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ABSTRACT 

We define the Fatou and Julia sets for two classes of meromorphic functions. The Julia set is the chaotic set where the 
fractals appear. The chaotic set can have points and components which are buried. The set of these points and compo- 
nents is called the residual Julia set, denoted by  rJ f , and is defined to be the subset of those points of the Julia set, 

chaotic set, which do not belong to the boundary of any component of the Fatou set (stable set). The points of  rJ f  

are called buried points and the components of  rJ f  are called buried components. In this paper we extend some 

results related with the residual Julia set of transcendental meromorphic functions to functions which are meromorphic 
outside a compact countable set of essential singularities. We give some conditions where .  rJ f  
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1. Introduction 

Let X,Y be Riemann surfaces (complex 1-manifolds) and 
Df be an arbitrary non-empty open subset of X. We define  

  
   

, : is analyti

and , .

fHol X Y f D Y f

Hol X X Hol X

 



c
 

The set of singular values of  ,f Hol X Y  is  

     SV f C f A f  , where  is the set of   C f

critical values and  A f  is the set of asymptotic val- 
ues. 

Let  f Hol X , the sequence formed by its iterates  

will be defined and denoted by , 0 : Idf  1:n nf f f   , 
n . The study makes sense and is non-trivial when X 
is either the Riemann sphere , the complex plane  ̂ 
or the complex plane minus one point, this is  0 . 

Taking X    and ˆY    we deal with the fol- 
lowing classes of meromorphic maps. 

 

 : is transcendental meromorphic with at least one not omitted polef X Y f  . 

 : is a compact countable set and is meromorphicf Y B Y B f   . 

 
The set B is formed by the essential singularities of f, 

where f is non-constant. We assume B to have at least 
two elements and f to have poles. With this assumption 
we have .    

If f is a map in any of the classes above the Fatou set 

 F f  consists of all points Xz  (or ) such 
that the sequence of iterates of f is well defined and 
forms a normal family in a neighbourhood of z. The Julia 
set is the complement of the Fatou set, denoted by 

z Y B 

    cJ f F f . The Fatou and the Julia sets are also 
known as the stable and the chaotic sets respectively. In *The authors were supported by CONACYT grant 128005. 
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the Julia set or chaotic set is easy to find fractals, exam- 
ples of this fact are below. The fractals are typically self- 
similar patterns, where self-similar means they are “the 
same from near as from far” [1]. 

Examples of functions in class  live in the family  

, ezf
z 
   studied in [2]. The stable set (Fatou set)  

and the chaotic set (Julia set) for the parameters 4   , 
1    can be seen in Figure 1. 

Examples of functions in class  can be found in the  

family   2
e z c

cf R z 


, where  is a rational func-   R z

tion, ,  and . We do not have any 
picture of the Fatou and Julia set but the Julia set should 
be a fractal for some parameters c and ϵ sufficiently 
small. 

 0 c

Class  was initially studied by Baker, Kotus and 
Yi Nian [3-6]. The class   has been introduced and 
studied by Bolsch in [7-9]. 



Many properties of  J f  and  F f  are much the 
same for all classes above but different proofs are needed 
and some discrepancies arise. For functions in classes 

 or   we recall some properties of the Fatou and 
Julia sets: the Fatou set 


 F f  is open and the Julia set 
 J f  is closed; the Julia set is perfect and non-empty; 

the sets  J f  and  F f  are completely invariant 
under f; and finally the repelling periodic points are 
dense in  J f . 

A Fatou component for a function in class  or  
can be periodic, pre-periodic or wandering. The possible 
dynamics of a periodic component of the Fatou set is 
either attracting, parabolic, Siegel disc, Herman ring or 
Baker domain. Figure 1 is an example of a Baker do-  

 

main for the function 4, 1

1
4ezf

z 


   , see [2] for  

details. 
It was proved in [5], for functions in class , and in 

[8], for functions in class  , that a periodic Fatou 
component (of arbitrary period) is simply, doubly or in- 
finitely connected. 



In [6] the authors proved that for functions in class  
 

 

Figure 1. The chaotic set, which is a fractal, with colors and 
the Fatou set on black. 

  with a finite set of singular values there are neither 
wandering components nor Baker domains. The same 
statement works for functions in class  and the proofs 
are similar to those in [6]. 



We define the residual Julia set of f denoted by 
 rJ f  as the set of those points of  J f  which do 

not belong to the boundary of any component of the Fa- 
tou set  F f . The points of  rJ f

 r

 are called buried 
points and the components of J f  are called buried 
components. This is the Residual Julia set (buried points 
and buried components) which are in the chaotic set. 

This concept was first introduced in the context of 
Kleinian groups by Abikoff in [10,11]. In [12], McMullen 
defined a buried component of a rational function to be a 
component of the Julia set which does not meet the 
boundary of any component of the Fatou set. Similarly, 
for a buried point of the Julia set. McMullen gave an 
example of a rational function with buried components. 

Baker and Domínguez in [13] extended some results 
of Qiao [14] (for rational functions) to have buried points 
or buried components to functions in class . In Sec- 
tion 2 we prove that the same results can be extended to 
functions in class . 




Finally, Section 3 contains Theorems A and B which 

assure with some conditions that the residual Julia set is 
not empty for functions in classes  and .  

2. Basic Results of the Residual Julia Set for 
Functions in Classes  and   

In this Section we will state some basic results about the 
residual Julia set which hold for functions in classes  
and . The proofs of the these results can be found in 
[13] and [15]. 




Proposition 2.1. Let f be in class  or . If the 
Fatou set of f has a completely invariant component, then 
the residual Julia set is empty.  

 

Proposition 2.2. Let f be in class  or . If there 
exists a buried component of 

 
 J f , then  J f  is 

disconnected.  
Proposition 2.3. Let f be in class  or . If  

)( fJ r , then  rJ f  is completely invariant, dense 
in  J f  and uncountably infinite.  

Proposition 2.4. If f   has no wandering do- 
mains and  rJ f  

U
, then there is a periodic Fatou 

component  such that  J f U  . 

3. Some Conditions When  for 
Functions in Class  

 rJ f  


In this section we will extend some results related with 
the residual Julia set for functions in class  to func- 
tions in class . Qiao in [14] proved the following 
theorem for rational functions. 




Theorem 3.1. Let f be a rational function and 
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  ˆJ f   . The Julia set  J f
 

 contains buried com- 
ponents if and only if i) J f  is disconnected and ii) 
 F f  has no completely invariant component. 
Baker and Domínguez in [13] gave the following re- 

sult which was step towards a generalisation of Theorem 
3.1 for functions in class . 

Theorem 3.2. Let f be a meromorphic function in  
with no wandering domains. Assume that the 


 J f  is 

not connected and that  F f  has no completely in- 
variant component. Then the residual Julia set  rJ f  
is non-empty. 

If we removed the hypothesis of no wandering do- 
mains of Theorem 3.2 and extend it to functions in class 

 the statement is as follows. 
Theorem A. Let f be a function in class . If   J f  

is not connected and  F f  has no completely invariant 
component. Then the residual Julia set r J f  is non- 
empty, this is .  rJ f  

In order to prove Theorem A we need to state some 
results for functions in classes   and . The fol- 
lowing lemma was given in [16] for functions in class 

, since the proof works for functions in class  we 
do not write it. 



 

Lemma 3.3. If  or  and U  is a multiply 
connected periodic Fatou component such that 

, then  is completely invariant.  

f 

U



 U J f 
The following result was given in [17] for functions in 

class . 
Theorem 3.4. Let . Suppose that the Fatou set 

has no completely invariant domain and the Julia set is 
disconnected in such a way that the Fatou set has a 
component 

f 

H  of connectivity at least five. Then sin- 
gleton components are dense and buried in  J f . 

Proof of Theorem A. 
If  is a component of the Fatou set, then it can be 

either periodic, preperiodic or wandering. We will split 
the proof in two cases the no wandering case and the 
wandering case. 

U

No wandering case. 
Let . Assume that there are not wandering do- 

mains in the Fatou set and that . By Proposi- 
tion 2.4 there is a periodic Fatou component  such 
that . The component  is multiply con- 
nected since the Julia set, by hypothesis, is not connected. 
By Lemma 3.3 the component  must be completely 
invariant which gives us a contradiction. Therefore, the 
residual Julia set is not empty. 

f 

U J 

 rJ f  

U

U

U
f

Wandering case. 
We assume that the Fatou set has wandering compo- 

nents. We prove the result in two cases: 1) f has only 
finite connected Fatou components and 2) f has at least 
one infinitely connected Fatou component. 

1) Since the Julia set is disconnected it consists of un- 
countable many components. Now as the connectivity of 

each component of the Fatou set of f is finite, then the 
number of the boundary components of all Fatou com- 
ponents is countable. Thus the Julia set has uncountably 
many buried components. Therefore, .  rJ f  

2) If we take  a multiply-connected Fatou compo- 
nent of connectivity n, , , then the proof 
follows as the proof of Theorem 3.4 in [17]. Thus sin- 
gleton buried components are dense in the Julia set. 
Therefore, 

U
5n  n

 rJ f   . 
The following theorem is an extension of Proposition 

6.1 given in [16], since the proof given in [16] extends 
easily to our case, functions in class , we shall give 
just a sketch of it. 



Theorem B. Let f  , and  ˆ A B   a closed 
set with non-empty interior. Suppose the following two 
conditions are satisfied:  

     ˆ B A J f     .  

 All the Fatou components of f eventually iterate inside 
A and never leave again. That is, if   is a Fatou 
component,  nf A   for all n N , where N 
depends on  . 

Then  rJ f   .  
Sketch of Proof B. 

Take any point     ˆz B A J    f  and a neigh- 

bourhood  ˆV B   A  of z. Since periodic points 
are dense in Julia, then V must contain a periodic point 
  of the Julia set. Under iteration the point   has to 
come back to itself infinitely often. 

By hypothesis, points on the boundary of any Fatou 
component must iterate inside A and never leave again. 
Then points in the Julia which leaves A infinitely often 
are not in the boundary of a Fatou component, thus 

 rJ f   since it lies in the complement of A. There- 
fore  rJ f   . 
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