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ABSTRACT 

A recently discovered approach including de Brujin graphs and Eulerian circuits are used to DNA sequencing and 
fragment assembly, and to simplify DNA graphs through a series of transformations on graphs and digraphs in the field 
of bioinformatics. Since numbered graphs provide underlying mathematical models in studying the wide variety of 
seemingly unrelated practical applications, so graph colorings often are used to divide large systems into subsystems. A 
new graph labeling has been introduced and investigated. 
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1. Introduction 

Scientists and researchers have emphasized DNA se-
quencing and fragment assembly with the hopes of en-
hancing their abilities to reconstruct full strands of DNA 
based on the pieces of data they are able to record in re-
cent years. Complications arise with fragment assembly 
due to imperfect data sets. Strands are often riddled with 
repeats and come in varying sizes. As a result, configur-
ing the image of the original genome is not as easy as 
fitting one puzzle piece into the next [7]. A recently dis-
covered approach including de Brujin graphs and Eule-
rian circuits are used to DNA sequencing and fragment 
assembly, and to simplify DNA graphs through a series 
of transformations on graphs and digraphs in the field of 
bioinformatics [9]. 

In Operations Research or Systems Engineering The-
ory and Methods, one very often use graph colorings to 
divide large systems into subsystems. Coloring (di) 
graphs can be used to describe the street configuration 
[1], and distinguishing colorings [11] are related with 
traffic network and the frequency assignments of radio 
and satellites. Numbered graphs interpretations also ap-
ply to other areas of mathematics. Some of the most sig-
nificant numerical results have result from the corre-
spondence between some ruler problems in additive 
number theory and numbered graphs. Many applications 
of graph labeling can be found in [6]. 

Bloom and Golomb [2] have shown that numbered 
graphs provide underlying mathematical models in 

studying the wide variety of seemingly unrelated practi-
cal applications. For example, the design of certain im-
portant classes of good non-periodic codes for pulse ra-
dar and missile guidance is equivalent to numbering the 
complete graph in such a way that all the edge numbers 
are distinct; “nonnatural” methods of encoding the inte-
gers from 0 to bn1 using n-digit vectors from the 
b-symbol alphabet have been devised to minimize the 
seriousness of errors occurring in a single digit; determi-
nation of crystal structures from X-ray difference data 
has long been a concern of crystallographers; other ap-
plications of numbered graphs have included design of 
highly accurate optical gauging systems for use on auto-
matic drilling machines, design of angular synchroniza-
tion codes, design of optical component layouts for cer-
tain circuit-board geometries, and determining configura-
tions of simple resistor networks which can be used to 
supply any of a specific set of resistance values. Bollobas 
and Pikhurko [4] introduce that a difference-magic label-
ling of a graph G is an injective mapping f: V(G)N (the 
set of all natural numbers) such that the labels |f(x)f(y)| 
of edges xyE(G) are pair wise distinct. Clearly, every 
graph admits a difference-magic labeling, so a natural 
question to ask is how economical it can be. More pre-
cisely, the difference-magic number D(G) which is the 
smallest k such that a difference-magic labeling of G into 
{1,2,, k} exists. And they also defined: A sum- magic 
labeling of a graph G as an injection f: V(G)N such 
that the labels f(x)+f(y) of edges xyE(G) are pair wise 
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distinct. In fact, there are many edge labeling that are 
defined by |f(x)f(y)| or f(x)+ f(y) ([10], [6]). 

New labellings. We are motivated from [4] and [6] to 
define two new labellings as follows. All elements of any 
number set mentioned are non-negative integers here. A 
(p,q)-graph is one on p vertices and with q edges. The 
symbol [k, k+m] stands for the set {k, k+1, , k+m}, 
where integers m>k0. A set S is called a k-set if it con-
tains k elements, i.e. k=|S|. The largest integer and the 
least integer in S are denoted by max(S) and min(S), re-
spectively. The graphs under consideration are simple 
and finite, undirected and loopless. We use the standard 
notation and technology of graph theory, or they can be 
found in [3] and [6]. We will show some connections 
between our labellings and well-known colorings, such 
as, the chromatic index (G) and the chromatic number 
(G) of a graph G. 

A proper total coloring of a graph G is defined on a 
subset of V(G)E(G) such that two adjacent or incident 
elements of the subset are colored with different colors. 
Similarly, a mapping f from the vertex set V(G) to [0,q] is 
a proper vertex labelling of G if f(u) f(v) for all edges 
uvE(G). Write f(V(G))={f(u): uV(G)} and f(E(G))= 
{f(uv): uvE(G)}, or f(V) and f(E) if there is no danger of 
confliction. Let k=max (f(V)) and let s indicate the num-
ber of distinct colors used in f(V), we call f a proper 
(k,s)-vertex labelling of G. Thereby, we can define two 
labellings as follows. Given a (p,q)-graph G having a 
(k,s)-vertex labelling f: V(G)[0, q]. An induced differ-
ence edge-labelling if of f in G is defined as if 

(uv)=|f(u)f(v)| for each edge uvE(G); and an induced 
harmonious edge-labelling i+

f of f in G is defined as i+
f 

(uv)=f(u)+f(v) (mod q) for each edge uvE(G). 
Definition 1. A proper (k,s)-vertex labelling f of a 

(p,q)-graph G, from V(G) to [0, q], is an induced differ-
ence total labelling (IDT labelling) of G if its induced 
difference edge-labelling if is a proper edge coloring of 
G. We say f to be a (k,s,t)-IDT labelling of G, where t = 
|if(E)|. The least number of k spanning over all 
(k,s,t)-IDT labellings of G, denoted as (G), is called the 
IDT-hromatic number. 

Definition 2. A proper (k,s)-vertex labelling h of a 
(p,q)-graph G, from V(G) to [0, q], is an induced harmo-
nious total labelling (IHT labelling) of G if its induced 
harmonious edge-labelling i+

h is a proper edge coloring 
of G. Let t=|i+

h (E)|, f is also called a (k,s,t)-IHT labelling 
of G. The IHT-chromatic number of G, denoted as +(G), 
is the smallest number of k spanning over all (k,s,t)-IHT 
labellings of G. 

An IDT labelling f of a (p,q)-graph G is consecutive if 
f(V)=[0, p1]. Analogously, an IHT labelling h of G is 
consecutive if h(V)=[0, p1]. Clearly, every graph admits 
a (k,s,t)-IDT labelling and a (k,s,t)-IHT labelling. A 
(k,s,t)-IDT labelling of G is strong if it satisfies two addi-

tional requirements that k=(G) and t is least, that is to 
say, for any (k',s',t')-IDT labelling of G there is tt'. A 
consecutive (k,s,t)-IDT labelling of a graph G may be a 
graceful labelling or a sequential labelling of a 
(p,q)-graph G if t=q (ref. [5], [6] and [13]), but a band-
width labelling of G, such a counterexample is a star. A 
(k,s,t)-IHT labelling of G may be a harmonious labelling 
or a felicitous labelling of G if t=q ([6], [12]). 

Let P4=uvwx denote a path on 4 vertices. A consecu-
tive (3,4,3)-IDT labelling f of P4 can be represented as 
3302211, where f(u)=3, if (uv)=3, f(v)=0, if (vw)=2, 
f(w)=2, if (wx)=1, f(x)=1. Again, P4 has a (3,3,3)-IDT 
labelling 3301123 and a consecutive (3,3,2)-IDT label-
ling 2201123. We have that (P4)=2 since P4 admits a 
strong (2,3,2)-IDT labelling 1102211. 

Definition 3. [14] Let S be a nonnegative integer k-set 
containing zero. S is called an ordinary antiaverage k-set 
if for any aS, the set S satisfies ai,1+ai,2++ ai, a for 
distinct ai,jS\{a}, 1j. The ordinary antiaverage 
number, denoted by ()(k), is equal to minSmax(S) span-
ning over all ordinary antiaverage k-sets S.  

It is easy to see that (Kn)=(2)(n). We will use the 
following graphs.  

(1) The join graph of two graphs G and H, denoted by 
G+H, is defined by V(G+H)=V(G)V(H) and E(G+H)= 
E(G)E(H){uv: uV(G), vV(H)}. 

(2) The kth power Gk of G is a simple graph with its 
vertex set V(Gk)=V(G) and the edge set E(Gk)={uv: 
dG(u,v)k}, where dG(u,v) indicates the distance between 
u and v in G. Obviously, (Gk)[(G)]k. 

(3) A uniquely cycle graph H holds that the graph He 
will be a tree for any edge e on a cycle of H. 

(4) For each vertex u of a connected G, its neighbor set 
N(u) is {u1,u2,,ud}, where d=dG(u). We take another 
graph Hu,d with vertex set V(Hu,d)={v1, v2, , vd}, and 
then delete the vertex u from G, and next join vi to ui with 
an edge for 1id. The resulting graph is denoted by 
G(Hu,d), called a Hu,d -substitution graph of G. If each 
Hu,d is a complete graph Kd, we write G(Kd) instead of 
G(Hu,d). 

2. Main Results 

Observation 1. Let f be a (k,s,t)-IDT labelling of a graph 
G. (i) (G)'(G) tsk. 

(ii) There is no path P=uwv on 3 vertices such that 
f(u)+f(v)=2f(w). 

(iii) The complementary labelling g of the labelling f is 
defined by g(u)=kf(u) for all uV(G). Then g is a 
(k,s,t)-IDT labelling. 

(iv) Any induced subgraph by two color classes in a 
(k,s,t)-IDT labelling of G consists of isolated edges plus 
isolated vertices. 

(v) If f(u)=f(v), then dG(u,v)3. 
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Observation 2. Let G be a (p,q)-graph. 
(i) (H)(G) for any subgraph H of G, 
(ii) (G2) (G). 
(iii) p1(G) (2)(p) if the diameter of G is not lar-

ger than 2. 
Lemma 1. If f is an IDT labelling of a connected 

graph G, then f is also an IHT labelling of G. 
Lemma 1 shows that a graceful labeling of G is also a 

harmonious labelling of G [6]. 
Theorem 2. A connected graph G holds  
(G)+(G)(G). 
Lemma 3. Let Kn be a complete graph on n vertices, 

Km,n be a complete bipartite graph on n+m vertices; Wn be 
a wheel, Fn be a fan, Hn be a helm, Pn a path and Cn a 
cycle on n vertices, respectively 

1) (Kn)=(2)(n) and n+3(Kn) for n5. 
2) (Km,n)=m+n1. 
3) (W4)=4, (F5)=5 and (Wn)=n1 for n 6. 
4) (Fn)=n1. 
5) (H2n-1)=n1 for n 8, especially, (H2n-1)=7 for 

n= 4,5,6,7. 
6) (Pn)=2 for n=3,4, and (Pn)=3 for n5. 
7) (Cn)=4 for n=4,5, and (Cn)=3 for n6. 
8) Cartesian product graphs Pm�Pn, mn hold 

(P2�Pn)=3, (Pm�Pn)=3 for m3. 
The number (G) can be referred to the partly an-

tiaverage number for f(u)+f(v)2f(w) in f(V(G)). Since 
(Fn)=n1, however, the color set f(V(Fn))=[0, n1] is 
not an antiaverage n-set at all. Another instance is that 
(K5)=8. It is easy to test (K5uv)=6, where the graph 
K5uv is obtained by deleting an edge uv from K5, using 
a coloring f: V(K5uv){0,1,3,4,6} such that f(u)=6 and 
f(v)=3. Therefore, we say that the color set f(V(G)) is 
partly antiaverage. Because diameters D(G+H)2 and 
D(Km,n)=2, and any bipartite graph G is a subgraph of a 
certain bipartite complete graph Km,n. We have 

Corollary 4. (i) For the join graph G+H of two graphs 
G and H, |V(G)|+|V(H)| 1(G+H)(2)(V(G)|+|V(H)|). 

ii) Let K(G) and Ks,t be the order of the largest clique 
and a bipartite subgraph of a (p,q)-graph G respectively. 
Then max{(2)(K(G)), s+t1}(G)(2)(p). 

iii) For a bipartite graph G, (G)|V(G)| 1. 
Theorem 5. Let G be a (p,q)-graph. Then (G) p2, 

otherwise 2 q (G) or 2 q 1(G). 
Theorem 6. Let T be a tree. Then 

(T)(T)(T)+1, 

and the bounds are tight. Furthermore, T has a strong 
(k,s,t)-IDT labelling such that t='(T). 

Theorem 7. A connected uniquely cycle graph H 
holds (H)+1(H)(H)+2. 

Corollary 8. Let T be a tree with maximum degree , 
then (T(Kd))=(2)(+1), and (T(Hu,d))(2)(+1). 

For a subset S of V(G) whose cardinality |S| 2, we say 

S a k-distance set of G if the distance dG(u,v)=k for any 
pair of two vertices u,vS. If mutually disjoint k-distance 
sets V1, V2,,Vn of G satisfies 

1 1

(| | 1) (| | 1)
n m

i
i j

V S
 

j            (1) 

for any group of disjoint k-distance sets S1, S2,,Sm of G, 
thus, we can write 

  1
(| | 1)

n

k ii
G V


   

and call this number the k-distance number of G, and V1, 
V2,,Vn is a largest group of disjoint k-distance sets in G. 
It should be pointed out that there may be n<m in (1), the 
cycle C10 is such an example. In the following argument, 
we use nk(G) to indicate n in k(G). 

Observation 3. (i) Since a k-distance set Vi satisfies 
|Vi| 2, so nk(G) |V(G)|/2. 

(ii) Clearly, (Gm)=pm+1(G) for m 1. 
(iii) k(G)=0 for k 3 if and only if the diameter D(G) 

 2. 
Theorem 9. Let G be a connected (p,q)-graph with 

diameter D(G)  3, then (G) (2)((G2)). 
Corollary 10. (i) Let Si be a 3-distance set of a con-

nected (p,q)-graph G for each i[1,s]. Le 

1
| |

s

ii
n p S


   

and k=max{| Si |: i[1,s]}, so GK(n;sk) and then 

(G) (2)(n+k). 

ii) If G is a connected (p,q)-graph with diameter D, 
and let 

n=p
1

( 1) /
s

t
D t


  3    

where s=D/2, we have (G)(2)(n+s). Coloring 
square graphs is related with the frequency assign prob-
lem, also is one of distance constrained labelings. Mi-
chael Molloy and M. R. Salavatipour (2005) announced: 
(G2)5(G)/3+78 for a planar graph G. In [8], Lih 
and Wang have shown: If (G)3 in an outerplanar 
graph G, then (G2)(G)+2. If (G)7, then (G2)= 
(G)+1. Thereby, we have 

Corollary 11. Let G be a planar and connected graph. 
(i) Then (G) (2)(5(G)/3+78). 
(ii) If G is outerplanar, (G)(2)((G)+1) for (G)7, 

(G) (2)((G)+2) otherwise. 

3. Conclusions and Future Works 

We wish applying (G) to approach some well-defined 
graph colorings, for example, (G2)(G)(2)((G2)). 
We also define n(G) to set (Gm)=|G|m+1(G), but n(G) 
is not easy to be valued. In [14], it has been known that 
(2)(3)=3, (2)(4)=4, (2)(5)=8, (2)(6)=10, (2)(7)=12, 
(2)(8)=13, (2)(9)=19 and (2)(10)=23. It reveals to be not 

(2)easy to gain the precise values of  (n). We propose 
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