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ABSTRACT 

The second-order differential equations that describe the transmission line are difficult to solve due to the mutual cou-
pling among phases and the fact that the parameters are distributed along their length. A method for the analysis of 
polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be repre-
sented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained 
the n-phase circuit, it’s possible to calculate the voltages and currents at any point on the line using computational 
methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equa-
tions in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace 
transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the calcu-
lation of voltages and currents of the line during the energizing process. 
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1. Introduction 

The second-order differential equations describing a po-
lyphase transmission line are difficult to solve due to 
coupling among the phases. An important method for the 
analysis of polyphase systems is the technique that de-
couples the phases of the line. Thus, a system that has n 
phases coupled can be represented by n decoupled sin-
gle-phase systems which are mathematically identical to 
the original system [1, 2]. For a generic polyphase sys-
tem, the matrix of the eigenvectors of matrix product 
[Z][Y] decouples the phases of the transmission line. 
There is for a single product [Z] [Y], several sets of ei-
genvectors to decouple the line. It´s has known two types 
of transformation to modal decomposition. The first is a 
transformation that separates the line in its exact modes, 
and the second is a transformation that separates the line 
in its quasi-modes, using the Clarke´s matrix transforma-
tion, which can decouple polyphase system in n sin-
gle-phase systems. The exact modes are completely de-
coupled from each other and are obtained from the use of 
matrices [TI] and [TV] as the transformation matrices. 

The exact modes are completely decoupled from each 
other and they are obtained from the use of matrices [TI] 
and [TV] as the transformation matrices. The matrices [TI] 
and [TV] are the eigenvectors associated with the prod-
ucts [Y] [Z] and [Z] [Y], respectively, and, in general, 
complex matrices, whose elements are frequency de-

pendents. The quasi-modes are obtained from the use of 
Clarke´s matrix as the only matrix transformation. The 
Clarke’s matrix is a real and constant matrix, whose ele-
ments are frequency independents, easy to implement in 
software that performs simulations directly in the time 
domain. If the transmission line is ideally transposed 
Clarke’s matrix it decomposes in their exact modes. 
However, if the line is ideally transposed, but has a ver-
tical symmetry, the Clarke´s matrix separate the line in 
their quasi-modes can, in some situations, be considered 
identical to the exact modes. This paper describes the 
process of decomposition of the line in their qua-
si-modes. 

2. Quasi-modes of Transmission Lines 

When the transmission line is ideally transposed Clarke’s 
matrix separates the line in its exact modes. In cases in 
which a line cannot be considered ideally transposed, but 
has a vertical symmetry plane, it’s possible with some 
approximations; use the Clarke´s matrix to determine the 
exact modes. Under these conditions it can obtained the 
line decomposed into their quasi-modes. For lines repre-
sented in theirs quasi-modes, the matrices [Yqm] and 
[Zqm] have some nonzero elements outside the main 
diagonal, which will be disregarded. Due to the fact that 
these matrices are not diagonal matrices, do not get the 
exact modes of the line, but in their quasi-modes [1,2]. 
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Considering the three-phase line, transposed or not, the 
exact modes can be considered almost equivalent to the 
mode-alpha, beta and zero, respectively. The Clarke´s 
matrix [Tclarke] is expressed as according to (1): 

clarke
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T
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The impedance and admittance’s matrix of quasi-line 
modes are expressed to (2) and (3): 

    T

qm clarke clarkeZ T Z T            (2) 

    1 T
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           (3) 

If the transmission line is ideally transposed, the ma-
trices [Zqm] and [Yqm] are identical to the matrix modal 
impedance [Zm] and modal admittance [Ym]. Under these 
conditions the Clarke´s matrix separates the line in their 
exact modes. If the line has a vertical symmetry plane, 
but cannot be considered ideally transposed matrices 
[Zqm] and [Yqm] are written as shown in (4) and (5) [1, 2, 
4]: 
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In the (4) and (5) shows this fact when the line is not 
ideally transposed, the coupling exists between the alpha 
and zero modes. However, in certain situations, the cou-
pling between the modes alpha and zero can be disre-
garded. The matrices [Zqm] and [Yqm] are written as 
shown in (6) and (7): 
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The voltage and current of quasi-modes are obtained 
as shown by (8) and (9): 

   T

qm clarkeV T    V
             (8) 

   1

qm clarkeI T
    I

            (9) 

Equations (8) and (9) can be implemented in computer 
programs such as MATLAB® that performing simula-
tions directly in the time domain. Using the solution of 
differential equations mentioned above to represent the 
line, it can be calculate the currents and voltages of the 
line in the frequency domain, and the values of currents 
and voltages in the time domain can be obtained using 
the transformed inverse Laplace implemented numeri-
cally.[3]. 

To check the performance of this model, it will be 
used the model called Universal Line Model (ULM) [3]. 
The ULM is one model in which the currents and volt-
ages in the transmission line are written analytically from 
the differential equations of the line. This model, in 
which the currents and voltages are calculated in the fre-
quency domain, allows taking into account the distrib-
uted nature of the parameters of longitudinal and trans-
verse of the line. The response in the time domain can be 
obtained by using the Inverse Transform of Laplace [3]. 

To check the performance of the model, the 
three-phase line of 100 km in length will be decomposed 
into its three modes of propagation, where each mode is 
represented by a single-phase transmission line with an 
excitation source. The voltages and currents in each 
mode will be obtained in the frequency domain, and us-
ing the inverse Laplace transform implemented numeri-
cally, the voltages and currents will be obtained in the 
time domain. With the values obtained and using the 
[Tclarke] it will be obtained the voltages and the currents in 
the three-phase transmission line in time domain. 

3. Universal Line Model 

The Universal Line Model (ULM) is a model in which 
the currents and voltages in the transmission line are 
written analytically from differential equations of the line 
[3]. This model the currents and voltages are calculated 
in the frequency domain, taking into account the distrib-
uted nature of parameters of longitudinal and transverse 
line. The response in the time domain can be obtained by 
using the Inverse Laplace Transform [3]. A transmission 
line is characterized by the fact that their parameters are 
distributed along their length. This fact causes the volt-
ages and currents along line behave like waves, and these 
are described by partial differential equations. Generally, 
the differential equations mentioned are difficult to solve 
in the time domain because the integral convolution but 
in the frequency domain these equations become simpler 
and solutions are known. The solution in the frequency 
domain is generic and can be applied for any condition of 
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the line, whereas the fixed parameters and or variables in 
function of frequency. The solution in the time domain, 
this depends on the convolution integral where solutions 
are not easily obtained. 

4. Currents and Voltages in the Single-phase 
Transmission Line 

For analysis of the results it will be considered the three- 
phase transmission line as shown in the Figure 1 to study 
the currents and voltages. 

In the differential equations of the line, it’s considered 
that the parameters are constants. For calculation of the 
voltages and currents in a three-phase line it will used the 
modal transformation method, in which the three-phase 
system is decomposed into three decoupled single-phase 
circuits, called alpha, beta and zero being equivalent to 
the original system [5]. The Figures 2 to 4 show the dif-
ferent modes in transmission line to the uncoupled mode 
n generic. 
 

 

Figure 1. Three-phase transmission line used in the simula-
tions. 
 

 

Figure 2, The mode alpha in the transmission line. 
 

 

Figure 3. The mode beta in the transmission line. 

 

Figure 4. The mode zero in the transmission line. 
 

The line showed in Figure 1 has the impendence and 
the admittance as (10) and (11): 

  nnn LjRZ             (10) 

  nnn CjGY             (11) 

The Rn and Ln are the longitudinal parameters and Gn e 
Cn are the transverse parameters of line per unit length, 
considering the mode n of propagation. In the Figure 1 

 n
AI   and  n

BI   are the currents at ends A and B 
line, while the  n

AV   and  are the voltages 
and these ends in the mode n. The equations for the cur-
rents in the frequency domain are given by (12) and (13): 
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The terms  n
AAY   to  are evaluated as 

(14) to (17): 
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Equations (14) by (17), the terms  n
cZ   and 

 n   are the characteristic impendence and propaga-
tion constant in the mode n and can be written as (18) 
and (19): 

   
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

n

n

C
n
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           (18) 

      nnn YZ
       (19) 

The  n
cZ   and  n   are complex numbers and 

 n   can be written as (20). 

 n nn jba          (20) 
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The real part of  n   is the attenuation constant, 
which corresponds to the amplitude of the wave as it 
travels in the conductor. The imaginary part is called the 
phase constant. Thus each mode of propagation n have 
the characteristic impedance, attenuation constant, phase 
constant and propagation velocity different. As illustra-
tion the simulation of a three-phase transmission line in 
to the process of energization. The physical configuration 
of the three-phase circuit is shown in Figure 5. The 
three-phase line has the length of 100 km and frequency 
of 60 Hz. 

5. Transient Responses due to Energization 
Procedure 

In the Figure 5 shows a three-phase transmission line 
with the receiving open end B that will be used for the 
study of the model, while the phase1 is energized by a 
DC voltage source and the phases 2 and 3 are in short 
circuit in the sending end A. 

The transmission line in the Figure 5 will be energized 
by a DC voltage source of 20 kV. The Figures 6 to 8 
show the behavior of the voltages for each propagation 
modes alpha, beta and zero. 

The Figures 6 to 8 show the voltages in the alpha, beta, 
and zero modes for receiving open end of the three-phase 
line. It can be seen that each propagation mode behaves 
as a single-phase line energized by a constant voltage  
 

 

Figure 5. Three-phase transmission line energized with DC 
source. 
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Figure 6. Voltage at the receiving end of the mode alpha. 
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Figure 7. Voltage at the receiving end of in the mode beta. 
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Figure 8. Voltage at the receiving end of in the mode zero. 
 
source and each mode has a different propagation veloc-
ity and different steady-state values. The values of the 
voltages of phases 1, 2 and 3 are obtained by linear com-
bination of the voltages modes shown in Figures 6 to 8 
as (21): 

      qm
T

clarke VTV
1

3,2,1


            (21) 

The vector [V1,2,3] represents the voltages in phases 1, 
2 and 3 and [Vqm] represents the three-phase line voltage 
alpha, beta and zero modes of Figures 6 to 8. The figure 
9 shows the behavior of voltage in the receiving open 
end B of a three-phase line, using (21). 

In Figure 9 the behavior of voltage in the phase 2 and 
3 are influenced by the behavior of voltage in phase 1 
due to the mutual inductances of the line. The Figure 10 
and 11 shows the behavior of currents in the phases 1, 2 
and 3 at the receiving open end. 

In the Figure 10, when the voltage in phase 1 is posi-
tive, the voltage in phases 2 and 3 become negative, ob-
eying the Faraday-Neumann’s law. When voltage in the 
phase 1 remains constant, the flows induced in the others 
phases remains constant and there is no induced voltages 
in the phases 2 and 3. When the phase voltage decreases, 
the induced voltages in the phases 2 and 3 are positive. 
The Figures 10 and 11 show the same behavior obtained 
in the Figure 9. Considering the three-phase transmis-
sion line will be energized by symmetrical three- phase 
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voltage source, balanced and dephased in 120o, as shown 
in the Figure 12. Where Vm is the peak voltage, ω is the 
angular frequency and f is the frequency. The transmis-
sion line of Figure 12 will be energized by an alternating 
source of 255 V (line-neutral voltage) corresponding to a 
line-line voltage of 440 kV and a frequency of 60 Hz.. 
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Figure 9. Voltages in the receiving end B of a three- phase 
transmission line. 
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Figure 10. The current in the sending end A of a three- 
phase transmission line. 
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Figure 11. The current in the sending end A of a three- 
phase transmission line. 

 

Figure 12. Three-phase line transmission energized with 
sinusoidal source. 
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Figure 13. Voltages in the open end B of three-phase trans-

The voltages at the recede opening end B as shown 
Fi

re 13 shows that the peak voltage for a phase 
1 

e method of modal transformation is 

 is energized with a voltage source 

mission line of 440 kV. 
 

gure 13. 
The Figu
reaches approximately 1.7 pu in the transient period. 

As the same behavior to figure 9, when the voltage in the 
phase 1 is a positive, in the phases 2 and 3 become nega-
tives and when the voltage in phase 1 is negative, the 
induced voltages in the phases 2 and 3 are positives and 
the voltage in the system will reach the 1 pu value in 
steady-estate. 

6. Conclusions 

In this work with th
possible to obtain currents and voltages in a three-phase 
transmission line. Due to the difficulty of solving the 
second order differential equations that model the poly-
phase transmission line, the system has n coupled phases 
can be represented by n decoupled single-phase systems 
that are equivalent to the original system, as represented 
in the Figures 2 to 4. 

In Figure 5 the line
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C in the phase 1 and the others phases are in short cir-
cuit. It’s obtained the alpha, beta, and zero propagation 
modes, and in which each mode the velocity, attenuation 
and steady-state values are different, as shown in the 
Figures 6 to 9. Using (21) were obtained the voltages at 
receiving open end B. In the Figure 9, the peak value in 
the phase 1 is approximately 2 times its steady state val-
ue. At steady-state value, the voltage in the phase 1 will 
reach a value of DC source of 20kV and the in others 
phases the value steady-state will be zero because there is 
no variation in mutual flow. The Figure 10 and 11 shows 
the behavior of current in the phases 1, 2 and 3 of the line. 
When the current in phase 1 is positive, the currents in 
the phases 2 and 3 are negative, inducing negative volt-
ages at the end B of the line. When the current in phase 1 
is negative, the current in the phases 2 and 3 are positive, 
inducing positive voltages in the end B of the line. In the 
Figure 13 the voltage in the phase 1, reaches a value of 
2,0 per unit and the induced voltages in phases 2 and 3 
present value of 1 pu, approximately. Thus the model of 
modal transformation can be used to study the transient 
electromagnetic transmission line phase subjected to the 
energization process. 
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