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ABSTRACT 

Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have 
undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of 
rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, 
large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Sec-
ond Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very suc-
cessful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restrictions: 
multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to excitation of 
the rotational system. 
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1. Introduction 

Order tracking methods attempt to isolate the periodic 
components (orders) in rotating machinery vibration. 
Most often, Root Mean Square (RMS) vibration levels 
are estimated for each order as a function of rotational 
speed. Current methods of order tracking, such as syn-
chronous resampling [1], Gabor filtering [2], and Vold- 
Kalman filtering [3] have some undesirable qualities. 
Synchronous resampling and Gabor filtering methods are 
unable to isolate the contribution of crossing orders in the 
vicinity of the crossing time (time at which the orders 
have the same frequency). Vold-Kalman filtering is able 
to resolve crossing orders, but only at great computa-
tional expense. Vold-Kalman filtering also exhibits end 
effects, where the beginning and end of the order time 
traces are distorted due to slow rise-time of the filter. All 
of the methods mentioned require measurement or con-
struction of the rotational speed over time. 

Blind Source Separation (BSS) techniques have been 
developed in the recent literature to decompose measured 
signals into fundamental components. One such tech-
nique, the Second Order Blind Identification (SOBI) al-
gorithm [4] has been successfully adapted to estimate 
modal responses from measured vibration data [5]. Since 
system orders are essentially amplitude and frequency 

modulated sinusoids, SOBI is effective at isolating the 
system orders for the same reasons that it is effective at 
estimating modal responses. 

In this work, the SOBI algorithm is considered for or-
der tracking. The advantages and limitations are dis-
cussed. The technique is used to isolate the orders from 
synthetic data. The next section discusses the application 
of BSS techniques to the order tracking problem. The 
numerical example is provided in Section 3. Observa-
tions are summarized in Section 4. 

2. BSS for Order Tracking 

BSS attempts to find special source components, sj(t), 
embedded in measured data xi(t). The technique proposed 
in this work for order identification assumes that the 
measured data is a linear mixture (as opposed to convo-
lutive) of the components. Suppose that there are m 
channels of measured data and n components. Making 
the time dependence implicit, the relation between the 
components and the measured data can be written as 

     m x1 m x n n x1 ,x A s             (1) 

where A is the (constant) mixing matrix and the dimen-
sions have been placed in the superscript. All quantities 
are real valued. The objective of BSS is to simultane-
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ously estimate the mixing matrix, A, and the vector of 
components, s(t), from the observed data, x(t). Due to the 
number of variables involved, this task requires a char-
acterization of the source components, s(t). Many BSS 
techniques use second order statistical information (e.g. 
variance) to describe the components, while ICA typi-
cally uses higher order statistics (e.g. kurtosis). It is ap-
propriate to consider the inverse relationship of (1), 

     n x1 n x m m x1 .s W x               (2) 

The de-mixing matrix, W, is the (generalized, if nec-
essary) inverse of the mixing matrix, A. The task is now 
to estimate W and s(t). Note that in order to estimate the 
n components, it is necessary to have enough independ-
ent observations. This requires m ≥ n and the rank of A is 
n. It can be seen that the number of components, n, must 
be deduced from the observed data x(t). This can be ac-
complished by plotting the time-frequency distribution 
computed using short-time Fourier transform, for exam-
ple. 

Because the inverse of the mixing matrix, W, and the 
components, s(t), must be estimated simultaneously, any 
scalar multiplier of one of the components sj(t) could be 
canceled by dividing the corresponding column aj by the 
same scalar. This leads to some ambiguities. First, the 
variances of the independent components cannot be de-
termined. This means that the amplitude and sign of each 
component sj(t) are unknown. A natural way to fix the 
amplitude of each component is to set the variance equal 
to one: E{sj

2(t)} = 1. Note that the sign is still ambiguous. 
Second, the order of importance of the components is 
unknown. This is in contrast to the familiar Principal 
Component Analysis (PCA), where the principal com-
ponents are ordered by their variance. 

The potential application of BSS on the order tracking 
problem is now discussed. Suppose a system responds 
quasi-statically to excitation from one or more rotating 
components. The vector of structural responses, x(t), are 
related to the exciting forces, f(t), by multiplication of 
flexibility matrix, G, 

.x Gf                   (3) 

Note that the flexibility matrix is the inverse of the stiff-
ness matrix, G = K-1. The force vector can be expressed 
as a linear combination of force components from each 
system order, p(t), 

.f Cp                   (4) 

Substituting (4) into (3), we arrive at, 

, where . x Φp Φ GC            (5) 

One might consider using BSS to estimate both the (in-
verse) weighting matrix, Φ, and the order forces, 

1 .p Φ x                  (6) 

Observe that this is consistent with the mixing model, 
Equations (1) and (2). 

The SOBI algorithm is ideally suited for estimating the 
order forces, p(t), due to the correlation structure of the 
harmonic components comprising the elements of p(t). 
SOBI finds components that are uncorrelated with one 
another, irrespective of a small time shift between the 
two signals. Harmonically related sinusoids are orthogo-
nal and thus possess this property. Details of the SOBI 
algorithm may be found in references [4,5] as well as 
many other references. 

Order tracking using the SOBI algorithm essentially 
estimates the orders as a linear transform of the measured 
data. As such, it does not suffer from the drawbacks of 
the traditional methods discussed in Section 1. However 
it carries its own restrictions. The number of independent 
measurements, m, must be at least as large as the number 
of orders to estimate, n. In addition, the sensors must be 
mounted on a structure that responds quasi-statically to 
the forces from the rotational component. It should also 
be noted that the resulting orders are normalized to unit 
variance. The first restriction can be alleviated to some 
extent by filtering the data into bands using a band-pass 
filter. For best performance, the filter may be adaptive, 
tracking the time varying frequency. The second restric-
tion can limit the application of the method. It is impor-
tant to note that resonances of the rotating component, 
such as shaft criticals, can be handled by the method. 
However dynamics of the structure on which measure-
ments are taken is not accounted for in the theoretical 
development. One may consider application of a BSS 
method that assumes a convolutive mixture of the source 
components. The third restriction does not present much 
of a problem since the strength of order j in measurement 
i is given by the estimated mixing matrix element aij. 

3. Application of SOBI to Synthesized Data 

In order to investigate the effectiveness of the SOBI al-
gorithm in separating system orders, a data set was syn-
thesized from six amplitude and frequency modulated 
sinusoids. The data set consists of a sinusoid with up-
sweeping frequency along with two harmonics, and a 
down sweeping frequency with two harmonics. Ampli-
tude modulation was introduced by multiplying by an 
envelope sinusoid with a period slightly longer than the 
entire data set and random phase angle. The sinusoids 
were then mixed together using a 8 x 6 random mixing 
matrix to generate eight synthetic measurements. Uncor-
related Gaussian random noise with RMS equal to 5% of 
the modulated sinusoid RMS was added to the synthetic 
measurements. Due to the combination of up and down 
sweeping signals, several order crossings are present in 
the data. 
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An example time series and spectrogram of one of the 
synthetic measurements is shown in Figure 1 and Figure 
2, respectively. It can be seen that the data is composed 
of a mixture of the six orders. The many order crossings 
are also evident. Figure 3 shows the original orders and 
those estimated using SOBI. The same plot zoomed in 
with markers added to the data points can be seen in 
Figure 4. The estimates essentially overlay the original 
orders. However, due to the added noise, there is a small 
error in the estimates. The error sequence can be defined 
as the difference between the original order and the esti-
mate, 

     ˆ .t t t e p p            (7) 

The maximum RMS error is only 4.5% of the order 
RMS. The small error is due to the 5% RMS noise that 
was added to the synthetic measurements. Figure 5 
shows the spectrogram of the estimated orders. The or-
ders are clearly isolated quite well. 

The traditional RMS vs. angular rate plots can be cre-
ated using the resulting time series of the estimated or-
ders. Instantaneous frequency, in Rotations Per Minute 
(RPM), can be computed from the fundamental estimated 
orders using the spectrogram, zero-crossing frequency, or 
Hilbert transform angles. The running RMS can easily be 
calculated from each estimated order and plotted vs. 
RPM. Figure 6 shows such a plot for the estimated or-
ders. The fundamental up-sweeping RPM was used for 
orders 1-3 and the fundamental down-sweeping RPM 
was used for orders 4-6. 

4. Summary 

The common order tracking methods have several 
drawbacks associated with their use: methods require 
measurement or estimate of rotational speed over time, 
some methods fail to isolate the contribution of crossing 
orders in the vicinity of the crossing time, some methods 
require large computational expense, some methods are 
prone to end effects. In this work the SOBI algorithm was 
applied to the order tracking problem. The method 
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Figure 1. Example synthetic measured data (time series). 

 

Figure 2. Example synthetic measured data (spectrogram). 
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Figure 3. Original and estimated orders. 
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Figure 4. Original and estimated orders (zoomed in). 



Considerations for Application of SOBI to Order Tracking 

Copyright © 2011 SciRes.                                                                                 JSIP 

36 

 

Figure 5. Estimated orders (spectrogram). 
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Figure 6. RMS of estimated orders. 
 

circumvents the drawbacks of the techniques currently 
used for order tracking. However the method has its own 
restrictions, associated with the SOBI algorithm: multiple 
sensors are required and sensors must be mounted on a 
structure that responds quasi-statically to excitation of 
the rotational system. 

Performance of the method was examined by applica-
tion to a synthesized data set consisting of three up- 
sweeping components and three down-sweeping compo-
nents with amplitude modulation. Uncorrelated Gaussian 
noise with 5% RMS was added. The algorithm was ex-
tremely effective at isolating the six orders with no prior 
knowledge of the frequency content. No end effects or 
errors in the vicinity of the order crossings were evident. 
Maximum RMS error between the original orders and the 
estimates was 4.5%, which is less than the additive noise. 
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