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ABSTRACT 

In this paper, we employ a fixed point theorem due to Krasnosel’skii to attain the existence of periodic solutions for 
neutral-type neural networks with delays on a periodic time scale. Some new sufficient conditions are established to 
show that there exists a unique periodic solution by the contraction mapping principle. 
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1. Introduction 

Recently, scholars and researchers have paid more atten-
tion to the discussion of neural networks described by 
neutral-type differential equations with delays (see [1-6]). 
Meanwhile, difference equations or discrete-time analo-
gues of differential equations can preserve the conver-
gence dynamics of their continuous time counterparts in 
some degree [7]. Due to their usage in applications, these 
discrete-type neural networks with or without delays 
have been discussed by [8,9] and references therein. It is 
interesting to study that neural systems on time scales 
can unify the continuous and discrete situations. The 
theory of time scales initiated by S. Hilger [10,11] has 
been incorporated to investigate neural networks [12,13] 
and so on. 

However, few works have considered for neutral-type 
neural networks on time scales [14,15]. In this paper, we 
consider the existence of periodic solutions for the neu-
tral networks with delays 
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For a review of dynamic equations o-time scales, we 
direct the reader to the monographs [9,10] and begin with 
a few definitions. 

Definition 1.1. A time scale   is p-periodic if there 
exists 0p   and p  such that if t  then 
t p  . For    , the smallest positive p  is called 
the period of . 

Definition 1.2. Let     be a p-periodic time scale. 

f:   is periodic with period   if there exists a 
natural number n  such , ( ) ( )np f t T f t     for all 
t  and   is the smallest number such that 

( ) ( )f t T f t  . 

Without other statements, let   be a p-periodic time 
scale such that 0 . We will show the existence of 
periodic solutions for (1) where , .k mp m    

2. Preliminaries 

Theorem 2.1. ([10,11]) Assume :    is strictly 
increasing and : ( )    is a time scale. Let 

 .  ：  If  t  and   t   exist for 
,kt  then one has 

    .          

Theorem 2.2. ([10,11]) Assume :    is strictly 
increasing and : ( )    is a time scale. If :  f    
is a rd-continuous and   is differentiable with rd-con- 
tinuous derivative , then one gets 

      

   1 ,  , .
b b

a a
f t t t f s s a b




          

A function :  p    is said to be regressive pro-
vided    1 0t p t   for all .kt  The set of all 
regressive rd-continuous function :  f    is devote 
by R  while the set R  is given by 

    :1 0,  t .R f R t p t        

Let p R . The exponential function is defined by 

( )( , ) exp ( ( ))
t

p
s

e t s p   
 

  
 
              (2)

 
where  h z  is called cylinder transformation. 
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Lemma 2.1.  
Let ,p q R . One gets that  
(i) 0 ( , ) 1 and e ( , ) 1pe t s t t  ;  
(ii) ( ( ), ) (1 ( ) ( )) ( , )p pe t s t p t e t s   ;  

(iii) 
1 ( )

( , ),  where 
( , ) 1 ( ) ( )p

p

p t
e t s p

e t s t p t   


; 

(iv) ( , ) 1 ( , ) ( , )p p pe t s e s t e s t  ;  

(v) ( , ) ( , ) ( , )p p pe t s e s r e t r ;  
(vi) ( , ) ( , ) ( , )p q p qe t s e t s e t s ;  

(vii) 
( , )

( , )
( , )

p
p q

q
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Finally, we state Krasnosel’skii fixed point theorem 
which enables us to prove the existence of periodic solu-
tions. 

Theorem 2.3. 
([16]) Let   be a closed convex nonempty subset of 

a Banach space  B,  . Suppose that A  and B  map 
  into B  such that (i) ,x y  imply 

x y   ; (ii)   is compact and continuous; (iii) 
  is a contraction mapping; Then there exists z  
with .z z z    

3. Existence of Periodic Solutions 

Let 0,  ,  T T k T    be fixed and if    , 
np   for some n . By the notation  ,a b , we 

mean    , : .a b t a t b    The intervals 
   , ,  ,a b a b

 
and  ,a b

 
are defined similarly, Defined 

 ( , ) : ( ) ( )n
TP C R t T t       , 

where ( , )nC R  is the space of all real valued conti-
nuous functions. Then TP  is a Banach space when it is 
endowed with norm  0,sup ( )t Tx x t . 

For each ,i j , we make basic assumption 1( )H : 

ja R  is continuous, ( ) 0ia t   and 
( ) ( )i ia t T a t   for all t T . 

( ) ( ) , ( ) ( )ij ij i ic t T c t I t T I t     and ( )ijc t  is con- 
tinuous. 

( )jg u  is continuous, (0) 0jg   and 

( ) ( )j j jg u g v L u v    for some 0jL  . 

Lemma 3.1.  
Assume that 1( )H  holds. { ( )}i i Tx t P   is a solu-

tion of (1) if and only if  
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Proof. Let  ( )i Ti
x t P


  is a solution of (1). It fol-

lows from (1) that  
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where i . Multiply both sides of (4) by ( ,0)
iae t  

and integrate from t T  to t , one obtain that  
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Divide both sides of above equation by ( ,0)
iae t , due 

to ( ) ( )i ix t x t T   and Lemma 2.1, we have  
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It follows from integration by parts and the periodicity 

of ( )ijc   and ( )jx  , we get  
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 Substitute (6) into (5) and simplify, we get (3). From 
Lemma 2.1, we get the desired result and the proof is 
complete. 

Define the mapping :  P PT TH   by  
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where i . Let ( ) ( ) ( ) ( ) ( ) ( ),  i i iH t B t A t     
where ,A B  are given by

 1
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where ( )ir s  is defined in Lemma 3.1 and i . Next, 
we will prove that A  is compact and B  is a contrac-
tion mapping in Lemma 3.2 and Lemma 3.3, respective-
ly. 

Lemma 3.2. Assume that 1( )H  holds. :  P PT TA   
defined by (9) is compact. 

Proof. We first show that A  maps PT  into PT . It 
follows from (9) that  
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i.e., ( )ir u  is T-periodic. It follows from (2) and Theo-
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where i . That is, A :  P PT T . 
Secondly, we will show that  is continuous. Let 
,  TP    with ,  C C    and define  
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Given 0   and take ( )nM
   such that 

.     By making use of Lipschitz inequality of 

1( )H , we get  
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That proves A is continuous.  
Thirdly, we need to show A  is compact. Consider 
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uniformly bounded. Let 0R   be such ( )n R   for 
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For all n .That is ( )( )nA F    for some positive 
constant F .Thus the sequence ( ){ }nA  is uniformly 
bounded and equi-continuous. The Arzela-Ascoli theo-
rem [16] implies that ( ){ }knA  uniformly converges to a 
continuous T-periodic function  . Thus A  is com-
pact. 

Lemma 3.3. Let B  is defined by (8) and assume that  
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Then :  P PT TB   is a contraction.  
Proof. Trivially, :  P PT TB  . For any ,  TP   , 

we have  



Z. K. HUANG, J. X. CAI 

Copyright © 2013 SciRes.                                                                                JAMP 

4 

[0, ] 1

1

( ) ( ) max ( ( ) ( ))

                         .

n

i i ij j j
t T j

n

ij
j

B B c t k t k   

  

 



    

 




 

which leads to .B B        Hence, B  de-
fines a contraction mapping with contraction constant 
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All the conditions of Krasnosel’skii theorem are satis-
fied on the set  . Thus there exists a fixed point z  in 
  such that .z Az Bz   By Lemma 3.1, this fixed 
point is a solution of (1). Hence (1) has a T-periodic so-
lution. 
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That is, H  defines a contraction mapping and there 
exists a unique fixed point which is a T-periodic solution 
of (1). This completes the proof.  

4. Conclusion 

Due to time scales calculus theory and the fixed point 
theorem, we obtained some more generalized results to 
ensure the existence of the periodic solutions for neutral- 
type neural networks with delays. The conditions can be 
easily checked in practice by simple algebraic methods. 
The method in this paper can be applied to prove the ex-
istence of the periodic solutions of some other similar 
systems such as neutral-type networks with leakage- 
terms [17]. 
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