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ABSTRACT 

This paper treats the problem of chaos synchronization for uncertain Lorenz system via single state variable information 
of the master system. By the Lyapunov stability theory and adaptive technique, the derived controller is featured as fol- 
lows: 1) only single state variable information of the master system is needed; 2) chaos synchronization can also be 
achieved even if the perturbation occurs in some parameters of the master chaotic system. Finally, the effectiveness of 
the proposed controllers is also illustrated by the simulations as well as rigorous mathematical proofs. 
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1. Introduction 

Chaos control and synchronization have been intensively 
investigated during last decade [1-3] and still have at- 
tracted increasing attention in recent years. Chaos syn- 
chronization has many potential applications in secure 
communication [1], laser physics, chemical reactor proc- 
ess [2], biomedicine and so on. Up to now, numerous 
methods have been proposed to cope with the chaos 
synchronization, such as backstepping design method [3], 
adaptive design method [4], impulsive control method 
[5], sliding mode control method [6,7], and other control 
methods [8-10]. But most of the proposed methods 
abovementioned need more single state variable informa- 
tion of the master system. However, for instance, the 
more state variables transmitted to the slave system 
means the more bandwidth and energy consumption in 
secure communication system as well as security reduc- 
tion. Additionally, controller based on single state vari- 
able is simple, efficient and easy to be implemented in 
practical applications [11]. For example, in a real engi- 
neering case, some state variables may be difficult or 
even cannot be detected.  

Recently, scholars begin to have attention on the prob- 
lem of chaos synchronization via single state variable 
controller (hereafter refereed to as “SSVC”) with the 
motivation of the above facts. Jiang Zhang [12] gives a 

schematic method to design the synchronization control- 
ler for a class of chaos system based on backstepping 
design, and several elegant results derived. However, the 
controllers conceived by several high-degree complex 
polynomials. M. T. Yassen [11] provided linear SSVC to 
Lu chaotic system, but the gain of the controller is diffi- 
cult to be determined due to the fact that it contains the 
information of the upper bound of the system trajectory. 
In order to overcome the deficiency, he modified the 
SSVC based on adaptive technique. Junan Lu [13] gave 
out an adaptive SSVC for an unified chaotic system (uni- 
fication of Lorenz, Chen and Lu chaotic system). Feng- 
xiang Chen [14] proposes a linear SSVC for Lu system 
via theory of cascade-connection system. However, lit- 
eratures [11-14] did not take the parameters uncertainty 
into account, and the synchronization failed when some 
uncertainty occurs. On the other hand, for an electrical or 
electronic system, parameter uncertainty is inevitably 
suffered due to the variation of temperature, humidity, 
voltage, or interference of electric and magnetic fields. 
Thus, in this paper, we will provide robust SSVC for un- 
certain Lorenz chaotic system based on Lyapunov stabil- 
ity theory, and its effectness is validated by both rigorous 
theoretical analysis and simulations. 

The rest of this paper is organized as follows. In the 
next section, the problem statement on the scheme of 
master-slave chaos synchronization for uncertain Lorenz 
system via single state variable information is presented. *Corresponding author. 
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In Section 3, three controllers are provided to the Lorenz 
system without/with parameters perturbation. In Section 
4, numerical simulations are provided to illustrate the 
effectiveness of the proposed controllers. Finally, some 
conclusion remarks are included in Section 5. 

2. Problem Formulation 

The Lorenz system is a system of ordinary differential 
equations (the Lorenz equations defined by (1)) first 
studied by Edward Lorenz [15]. It is notable for having 
chaotic solutions for certain parameter values and initial 
conditions. In particular, the Lorenz attractor is a set of 
chaotic solutions of the Lorenz system. Consider the Lo- 
renz system: 

 1 2 1

2 1 2 1

3 1 2 3

x x x

3x rx x x x

x x x bx

 

  

 





            (1) 

where , ,r b  are system parameters, 1 2 3, ,x x x  are 
state variables, the system generates the chaotic behavior 
(see Figure 1) when 10, 28, 8 3r b    . Hereafter in 
this paper, we refer to the system (1) as master system 
and assume that 1x  is the only available state variable. 

The related slave system with control inputs are writ- 
ten as  

 1 0 2 1 1

2 0 1 2 1 3 2

3 1 2 0 3 3

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

x x x u

x r x x x x u

x x x b x u

  

   

  






          (2) 

where 0 0 0, ,r b  are system nominal parameters and 

1 2ˆ ˆ, , 3ˆx x
u D

x
4: R R 

 are state variables,  i.e. 

i , and they will be work out 
later. 

 1 1 2 3ˆ ˆ ˆ, , , ,i iu u x x x x
,3, i 1, 2

tion Our target is to find out the func 1, 2,3i ,u i   
such that the trajectory of the slave system (2) is going to 
asymptotically approach the master system (1) and fi- 
nally implement chaos synchronization in the sense that  
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Figure 1. Lorenz chaos phenomenon at 10,  28,r   
8 3b  . 

lim 0, 1,2,3i
t

e i


   where . ˆi ie x x  i

3. Controller Design 

According to the parameter uncertainties, we can classify 
the synchronization system into 8 cases listed in Table 1. 

If we introduce the set , ,A B C  defined as following: 

  0 0 0 0 0 0, , , , , , ,A r b r b r r b b        

  0 0 0 0 0 0, , , , , , ,B r b r b r r b b        

      2 2

0 0 0 0 0, , , , , 0C r b r b r r b b       

Obviously, it is an equivalent partition for the element 
from case 1 to case 8. i.e., , case 1A  case 2B  , 

3i

. Consequently, in this section, we are only 
going to investigate the chaos synchronization under 
three different classifications defined by the set 

8

caseC  i

, ,A B C . 
C1:  0 0 0, , , , ,r b r b A    

Theorem 1: The two Lorenz chaotic systems (1) and 
(2) can be synchronized under the control law as follows: 

1

2 0 1 0 1 1 3 1 3

3 1 2 1 2

0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

u

u r x r x x x x x

u x x x x


    
  

        (3) 

Proof: Subtracting Equation (1) from Equation (2), 
then the error dynamic system is obtained as  

 1 0 2 1

2 2 1 3

3 1 2 0 3

e e

e e x e

e x e b e

 e 

  

 





                (4) 

Choosing the Lyapunov function as 
2

2 21
2 3

0

1
2 2

2

e
V e




  
 

e



2

            (5) 

and taking the derivative along the trajectory of the sys- 
tem (4), it yields 

2 2
1 1 2 2 1 2 3 1 2 3 0 3

2 2 2
1 2 1 2 0 3

2 2 2 2

2 2 0

V e e e e x e e x e e b e

e e e e b e

      

     


  (6) 

The proof is completed. 
C2:  0 0 0, , , , ,r b r b B    

For this case, the system (1) can be equivalent to the 
perturbation system as  
 
Table 1. Synchronization system classification based on 
parameter uncertainties. 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

0

0

0

r r

b b

 



0

0

0

r r

b b

 



0

0

0

r r

b b

 



0

0

0

r r

b b

 



 
0

0

0

r r

b b

 



 
0

0

0

r r

b b

 



 
0

0

0

r r

b b

 



0

0

0

r r

b b

 


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1 1 0 2 1

2 0 1 2 1 3

3 1 2 0 3

x x x

x r x x x x

x x x b x

  

  

 







1

             (7) 
where . 0h 

Proof: Subtracting Equation (1) from Equation (2), 
then the error dynamic system is obtained as  

 1 0 2 1 1 1 1

2 2 1 3

3 1 2 0 3

e e e e

e e x e

e x e b e

     

  

 





where   1 0 2x x     . e

         (9) Since the trajectory of the master system (1) is 
bounded due to the property of chaos system, 1  must 
be bounded, i.e. 1 1M 1, . .R s t M    .  

Choosing the Lyapunov function as Theorem 2: The two Lorenz chaotic systems (1) and 
(2) can be synchronized under the control law as follows: 


2

22 2 *1
2 3

0 0

1 1
2 2

2 2

e
V e e

h
 

 
 

     
 

     (10)  1 1 1 1 1

2 0 1 0 1 1 3 1 3

3 1 2 1 2

1 1

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

u x x x x

u r x r x x x x x

u x x x x

h x x





   


   
  
  


        (8) where *  is a constant and will be determined later. 
Taking the derivative along the trajectory of the system 
(4), it yields 

 

 

 

*

12 2 2 1 1
1 1 2 2 1 2 3 1 2 3 0 3

0 0 0

*
11 1 12 2 2

1 2 0 3
0 0 0

*
1 1 12 2 2

1 2 0 3
0 0

2 2 2 2

1 3
2

2 2

1 3
2

2 2

ee
V e e e e x e e x e e b e

h

ee e
e e b e

e e
e e b e

  
  

 
  


 


         


      


     




             (11) 

 
If we select *

1   , then . 0V  Theorem 3: The two Lorenz chaotic systems (1) and 
(2) can be synchronized under the control law as follows: Comment 1: Since the controller input component 

1 1e e  (see Equation (8)) is not continuous at 1 0e  , it 
leads to chattering in the viewpoint of engineering appli-
cation. In order to overcome this defect, a continuous 
function  12arctan ke   is adopted to substitute the 
discontinuity function 1 1e e  based on the conception 
of variable structure controller design theory, and thus 
the chattering will be eliminated. 

 1 0 1 1

2 0 1 0 1 1 3 1 3

3 1 2 1 2

ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

u M x x

u r x r x x x x x

u x x x x

 


   
  

       (14) 

where   21 1 2
1 1 0 2 2 32 1 2

3M M M       M ,  
     1 2 1 0

Proof: Subtracting Equation (1) from Equation (2), 
then the error dynamic system is obtained as  

0,1 2 , 0,3 2 , 0, 2 .b      
C3:   0 0 0, , , , ,r b r b C  
In this case, the system (1) can be equivalent to the 

perturbation system as   1 0 2 1 1

2 2 1 3 2

3 1 2 0 3 3

e e e M

e e x e

e x e b e

    

    

   





1e

        (15)  1 0 2 1 1

2 0 1 2 1 3 2

3 1 2 0 3 3

x x x

x r x x x x

x x x b x

   

    

   





        (12) 

Choosing the Lyapunov function as 

where  2
2 21
2 3

0

1
2 2

2

e
V e




  
 

e

              (16) 

  
 
 

1 0 2

2 0 1

2 0 3

1x x

r r x

b b x

    

  

  

         (13) and taking the derivative along the trajectory of the sys- 
tem (4), it yields 

 

2 2 2
1 1 2 2 1 2 3 1 2 3 0 3

1 1 0 2 2 3 3

2 2 2 2

2 2 2 2

V e e e e x e e x e e b e M

e e e

       

     


 (17) Since the trajectory of the master system (1) is 

bounded, i  must be bounded, i.e. ,iM R   
. . i is t M  . Additionally, if 0  , 0 , r r 0b b  

then , , and  respectively. 1 0  2 0  3  0
Note that , for any , 

thus  

2 12ab a b    2 , ,R a b R  
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  
     

  

2 2 2
1 2 1 2 0 3

21 2 1 2 2 1
1 1 0 1 1 2 2 2 2 3 3 3 3

2 2 2
1 1 2 2 0 3 3

21 1 2 1 2
1 1 0 2 2 3 3

2 2

2

1 2 3 2 2

2

V e e e e b e M

e e

e e b e M

2 2e      

  

   

 

  

     

        

       

     





(18) 

Note that      1 2 10,1 2 , 0,3 2 , 0, ,b     0  and  

  21 1 2
1 1 0 2 2 32M          1 2

3
        (19) 

then . The proof is completed. 0V 
Comment 2: Although the component of input 1  

will increase to infinity as 1 1

u
ˆx x , so the law is only a 

conceptional controller and can not be implemented in 
real application. But this does not mean that the control- 
ler law is meaningless. In real implementation, we can 
modify the  as  1u

 
 

0 1 1 1 1

1 2

0 1 1 1 1

ˆ ˆ

ˆ ˆ

M x x x x r
u

M x x r x x r





   
 







2

3



    (20) 

With the modified controller, the synchronization error 
will not approach to zero, but in the vicinity of the 

, the details see [16] and simulation 3. On the 
other hand, the errors of 2 3  is independent of  
and , but decided by the following subsystem: 

0,0,0

1u
,e e 1e

2 2 1 3

3 1 2 0 3

e e x e

e x e b e

    

   




           (21) 

which means that any effort on the 1  will not have any 
beneficial to attenuate the fluctuation of . 

u

2 3,e e

4. Numerical Simulation 

In this section, three numerical simulations named as 
Simulation 1, Simulation 2 and Simulation 3 are carried 
out to illustrate the effectiveness of the proposed con- 
troller. For sake of simplification, we refer the controller 
defined by (3) to as nominal controller, the controller 
defined by (8) to as adaptive controller, and the control- 
ler defined by (14) to as robust controller in the follow- 
ing simulations. 

Simulation 1: 
In this subsection, we are going to validate the effec- 

tiveness of nominal controller designed under the condi- 
tion . Thus, three parameters of 
Lorenz master system and slave system are chosen iden- 
tically as 

 0 0 0, , , , ,r b r b A  

0 0 010, 28, 8 3r r b b  

     1 2 30 2, 0 0, 0x x x 
  ˆ ˆ ˆ0 1.1, 0 0.2,x x 

   




. Initial 
states of the master and slave system are taken as 

 and  0
  0x1 2 3 , respectively, and they 

will be kept the same through out the following simula- 
tions. Taking the control input as the nominal controller, 
the simulation results are shown in Figure 2. As we can  

1

0 2 4 6 8 10
-0.5

0

0.5

1

Time(Sec.)

e 1(t
)

0 2 4 6 8 10
-0.5

0

0.5

1

Time(Sec.)

e 2(t
)

0 2 4 6 8 10
-1

-0.5

0

0.5

Time(Sec)

e 3(t
)

 

Figure 2. Synchronization errors with the nominal control- 
ler for Lorenz system without uncertainty. 
 
see that the synchronization is achieved after about 3 
seconds. Which means that the nominal controller is ef- 
fective for the synchronization system without uncer- 
tainty; however, this is not the case when the parameter 
perturbations are occurred and the results are shown in 
the subsequently Simulation 2 and Simulation 3. 

Simulation 2: 
In this subsection, we add the parameter 30% pertur- 

bations to  , i.e., 13,  . The adaptive controller de- 
fined by (8) is taken as  

  

 

1 1

2 0 1 0 1 1 3 1 3

3 1 2 1 2

1 1

ˆarctan 800

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ100 , 0 5

u x

u r x r x x x x x

u x x x x

x x



 

  


   


 


1x

  


       (22) 

which has been modified according to the Comment 1. 
And the results are shown in Figure 3. We can see that 
the synchronization via nominal controller is failed due 
to the fluctuation of  1e t . Meanwhile, the synchroniza- 
tion via the adaptive controller is achieved after about 4 
seconds, and the adaptive variable   goes to a fixed 
constant. Obviously, the adaptive controller proposed in 
Theorem 2 really eliminates the disturbance suffered from 
he parameters perturbation, and the synchronization is  t

Open Access                                                                                             AM 



F. X. CHEN, T. ZHANG 

Open Access                                                                                             AM 

11

 

0 5 10
-4

-2

0

2

4

e 1(t
)

Time(Sec.)

 

 

0 5 10
-0.4

-0.2

0

0.2

0.4

e 2(t
)

Time(Sec.)

 

 

0 5 10
-1

-0.5

0

0.5

e 3(t
)

Time(Sec.)

 

 

0 5 10
5

10

15

20

25

(
t)

Time(Sec.)

Adaptive Controller

Nominal Controller

Adaptive Controller

Nominal Controller

Adaptive Controller

Nominal Controller

 

Figure 3. Synchronization errors for uncertain Lorenz system via the adaptive controller and nominal controller, respec- 
tively. 

r 

 
achieved. On the other hand, the perturbation of parame- 

0 2 4 6 8 10
-2

2

te 13   hardly has any impact on the convergence of 

3

            (23) 

is independent of 

   2 3,e t e t  due to the subsystem 

2 2 1 3e e x e

e x e b e

  

 




    
3 1 2 0

  and  
proved that the sub ystem 3) is asymptotically stable 

1e .
 (2

It can be easily to be 
s

(i.e. 2 2 3 3ˆ ˆ,x x x   as t  ) with any 1x  x . For 
example, choosing Lyapunov function as 2 2

2 3V e e  , 
then . W eans that the nver- 
gence rate of 2 3ˆ ˆ,

2
2 0V e b   2

3 0e  hich m co
x x  is independent of the p  

of 
e bationrtur

  and 1e . 
: Simulation 3

I this su secn b tion, we are going to analysis the per- 
fo st controller designed under the condi- 
tio

rmance of robu
n  0 0 0, , , , ,r b r b C   . Here we consider the worst 

case, i.e. 0 0 0, ,r r b b    . The parameters of the 
maste  13r system are taken as    (+30% perturbation 
of the nom 23.8inal value 10), r   (15% perturbation 
of the nominal value 28), 3.2b   (+20% perturbation 
of the nominal value 8/3). R ntroller and nominal 
controller are here both ado  as to compare their 
performance on the chaos synchronization and the simu- 
lation results are shown in Figure 4. From Figure 4, we 
can see that the synchronization via nominal controller 
and robust controller are both failed due to the errors do 
not converge to zero but undulate in a bounded area. For 
robust controller, 

obust
pte

 co
d so

1e t  approaches to zero, but this is 
not the case for other error component  2e t and  3e t , 
which has been interp ted by Comment 2. For nominal 
controller, all error components 

re
 1 t , e  2e t   and  

0

Robust Controller

Nominal Controller

e 1(t
)

 

0 2 4 6 8 10
-5

0

5

e 2(t
)

 

 

Robust Controller

Nominal Controller

0 2 4 6 8 10
-10

-5

0

e 3(t
)

Time(Sec.)

 

 

Robust Controller

Nominal Controller

 

Figure 4. Synchronization errors for uncertain Lorenz sys- 
tem via the robust controller and nominal controller, re- 
spectively. 
 
 3e t  varied in the vicinity of certain value, respectively. 

As mentioned in Comment 2, the error component  2e t  
and  3e t  is independent of  and , but decided 

y (21). Wh
1e

th 2

1u
 and b ich means that bo  e t  3e t  must 

keep the same when different controller (nominal con- 
troller and robust controller) acted on the slave system  
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and orresponding numerical simulation result are 
shown in Figure 4. 

5. Conclusion 

the c

edback of single state variable from
ing to parameter uncertain

tion is defined to classify the parame- 

 r

more effectively b . 

d I
d National Nature Science 
77]. 

 Synchro- 
nization and Secure Communication,” Philosophical 
Transactions of th o. 1911,
2010, pp. 379-

The paper investigates the synchronization of uncertain 
Lorenz system via fe  
the master system. Accord
an equivalent parti

ties, 

ter uncertain Lorenz system. Then three controllers (no- 
minal controller, adaptive controller, and robust control- 
ler) are given out to achieve the chaos synchronization 
based on Lyapunov stability theory and adaptive tech- 
nique. Finally, three numerical simulations are conducted 
to validate the effectiveness of the proposed controllers, 
and it finds that the adaptive controllers do really elimi- 
nate the disturbance caused by parameters perturbation 
but it is not the case for nominal controller. For robust 
controller, any effort to modify the controller 1u  will 
not have beneficial to attenuate the error component 

 2e t  and  3e t  which is independent of 1e  and 1u , 
but decided by (21). For the future investigation, we will 
use L2 gain theory and passivity theory to design a obust 
synchronization controller to attenuate the disturbance 

ased on single state variable
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