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ABSTRACT 

A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters 
of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are stabilized to fixed 
points respectively. Numerical simulations are then provided to show the effectiveness and feasibility of the proposed 
chaos and hyperchaos controlling scheme. 
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1. Introduction 

In many engineering and other practical problems, chaos 
is undesirable and therefore needs to be controlled. Thus, 
a large number of control methods have been developed 
and are being applied to real systems [1-10]. The method 
given by Ott, Grebogi and Yorke (OGY) [1] is to stabi- 
lize an unstable orbit in the neighborhood of a hyperbolic 
fixed point by forcing the orbit onto the stable manifold. 
The method proposed by Romeiras, Grebogi, Ott and 
Dayawansa (RGOD) [2] is not yet suitable for control- 
ling hyperchaos since the method changes the stability 
property of the fixed point completely. However, the 
method proposed by Yang, Liu and Jian-min Mao [11] 
gives a new idea to stabilize unstable orbits even if there 
is no preexisting stable manifold nearby. For a finite- 
dimensional dynamical system, whose governing equa- 
tions may or may not be analytically available, Yang, Liu 
and Mao show how to stabilize an unstable orbit in a 
neighborhood of a “fully” unstable fixed point. The ad- 
vantage of this method is: only one of the unstable direc- 
tions is to be stabilized via time-dependent adjustments 
of control parameters. The parameter adjustments can be 
optimized. Recently, Bu [12] and Li [13] stabilized un- 
stable discrete systems by a method which does not re- 
quire any adjustable control parameters of the system. 

Consider an n-dimensional dynamical system defined 
by 

 1 ,k kx F x                  (1) 

where nx R is an n-dimensional vector, F is a nonlin-
ear vector valued function. Let xf be the fixed point of the 
map (1). To stabilize a chaotic orbit to this fixed point, 
we take a variable feedback control described by 

    1k k k kx F x M F x x    ,        (2) 

Define an infinitesimal deviation of xk from xf as 

k k fx x x   . Then from Equation (2), one has 

 1 ,k k kx J x M J I x              (3) 

where  
k fk x xJ F x     is the Jacobian matrix of the  

original system F evaluated at the fixed point xf and I is 
the n n  identity matrix. The goal of controlling here is 
to make li

k
m 0kx


.  For this aim, one requires 

1 ,k kx Q x                  (4) 

where Q is an n n  matrix and takes the form 

1

2

0
,

0

q
Q

q

 
 
 

                 (5) 

where are constants. Substituting Equation (4) and Equa- 
tion (5) into Equation (3) and eliminating kx , choosing 
one special form of the matrix  one 
have 
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    1
.M qI J J I

             (6) 

This needs to use numeric computation to do. There- 
fore the above scheme based on the symbolic numeric 
computation is summarized as follows. 

Input: 
1) The unstable system (1); 
2) The system (2) with a variable feedback controller; 
3) Choose the initial values of systems (2). 
Output: 

1)   ;
k fk x xJ F x     

2) M in (6); 
3) Deduce the system (2) according to the results (6); 
4) Numerical simulations of the states xk when 

. k 
In this paper, we use the method to stabilize 2-dimen- 

sion discrete Fold system [14] and 3-dimension discrete 
hyperchaotic system due to Wang [15] to fixed points 
respectively. 

2. Stabilizing 2-Dimensional Discrete Fold 
System 

Using the above method, we stabilize 2-dimension dis- 
crete Fold system presented as: 

    
   

1 2 1

2
2 1

1
,

1

x k x k x k

x k x k





  


  
         (7) 

where ,  are the parameters, and we choose  = −0.1,  

 = −1.7. 
In the following based on the method mentioned above, 

we will make the Fold system stabilize at the fixed point. 
It is easy to get the two fixed points (1.965097170, 
2.161606887), and (−0.8650971698, −0.9516068868) of 
Equation (7). The Jacobian matrix corresponding the 
fixed point  1 2,f fx x  is 

1

1
.

2 0f

J
x

 
 
 

                 (8) 

From (6) one can have  

 

1

1

1 1

1 1

2 1

1 2 1 2
,

2 1 2

1 2 1 2

f

f

f f

f f

q x q

x x
M

1 f

x q x q

x x


 


 

   
               

q
      (9) 

here we choose  
   1 2, 1.965097170, 2.161606887f fx x   as our re- 
search object. Choosing the parameter 0.5,q   and 

0.3q   respectively, one gets  

1

2

1.176666313 0.1766663133
,

0.6943329445 1.194332944

1.247332838 0.2473328387
.

0.9720661223 1.272066122

M

M

  
    

  
    

   (10) 

From (2), respectively substitute (10) into (7), we can 
obtain 

 

         
   

         
   

1 2 1 2 1 1

2
1 2

2
2 1 2 1 1

2
1 2

1 ( ) 1.76666313

0.1766663133 ,

1 0.6943329445

1.194332944 ,

x k x k x k x k x k x k

x k x k

x k x k x k x k x k

x k x k

 



 



        
      


        


     

                (11) 

and 

           
   

         
   

1 2 1 2 1 1

2
1 2

2
2 1 2 1 1

2
1 2

1 1.247332838

0.2473328387 ,

1 0.9720661223

1.272066122 .

x k x k x k x k x k x k

x k x k

x k x k x k x k x k

x k x k

 



 



        
      


       


     

               (12) 

 
In the following, we give the orbit of 2-dimension dis- 

crete Fold system before being stabilized in Figure 1(a). 
And in Figure 1(b), three orbits starting from different 
initial points are stabilized to the fixed point 
(1.965097170, 2.161606887). It is shown that the unsta- 
ble orbit is stabilized to the desired fixed point mono- 
tonically. Then the orbits stabilized of xk and yk versus tk 

are depicted contrasting with the ones before being stabi- 
lized in Figures 2 and 3, respectively. 

3. Stabilizing 3-Dimension Discrete  
Hyperchaotic System 

In this section, we consider 3-dimension discrete hyper- 
haotic system c 
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(a)                                                 (b) 

Figure 1. (a) 2-dimension discrete Fold system; (b) Three orbits starting from different initial points are stabilized to the fixed 
point (1.965097170, 2.161606887), for q = 0.5. 
 

 
(a)                                                 (b) 

Figure 2. (a) x1(k) versus k before being stabilized; (b) x1(k) versus k after being stabilized for q = 0.5 and q = 0.3. 
 

 
(a)                                                 (b) 

Figure 3. (a) x2(k) versus k before being stabilized; (b) x2(k) versus k after being stabilized for q = 0.5 and q = 0.3. 
 

       
       
         

1 3 2 4 1

2 2 3 1 1 2

3 5 6 2 3 7 3

1 1 ,

1

1 1

y k a y k a y k

y k a y k a y k y k

y k a a y k y k a y k

 

 

  

    


   
     

,

,

(13) 

which was derived from the generalized Rössler system 

via a first-order difference algorithm [15]. 
We take the fixed point (0.09610764055, 

0.4420951466, 0.9130225853) as our research object, 
that is  1 2 3, ,f f fy y y  = (0.09610764055, 0.4420951466, 
0.9130225853). 

Following the procedure above, the Jacobian matrix of 
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map (13) is 

4 3

1 2

6 3 6 2 7

1 0

1

0 f f

a a

J a a

a y a y a

 
 

  

 


 
  

.      (14) 

1







Here we let a1 = −1.9, a2 = 0.2, a3 = 0.5, a4 = −2.3, a5 
= 2, a6 = −0.6, a7 = −1.9 and 1.   

From (6), choosing 0.5q   and  respec- 
tively, the matrix M at the fixed point (0.09610764055, 
0.4420951466, 0.9130225853) is correspondingly ob- 
tained as following 

0.2q  

 

0.9762747382 0.2344378413 0.02165450397

0.8908637970 0.0784140703 0.09961071835 ,

0.2253899842 0.2728405070 0.7942822117

M

 
   
   

                   (15) 

and  

0.9430593722 0.5626508191 0.05197080956

2.138073113 1.588193768 0.2390657240 .

0.5409359615 0.6548172166 0.562773086

M

 
   
   

                    (16) 

From (2), respectively substitute (15) and (16) into (13), one can obtain 

         
         

           

1 3 2 4 1 1 1

2 3 1 1 5 6 2 3 7 3

2 2 3 1 1 2 3 2 4

1 0.0237252618 0.9762747382 0.2344378412

0.02165450397 ,

1 1.07841407 0.890863797

0.099610

y k a y k a y k y k y k

a y k a y k a a y k y k a y k

y k a y k a y k y k a y k a y k

 

    

   

       
        

         
      

           
       

5 6 2 3 7 3

3 5 6 2 3 7 3

4 1 2 3 1 1 3

71835 ,

1 0.2057177883 1 0.2253899842

0.272840507 0.7942822117 ,

a a y k y k a y k

1




3 2y k a a y k y k a y k a

a y k a y k a y k y k

  

   

  








    


         


        

y k

4 1




3 2

     (17) 

and 

         
         

           

1 3 2 4 1 1 1

2 3 1 1 5 6 2 3 7 3

2 2 3 1 1 2 3 2

1 0.0569406278 0.9430593722 0.5626508191

0.05197080956 ,

1 2.588193768 2.138073113

0.23906

y k a y k a y k y k y k

a y k a y k a a y k y k a y k

y k a y k a y k y k a y k a y k

 

    

   

       
        

         
      

           
       

5 6 2 3 7 3

3 5 6 2 3 7 3

4 1 2 3 1 1 3

5724 ,

1 0.4937226914 1 0.5409359615

0.6548172166 0.5062773086 ,

a a y k y k a y k

y k a a y k y k a y k a y k

a y k a y k a y k y k

  

   

  








    


         


        

     (18) 

 
The numerical results are shown in the followed fig- 

ures. The orbit of 3-dimension discrete time hyperchaotic 
system is given by Figure 4(a). In Figure 4(b), three 
orbits starting from different initial points are stabilized 
to the fixed point (0.09610764055, 0.4420951466, 
0.9130225853). 

We can also get the result that 3-dimension discrete 
time hyperchaotic system is stabilized. In Figures 5-7, 
the stabilized orbits of      1 2 3, ,y k y k y k  versus tk 
are plotted contrasting with the ones before being stabi- 
lized, respectively. 

4. Conclusion 
In summary, we have introduced a method to stabilize 
unstable discrete systems, which does not require any 
adjustable control parameters of the system. 2-dimension 
discrete Fold system and 3-dimension discrete hypercha- 
otic system are stabilized to fixed points respectively. 
From the process we finish, it is shown that stabilizing 
the unstable discrete systems neither requires a prior 
analytical knowledge of the underlying system nor any 
adjustable control parameters in advance. Numerical 
imulations are then provided to show the effectiveness  s  
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(a)                                      (b) 

Figure 4. (a) 3-dimension discrete time hyperchaotic system; (b) Three orbits starting from different initial points are stabi- 
lized to the fixed point (0.09610764055, 0.4420951466, 0.9130225853), for q = 0.5. 
 

 
(a)                                         (b) 

Figure 5. (a)  y k1  versus k before being stabilized; (b)  y k1  versus k after being stabilized. 

 

 
(a)                                        (b) 

Figure 6. (a)  2y k  versus k before being stabilized; (b)  2y k  versus k after being stabilized. 

 

 
(a)                                         (b) 

Figure 7. (a)  3y k  versus k before being stabilized; (b)  3y k  versus k after being stabilized. 
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and feasibility of the proposed chaos and hyperchaos 
controlling Scheme. 
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