensuring information transfer and chromo- 
somal correlations near homeostasis, as for one and the 
same noise level in various Brownian motions. 

Mean level of experimental errors in original cytomet- 
ric histograms for r = 256 is about 2% [6-8]. We observe 
much more noticeable and very clear difference between 
initial and transformed experimental distribution

stasis at on

s in Fig- 
ures 1 and 2 for different states of health and much more 
essential difference for averages of Hölder  ,e m r  
for deviations of entropy in Figure 7(b). This means that 
in all cells exists and maintained a very effective stabili- 
zation of homeostasis in various networks of entropy for 
various states of health. The origin and mech f 
this universal stabilization now are unknown. Various 
regulation of homeostasis must be very quick and must 
have the general physical origins, as for the dipole and 
multiple resonances for excitations in large clusters. 

Switching between networks of entropy in Figures 4- 
6, corresponds to different states of health, with different 
deviations of  le r  from homeostasis of entropy. Hid- 
den switching between branches for averages of Hö

anism o

lder 
 , 4m r   and central moments  , 4M m re   in 

Figure 7 for a good health, oncology and for asthma here 
linked with ch g stability due to transcritical bifur- 
cation in distributions of information entropy in Figure 8 

tatuses of health. 

5. Statistical Stability and Transcritical  
Bifurcation 

Let us consider statistical stabil

angin

for different s

ity varied distributions of 
pre- 
n of 

en Figure 8. Large-scale distributions 

(13) has stationary solutions that correspond to fixed 

information entropy following to some approaches 
sented in [3]. Reduction of rank r leads to distributio

tropy presented in 
of information entropy for rank r = 4 in Figure 8 have 
different statistical properties and different stability types 
for various states of health. These properties are con- 
nected with transcritical bifurcation in homeostasis regu- 
lation. Transcritical bifurcation has a normal form [15] 

2
t v Av v                  (13) 

where A is a control parameter. The dynamical system 

points. The fixed point 0v A  depends on the sign and 
value of a control param . If
tractive fixed point 

eter A
and stable solutions

 0A   there is an at- 
 to Equation (13). 

If 0A   there is a repelled fixed point and unstable 
solutions to Equation (13). If 0A  there is a shunt 
fixed point and neutral s y. The introduction of the 
source of additive white noise redu quation (13) to 
the Langevin equation 

tabilit
ces E

       2 , 2tv Av v f t f t f t D t t          (14) 

where  f t  is the Langevin source,  t t   is the 
Dirac  -function, D  is diffusion coefficient for white 
noise. Linearization near the fixed point duces 

linear Langevin eq
deviatio

 0v A  re
uation forEquation (14) to 

ns of 
the  small 

0x v v  , 

 t x Ax f t                  (15) 

The Fokker-Planck equation that corres  to Equa- 
tion (15) is  

ponds

   2 , 0t x xxA D x t              (16) 

Equation (16) determines the 
de

stationary probability 
nsity  s x  as    2~ exp 2s x Ax D  . The prob- 

ability density distribution  s x  corresponds to at- 
tractor if . The statistical determina
tractor is used as the more probable state, 
tri

. 
attract

 appro

0A tion of the at- 
when the dis- 

bution function has a maximum as convex parabola in 
Figure 8

A similar determination of or is actually equiva- 
lent to the ach proposed in [16]. If 0A   there is 
a repelled fixed point and minimum of  s x . Let us 
introduce    4 4extrx I I  , where  4extrI  corre- 
sponds to the position of minimum um for 
cu

 or maxim
rves in Figure 8. The attractor fixed point corresponds 

the upper parabola in Figure 8 if  2 2 0Ax . This 
parabola characterizes the blood immunof cence at 
inflammato onchial 
asthma.  

The lower parabola in Figure 8 corresponds to unsta- 
ble 

D 
luores

ry diseases; in our case this is br

 0A   critical point, charac ealth. 
Fixed point of neutral stability with the ideal value of 

0A

terizes a good h

  was not observed. Instead, a large family of lines 
with very small positive and negative curvatures for 
va

mations

If o

rious autoimmune and oncology diseases without in- 
flam  is observed, as the line passing through tri- 
angular points in Figure 8. 

ne considers the curvature or curvature radius of 
parabolic approximations of entropy  , 4E I r   in 
Figure 8 as the bifurcation parameter A, then various 
types of statistical distributions of  , 4E I r   can be 
classified in the frame of tr Pro- 
po

tasis corre

anscritical bifurcation. 
sed criteria correspond to informational homeostasis of 

entropy. The bifurcation corresponds to stability change 
in homeostasis regulation for various health statuses. Thus, 
three types of informational homeos spond to 
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positive, negative and neutral stability for distributions of 
information entropy at oxidative activity of DNA inside 
cell. The bifurcation reflects the collective statistics ef- 
fects of various cellular processes and switching of tran- 
sitions from health to illness and from illness to health. 

6. Changeability and Switching of Entropy’s 
Noise for a Healthy Donor in Real Time 

Let us compare, in real time, during one year, Shannon 
entropy for DNA activity inside cells of healthy donor. 

Three histograms are shown in Figure 9. 
One may to compare histograms in Figures 1 and 9. 
stributions of entropy are shown in Figure 10. Di

. 
re 12. 

 
an
ob actal 
st

ous 
di

One may to compare histograms in Figures 2 and 10. 
Fractal peculiarities of entropy are shown in Figure 11
Dense packing of entropy is shown in Figu
Some features of stability and noises of information 

entropy at low rank r = 4 are shown in Figure 13. 
One may to compare histograms in Figures 1 and 9, 2
d 10, 4 and 11, 6 and 12, 7 and 13(b), 8 and 13(a). We 
serve changes in distributions of entropy and fr

ructures, noise level etc. in real time for one and the 
same healthy man and in the comparisons with vari

stributions for different unhealthy people. Many of 
fractal peculiarities of entropy change in time and depend 
on health status. Constancy belongs to homeostasis or to 
invariance of total Shannon entropy in Figures 2(c) and 
10(b) for any states of health of any human. Constancy 
also belongs to statistical instability (positive curvature 
of all approximations) for entropy distributions of un- 
changeable healthy man in Figures 8 and 13(b) during one 
year. This is example of a very good immunity, as and 
perfect closeness to the ideal of networks in Figure 12. 
 

 
(a)                        (b) 

Figure 9. Dependence of normalized frequency distribution 
of flashes P(I) on their intensity I (a) and for clearest only 
central part of histogram (b), for one and the same invaria- 
bly healthy, donor in different times. Triangle green po ts 
correspond to  832, analysis 

in
the total flashes number N0 = 30

time is 19 July (first year); rhombus yellow points corre- 
spond to the total flashes number N0 = 38 758, analysis time 
is 11 July (next year); square red points correspond to the 
total flashes number N0 = 40 109, analysis time is 03 June, 
before 11 July, histogram range r = 256, as in Figure 1. 

 
(a)                        (b) 

Figure 10. (a) Normalized distributions of information en- 

tropy   E J I  

 at rank r 
 entrop

in the dependence on fluorescence inten- 

sity = 256; (b) Dependence of total Shannon in- 
formation y  , lnE J r r  on logarithm of range r; 

initial histograms at range r = 256; initial histogram shown 
in Figure 9. 

 

 
(a)                        (b) 

 
(c)                        (d) 

Figure 11. Distributions of fractal dimension D(r) in the 
dependence on rank r ((a)-(d)); ((b)-(d)) various hinges of 
fractal dimension D(r) in “small world” network, in the de- 
pendence of   ~ ln lnlnD N N N , for a healthy man in rea

time, during on  in Figure 9. 

l 

e year; initial histograms shown
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(a)                        (b) 

Figure 12. Dependences of fractal dimension D(r) on double 
logarithm of range r in the variables for “double logarithm- 

mic scale” (a)  2
lnln ~ lnD r r  (b) lnln ~ ln lnlnD r r r   

multi-scale net  networks of 
“double logarit  

ound dots; i histograms shown

in

works of “real worlds” and  in
hmic scale” for information entropy of fluo-

rescing DNA inside neutrophils; the ideal network of “dou- 
ble logarithmic scale”, without fractals (D = 2), corresponds 
to violet line with r nitial  in 
Figures 9 and 11(a). 

 

 
(a)                        (b) 

Figure 13. (a) Dependence of normalized distributions of 
Shannon entropy E(I, r = 4) on intensity I at rank r = 4. The 
continuous lines correspond to the parabolic approxima- 
tions; initial histograms shown in Figures 9 and 11(a); (b

Distributions f

) 

or averages of Hölder  ,e m r  with dif- 

ributions of
entropy, based on normalized distribution of information 
in original histogram for frequency of flashes in different 

 observe only one unified value of 
 , for all rank r, like 

 of 3D DNA 

ibe the states and dy rmational 
ac

ferent number m at fluctuations of entropy e(r) near ho- 
meostasis for a good health man in real time, during one 
year; initial histograms shown in Figure 9; upper and lower 
branches correspond to the even 2,4,6,m    and odd 

1,3,5,m   . 

7. Conclusions 

We study various large-scale dist  Shannon 

blood samples. We
total Shannon entropy  , lnE J r r
the empirical invariant, as the identical sum in each given 

distribution of information entropy, in all samples of 
blood and any donor, as in Figures 2(c) and 10(b) in real 
time. This invariant defines the informational homeosta- 
sis of oxidative activity for full set of chro- 
mosomes inside living neutrophils, in all clusters of all 
multi-scale networks for information activity of DNA 
inside cells. This invariant gives Shannon entropy as 
general characteristics for definition of information ac- 
tivity of 3D DNA in cells for any person, at any state of 
health, for any genome as the overall zero level for 
analysis and comparison chromosomal activity and DNA 
networks in cells for different people (Figures 5-8) and 
for one and the same human in different times (Figures 
12 and 13). 

Invariance of total entropy  , lnE J r r  defines 
special role of distribution of Shannon entropy, as it is 
for all functions associated with the conservation laws 
(pulse, energy, charge etc.), as the main dominant vari- 
able to descr namics of info

tivity of DNA in cells. Nevertheless, informational 
invariant of  , lnE J r r  is difficult to compare with 
the conservation laws of mass, energy, etc.; we have no 
different values of total entropy in different cells. Invari- 
ance of entropy reflects the unchangeable measure or 
quantitative units of information entropy at certain scale 
r of correlations at DNA activity inside all and any cells. 

Informational homeostasis reflects a number of fun- 
damental phenomena in information and physics of real 
life of 3D DNA inside cells. Shannon entropy of 3D 
DNA in cells has much more dense packing of correla- 
tions than in well known networks of ‘small worlds, than 
in all and any technical and computer systems. As the 
rule, networks of entropy are characterized by various 
mix of normal D < 2 and abnormal D > 2 fractal dimen- 
sions (Figures 3 and 11(a)) and new types of fractal pat-
terns and fractal hinges for various fractal topology at 
different states of health (Figures 4-6 and 12).  

Results generalized in the double logarithmic scales, in 
the triple and quadruple logarithmic scales, etc., as a re- 
flection of complexity, what permits, also, detect a frag- 
mentation, as it is shown in Figures 4-6 and 12. 

Deviations or noises of information entropy  le r  

quences 

fr

fo

om homeostasis level define regulation of informa- 
tional homeostasis, information transfer and information 
flow inside cells for different states of health. The coin- 
cidences and switching patterns in branching se

r central moments  ,M e m  and for average  
Hölder 

s of
 ,e m r  of these noises are shown in Figures 

7 and 13(b). We observe various saturations for averages 
of Hölder  ,e m r  in the levels of chromosomal cor- 
relations of entropy at different states of health in Fig- 
ures 7(b) and 13(b), at increasing number of correlations 
m. All c mes are interconnected and involved in 
the support regulation of homeostasis; saturation of 

hromoso
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