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ABSTRACT 

A mechatronic system based on the micro-macro-kinematic consists of an industrial robot and a piezoelectric stage 
mounted on the robot’s end-effector and has to carry out operations like micro-assembly or micro-milling. The piezo-
electric stage has to compensate the positioning error of the robot. Therefore, the position of the robot’s end-effector has 
to be measured with high accuracy. This paper presents a high accuracy 6D-measurement system, which is used to de-
termine the position and orientation of the robot’s end-effector. We start with the description of the operational concept 
and components of the measurement system. Then we look at image processing methods, camera calibration and recon-
struction methods and choose the most accurate ones. We apply the well-known pin-hole camera model to calibrate 
single cameras. Then we apply the epipolar geometry to describe the relationship between two cameras and calibrate 
them as a stereo vision system. A distortion model is also applied to enhance the accuracy of the system. The measure-
ment results are presented in the end of the paper. 
 
Keywords: 6D-Measurement System; High Speed Camera; Image Processing; Reconstruction; Essential Matrix;  

Fundamental Matrix; Camera Projection Matrix 

1. Introduction 

The project “Micro-Macro-Kinematics”, which is cur-
rently running at the Institute of Measurement and Auto- 
matic Control of the Leibniz Universität Hannover, deals 
with the development and analysis of a robotic system, 
which is able to manipulate micro-objects with an accu-
racy of 1 - 2 micrometers in a 3D-workspace of 10 cubic 
millimeters. For this purpose it is necessary to determine 
the position and orientation of the robot end-effector with 
high accuracy and in real time. 

At the beginning of the project we looked at various 
measuring systems, e.g., the Laser Tracker from Leica or 
the Laser TRACER from Etalon AG. Such systems are 
able to carry out contactless high accuracy measurements 
in large workspaces. However, they are very expensive 
and have several characteristics, for example, the rela-
tively high weight of the retro-reflector, which make 
them very difficult to use with the robot in this pro-
ject—the maximal load the robot can carry is 700 grams. 
Therefore, it was initially decided to reduce the require-
ments for the size of the workspace and use a measure-
ment system based on two high-speed cameras. In order  

to present this measurement system, we will describe its 
concept and components in this paper. We will also take 
a look at the methods for image processing, cameras ca- 
libration and 3D-data reconstruction, choose the most ac- 
curate one and explain our choice. 

2. Concept and Components of the System 

It is always necessary to give clear requirements of the 
measurement system such as contact-free measurement 
of the 3D-position and orientation of the robot end-ef- 
fector, measurement accuracy of 1 - 2 micrometers, work-
space of at least 10 cubic centimeters, real-time ability 
(oscillations on the end-effector of the robot are up to 50 
Hz). 

The general concept of the measurement system is 
presented in Figure 1. Two high speed monochrome 
cameras 1M120 Falcon from DALSA are used in it. Both 
cameras have a resolution of [h × w] = 1024 × 1024 pix-
els with a pixel size p = 7.4 micrometers. Both cameras 
are also connected to the frame grabber Xcelera-CL PX4 
Dual, which has a trigger function and can take up to 122 
frames per second simultaneously. Each camera has the  
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Figure 1. General concept of the measurement system. 
 

bi-telecentric lens TC2336 from Opto-Engineering with a 
magnification k = 0.243. These bi-telecentric lenses sim-
plify image processing, because the dimensions of the 
objects remain nearly constant. The maximal image size 
of every camera can be calculated based on the camera 
resolution, pixel size and lens magnification: 

1024 0.0074 mm
31 mm.

0.243

h p w p

k k

  
      (1) 

In order to determine the position and orientation of 
the robot end effector, the 3D-mark—a black plate with 
three white balls—is fixed on it. It is possible to deter-
mine the 3D-position by using only a single ball. Two 
other balls are necessary to determine the orientation of 
the mark and the end-effector. In order to choose the size 
of the balls and the offsets between them, one has to con-
sider the image size, the desired workspace, the sub-pixel 
accuracy and angular accuracy. It is obvious that the 
sub-pixel accuracy can be increased by making the white 
balls bigger. However, the bigger the balls are, the smaller 
the real workspace becomes, because every ball must 
appear completely on the image for the successful image 
processing. The angular accuracy can be improved by 
increasing the offsets between white balls; however, one 
should not forget that the use of three balls reduces the 
real workspace. Taking into account these properties, the 
diameter of the balls was set to 2.5 millimeters, and the 
offset between the balls to 8 millimeters. It allows to mea- 
sure the position and orientation in the workspace of 
about 12 cubic centimeters, with angular inclination up to 
60˚ as well, and sub-pixel accuracy of about 0.05 pixels. 

In order to get more stable image processing, for ex-
ample, to eliminate the influence of the external illumi-
nation, the system has its own light sources. At the very 
beginning of the project we have used rings with white 
LED. Unfortunately, this solution caused inhomogeneous 
illuminated image. For this reason two rings of red and 
green LEDs are used now, see Figure 2. The red and 
green light filters are also mounted in the telecentric len- 
ses. This solution eliminates any influence of cameras on 
each other. 

3. Image Processing 

Two cameras can shoot two independent monochrome  

 

Figure 2. Illumination of the 3D-mark. 
 

images simultaneously with a frame frequency of 122 Hz. 
Therefore, the image processing must be fast and simple. 
For that reason images are not processed completely. It is 
only necessary to process the region of interest (ROI) 
with size 1.5 times larger than that of a white ball. How-
ever, the whole image area must be processed at first to 
identify and separate white balls from another white ob-
ject that could appear on the image. 

In order to find any white object on the image, all 
processed pixels are grouped to “white” ones and “black” 
ones with the help of a grey-level threshold which must 
be automatically found for each single ROI or the first 
image. The method for global thresholding, described in 
[1], is used to find this threshold. It consists of: 
 Definition of the initial grey level threshold 
 Division of the image using threshold on two parts 

“white” and “black” 
 Computing of the average grey-level values in both 

parts 
 Computing of the new threshold: 

 new 1 20.5 ,T                 (2) 

where μ1, μ2 are average grey-level values from the pre-
vious step 
 Repeating the last three steps until the difference be-

tween the new and the old threshold becomes smaller 
than the predefined ΔT. 

As we have already mentioned above, the very first 
frame has to be processed completely. It means that we 
have to find the global grey level threshold first. Then 
every single “white” object on this image must be ana-
lyzed using this threshold—the “roundness” coefficient 
must be computed: 

2

4π
,

S
k

P
                  (3) 

where S is the area of the object, and P—the perimeter or 
the length of the object’s contour. If the “roundness” 
coefficient is larger than 0.85, the analyzed object is 
treated as a “white” object. The ROI position and size are 
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then computed for it. Furthermore, only these ROIs will 
be processed. Figure 3 shows an example of the first 
frame. 

“White” objects found in ROIs will no longer be ana-
lyzed with the “roundness” coefficient. The fitting to 
circle method is used in order to find the center of the 
circle on the image. First of all, a contour of the circle 
must be found. Only neighbor pixels are scanned to re-
duce the processing time to a minimum. The scan runs 
clockwise until the contour is closed. This way the fol-
lowing equation is true for every point of the contour 
(see Figure 4): 

   2 2 2 ,c cx x y y R              (4) 

where x and y are the coordinates of any contour point, xc 
and yc—the unknown coordinates of the circle center, 
R—the unknown radius of the circle. The Equation (4) 
can also be expressed as: 

 

 

Figure 3. Fragment of the first image. 
 

 

Figure 4. Fitting to the circle. 

 
2 2 2 2 22 2c c c c

A B C

x y x x y y x y R 0,      


    (5) 

or 

 2 2 .Ax By C x y                (6) 

To use all points of the contour, Equation (6) is ex-
pressed in the matrix form: 



2 2
1 1 1 1 1 1

2 2
2 2 2 2 2 2

2 2

1

1

1n n n n n n

Ax By C x y x y
A

Ax By C x y x y
B

C
Ax By C x y x y

      
                                      ABC

XY Q

    

 



 (7) 

or 

  XY ABC Q               (8) 

The unknown matrix ABC can be computed with the 
help of the following equation: 

   †
,  ABC XY Q             (9) 

where (XY)† is the pseudo inverse matrix of the matrix 
XY. 

The coordinates of the circle center xc and yc can be 
easily found from the two first elements of the matrix 
ABC. 

4. Camera Calibration 

To determine the position of the robot’s end-effector in a 
3D-workspace it is not sufficient to have the 2D image 
coordinates of the balls measured by the two cameras. 
The 2D-data from the two cameras has to be fused to get 
the 3D-data. To do so, the relationship between the two 
cameras must be exactly determined. In order to find this 
relationship, it is necessary to carry out a measurement, 
in which the two cameras measure the image positions of 
a set of objects in the well-known 3D-position. Further-
more, parameters of each camera which cause systematic 
measurement errors can also be determined in this meas-
urement. This procedure is called camera matching and 
calibration. 

Various camera calibration methods were described in 
[2-4]. They are mostly based on the pin-hole camera 
model, where the 3D-points are projected to the image 
through a single point called camera center. The accuracy 
of the camera calibration can be increased if the distor-
tion of the camera image, caused by lenses mounted on 
the camera is considered. Most popular models of the 
lens distortion can be found in [5-7]. The calibration of a 
multiple view camera system is more complex, because 
the intrinsic and extrinsic parameters of the single cam-
era as well as the relationship (relative position and ori-
entation) between two (or more) cameras must be found.  
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Computation of the multiple view geometry is described 
in [8]. The description of the two view geometry can be 
found in [9-11]. 

4.1. Camera Model 

The most often used and well-known camera model is 
the pin-hole camera model [8]. This model is described 
with the help of the projection matrix P of the camera: 

,   P K R RC              (10) 

where R is rotation matrix of the camera in the world 
coordinate system, C—coordinates of the camera center 
in the absolute coordinate system, K—the camera cali-
bration matrix. The camera calibration matrix K includes 
parameters such as focal length f and position of the 
principal point ,x yp p   in the coordinate system of the 
image 

.

1

x

y

f p

f p

 
 
  

K 




0,




             (11) 

The projection matrix P is used for triangulation and 
computing of the 3D-data from the 2D image data, be-
cause it expresses the relationship between the world 
points W and their corresponding image points w: 

,w PW                  (12) 

where  and .  T, , 1x yw  T
, , , 1X Y ZW

4.2. Independent Calibration 

As independent calibration of two cameras or simply 
independent calibration in this paper we have applied a 
calibration method, in which a set of 3D points with ex-
act positions are shot with two cameras simultaneously. 
The projection matrix is then computed from the 3D 
world data and the 2D image. The 3D data can be recon-
structed with help of the computed projection matrix and 
the image data of both cameras and the geometric recon-
struction error can be found. If the reconstruction accu-
racy does not satisfy the requirements of the measure-
ment system, the projection matrices can be refined by 
iteratively minimizing the geometric reconstruction error 
(for example, Levenberg-Marquardt algorithm). 

The computation of initial projection matrices is based 
on the direct linear transformation (DLT). According to 
[8], for each correspondence Wi ↔ wi the following rela-
tionship can be derived: 



T T
1

T T
2

T T
3

0

0

0

i i i i

i i i i

i i i i

   
     

   
PA

W yW P

W xW P

yW xW P

ω

ω









   (13) 

where  are normalized image points, 
W—normalized 3D data, P1, P2 and P3—rows of projec-
tion matrix P in a normalized form and i—index of the 
point. The projection matrix P can be found after having 
obtained the singular value decomposition (SVD) of the 
matrix A for all the given points. So if A = UDVT, then 
the solution is the last column of the matrix V. 

 T
, ,w x y ω

When projection matrices of both cameras are com-
puted, the 3D world point can be reconstructed. For this 
purpose, the triangulation [8] from the corresponding 
image points w and w' of both cameras and projection 
matrices P and P' (also based on the DLT) is used: 

 

 

0
0,

0

   
   

w PW
AW

w P W
      (14) 

where 
T T

3 1

T T
3 2

T T
3 1

T T
3 2

.

 
 
 

  
   

 
    

xP P

yP P
A

x P P

y P P

             (15) 

The 3D data can be reconstructed with the help of the 
SVD of the matrix A by computing the projection matri-
ces, like in the solution above. 

In order to minimize the geometric error, projection 
matrices must be refined using the Levenberg-Marquardt 
(LM) minimization method. For this purpose both pro-
jection matrices are composed to an optimization matrix 
and the LM-algorithm runs until the geometric error reaches 
a minimum. Once the geometric error is minimized, the 
projection matrices stay constant for further measure-
ments until some mechanical parameters (for example, 
camera orientation) are changed. 

4.3. Fundamental and Essential Matrices 

In the previous chapter, the projection matrices were 
matched to each other with the help of the LM-algorithm 
in order to obtain the minimal reconstruction error. An-
other method based on the computation of the funda-
mental matrix, i.e. a matrix, which contains the relation-
ship between two cameras, their extrinsic and intrinsic 
parameters. The fundamental matrix is defined by the 
equation 

T 0, w Fw              (16) 

where F is fundamental matrix, w and w'—corresponding 
image points. From (16) it follows that the fundamental 
matrix can be computed when having only the corre-
sponding image points. To do so, the (16) must be trans-
formed to 
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 
 
 



















Af f         (17) 

where [x, y, 1], [x', y', 1] are corresponding image coor-
dinates of a single point, vector f represents the funda-
mental matrix F and n is the number of corresponding 
points. Using the least squares solution in (17), one can 
easily compute the fundamental matrix. It is also impor-
tant to use the singularity constraint after the computa-
tion of the initial fundamental matrix [8]. Projections 
matrices can be directly extracted from the fundamental 
matrix. Unfortunately, the use of the fundamental matrix 
in this work did not provide a stable reconstruction of the 
3D data, therefore it will not be further considered. 

However, the solution with the fundamental matrix 
was not a complete failure either. Instead of the funda-
mental matrix we can use its specification to the case of 
the normalized image coordinates—the essential matrix 
[8], which is defined as: 

T T T 1ˆ ˆ 0,   w Ew w K EK w          (18) 

where ŵ' and ŵ are normalized image points, w' and 
w—original image points, K' and K—camera calibration 
matrices, E—the essential matrix. The computation of 
this matrix differs from the computation of the funda-
mental matrix only in the singularity constrain and nor-
malization of the image data with the help of calibration 
matrices. Thus, if the singular values decomposition of 
the initial essential matrix is 

T ,E USV                (19) 

then the final essential matrix using the singularity con-
straint is 

  Tdiag 1,1,0 .  E U V           (20) 

To extract projection matrices of the cameras from the 
essential matrix, the projection matrix of the first camera 
is assumed to be P = [I|0]. It means that all the recon-
structed data is expressed in the coordinate system of the 
first camera. Four possible solutions exist for the second 
camera. These solutions are based on the two possible 
choices of the rotation matrix R and the offset t between 
the centers of the two cameras 

  ,


E t R                (21) 

where [t]× is the skew-symmetric matrix of the vector t 
defined by 

 
3 2

3

2 1

0

0

0

t t

t

t t




1 .t

 
   
  

t           (22) 

These four solutions are: 

T ,    P UOV t            (23) 

,T    P UOV t            (24) 

,T T    P UO V t            (25) 

.T T    P UO V t            (26) 

Here U and V are matrices from (20), t—radius vector 
to the center of the center of the second camera in the 
coordinate system of the first camera  
and an orthogonal matrix 

 T0,0,1 t U

0 1 0

1 0 0

0 0 1


.

 
   
  

O              (27) 

The choice of the right solution depends on the 3D re-
construction using computed projection matrices. First, 
the projection matrix, the reconstruction data of which 
look correct, is chosen. To refine the reconstruction ac-
curacy it is necessary to apply the LM-algorithm. As in 
chapter 4.2, the re-projection error should be minimized 
by using the essential matrix as an optimization parame-
ter. 

The essential matrix and fundamental matrix can be 
very useful, if one does not have the exact 3D data. How- 
ever, two camera calibration matrices are necessary for 
the computation of the essential matrix, which can be 
found with the help of the decomposition of the projec-
tion matrices from the chapter 4.1. It means that camera 
calibration with the use of the exact 3D data is only nec-
essary at first. Later, if intrinsic camera parameters do 
not change, the matching of the coordinate systems of 
both cameras can be done using the computation of the 
essential matrix. 

4.4. Image Distortion 

The calibration methods described above are based on 
the pin-hole camera model, which means, that points in 
the world frame are projected to the image plane through 
a straight line. However the lens surfaces in the real op-
tical systems always have deviations from the designed 
form. These deviations cause geometric distortions of the 
image. Several ways to estimate the distortion are de-
scribed in [2-4]. The most popular distortion model can 
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be described with following equation 

 2 4 6
1 2 31 ,k r k r k r    d tp p pΔ n



      (28) 

where pd is the distorted image point, Δpt—vector of 
tangential distortion, pn—normalized distortion-free im-
age point, k1, k2 and k3—are coefficients of radial distor-
tion, r—the length of the radius vector from the principal 
point to the image point pn. The tangential distortion is 
commonly caused by the lack of alignment of the lenses. 
The deviation of the lenses’ surfaces from the designed 
form causes the radial distortion. 

Simplifying the (28) by ignoring the tangential distor-
tion term and expressing it in matrix form for a set of 
points we get 

 
   

 


1
2 4 6

2

2 1 2 3 3

3 1

n n

k

k

k 



 
     
  

d n n n n

P P

K

p p p r p r p r
 
Δ

       (29) 

or 

,P PKΔ                 (30) 

where n is the number of image points. Using this ex-
pression we can compute the radial distortion coefficients 
using the pseudo inverse matrix from P 

† .K P PΔ                 (31) 

The re-projected image points are used as normalized 
distortion-free points pn to compute radial distortion co-
efficients. Using the computed values of the radial dis-
tortion as an initial guess the Levenberg-Marquardt Al-
gorithm should be used to refine the distortion coeffi-
cients. 

4.5. Inhomogeneous Distribution of the Light 
Intensity 

Not only can the radial and tangential distortion influ-
ence on the measurement accuracy, but the inhomoge-
neous distribution of the light intensity can also decrease 
the measurement accuracy locally. For example LEDs in 
our illumination system can be aligned slightly asymmet-
ric like in Figure 5. It will be fine for the measurement 
mark positioned in one certain point, but the displace-
ment of this mark in the direction of the camera optical 
axis can cause more light on one side of the mark than on 
another. This will shift the measured position of the 
white ball in direction of the more illuminated area. It is 
also important to mention, that due to the spectral sensi-
tivity of the camera the camera with green illumination 
will be more affected by the inhomogeneous distribution 
of light. 

The Figure 6 illustrates the effect described above. A 
set of points distributed in a cube in the world frame was  

 

Figure 5. Light distribution. 
 

shot by both cameras. Measured image points are shown 
in figure as green points. In the right part of Figure 6 the 
projection of these points to the sensor of the camera #2 
is shown. There is no sign of a radial distortion in this 
projection. However looking closely at points on the line, 
which is approximately parallel to the optical axis of the 
camera, it becomes obvious, that these points signifi-
cantly deviate from the straight line. So in the left part of 
Figure 6 measured points draw a bow as the 3D-mark 
moves in the world frame alone a straight line away from 
the camera. This behavior of the measurement system is 
reproducible—after several movements in the world frame 
along optical axis of the camera measured points draw 
the same pattern. In different areas of the camera field of 
view measured points are drawing different patterns. 
This can significantly reduce the accuracy of the meas-
urement system and can only be corrected using look-up 
tables. 

Since the coordinates of points in the world frame and 
their corresponding image points are known a look-up 
table can be computed for each camera, where the cor-
rection vector for image points depends on the corre-
sponding world coordinates. For this purpose the correc-
tion vector has to be found for each image point as a nor- 
mal vector from the actual image point to the approxi-
mated line. The approximated line is shown in the Fig-
ure 6 as the black line. Correction vectors are shown as 
blue lines. Red points describe corrected points. 

To find correction vectors for points in each “axial” 
line the following operations have to be done. First of all, 
the middle point of the line has to be found with the help 
of the equation 

1 ,

N

i
i

N

 p

M               (32) 

where M is the [2 × 1]-vector with coordinates of the 
midpoint, p—is the [2 × N]-matrix with coordinates of 
points in the line, N—number of points along the line. 
Then vectors from the midpoint to points on the line have  
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Figure 6. Set of points for the estimation of the light distribution. 
 

to be computed 

 

 T
, X p M            (33) 

where X is the matrix of size [N × 2]. From this matrix 
the sample covariance matrix can be computed 

 
1

1
,

1

N

jk ij j ik k
iN 

  
 C X X X X     (34) 

where C is the matrix of size [N × N]. Using singular 
value decomposition of the covariance matrix  
the orientation of the approximated line can be computed 
as the rotation matrix Rl. The average value of rotation 
matrix R has to be computed to force the same orienta-
tion of approximated lines in the whole measuring vol-
ume. Using this rotation matrix and matrix X the correc-
tion vectors can be computed 

T
lC USR

Figure 7. Trilinear interpolation. 
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and 

T ,
 

  
 

x
d R

y

Δ

Δ
               (36) 

where d is the [2 × N]-matrix with correction vectors for 
each point on the line.    

 

2
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      (39) 
After correction vectors have been computed for each 

measured point the 3D-look-up table is created. To cor-
rect image points during an online measurement the 3D- 
position of the mark has to be reconstructed. Using this 
pre-computed 3D-position and look-up table the eight 
nearest neighbor correction vectors must be picked up 
from the table. To find the correction vector C(x, y, z) for 
pre-computed position [x y z] the trilinear interpolation 
(Figure 7) is used. First of all, correction vectors are 
interpolated along the x-axis 
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or in matrix form 
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 (41) 

After the interpolation along x-axis the interpolation 
along y-axis using computed matrix Cx follows 

2

2 1

1

2 1

y x
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y y
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 
 
 
  

C C                 (42) 

And then the correction vector for the pre-computed 
position results then from the interpolation along z-axis 
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(43) 

Using interpolated values of the correction vector on 
image points the 3D-position will finally be reconstructed. 

5. Results of the 3D Data Reconstruction 

In order to test the accuracy of the described measure-
ment system and to compare the suggested camera cali-
bration methods, the 3D mark was mounted on the end 
effector of the coordinate-measuring machine (CMM) 
Werth VCIP 3D. The tested measurement system was 
placed on the table of the CMM. The measurement un-
certainty of this CMM can be assumed in the workspace 
of 20 millimeters as 1.5 micrometers. The measurement 
volume of the CMM is 1000 × 1000 × 600 millimeters, 
which is more than enough for the test. The complete test 
setup is presented in Figure 8. 

The 3D mark on the end effector of the CMM was 
moved in the 3D cubic space of 23 × 23 × 23 millimeters 
and shot by two cameras simultaneously. To eliminate 
the influence of the pixel noise, the position of the 3D 
mark was measured in test points, where the mark had to 
stay still for two seconds in order to get an average value 
of the measured position. To get more precise camera 
calibration, we measured 12167 points. The offset be-
tween the neighboring points in X-, Y- and Z-directions  

 

Figure 8. Test of the measurement system with the CMM. 
 

is 1 millimeter. 

5.1. Reconstruction with Projection Matrices 

After the actual measurement procedure had been com-
pleted, the 3D points from the CMM and the corre-
sponding 2D image points were available for the analysis. 
First, both cameras were independently calibrated in or-
der to get projection and calibration matrices. Then, us-
ing the computed projection matrices, the 3D-points were 
reconstructed from the image points and the reconstruc-
tion error was determined for each point as the geometric 
deviation of the reconstructed position from the real one. 
The results of the reconstruction using independent cali-
bration (chapter 4.2) without and with the correction of 
the light inhomogeneity are presented in Figure 9 and in 
Figure 10 respectively. It is obvious from these two 
cases, that when using the correction of the light inho-
mogeneity described in chapter 4.5, the accuracy im-
provement of up to 1 - 3 µm can be achieved. At the 
same time the estimation of the radial distortion has 
shown, that the distortion of the used lenses is very small 
and the correction of the distortion does not lead to any 
accuracy improvement. For that reason it has not been 
used in further experiments. The average value of the 
reconstruction error for the independent calibration with 
the light inhomogeneity correction is 3.5 micrometers. 
The reconstruction error gets less in the middle of the 
shown point cube, where the optical axes of the cameras 
cross each other. 

After the independent calibration the camera calibra-
tion matrices can be extracted from the projection matri-
ces. The essential matrix can be computed using the cali-
bration matrices. This way, the calibration of the whole 
stereo video measurement system was carried out by 
only using the essential matrix. The 3D data was recon-
structed with the help of the projection matrices extracted 
from the essential matrix. The reconstruction error was  
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Figure 9. Reconstruction using the independent calibration. 
 

 

Figure 10. Reconstruction using the independent calibration 
and light inhomogeneity correction. 

 
analyzed in the way described above. The results of the 
reconstruction using calibration with the essential matrix 
(chapter 4.3) are presented in Figure 11—without light 
inhomogeneity correction and in Figure 12—with light 
inhomogeneity correction. Similar to the experiment with 
the independent calibration the light inhomogeneity cor-
rection improves accuracy of the system in case of the 
essential matrix method up to 0.5 - 2 µm. The average 
value of the reconstruction error for this method is 0.05 
micrometers. Like in the previous method the reconstruc-
tion error gets less in the middle of the points cube, but 
the distribution of this error in the workspace is much 
steadier. 

It is obvious that the reconstruction results become 
much more accurate after the system has been calibrated 
using the essential matrix. It can be explained by the fact 
that the essential matrix describes not only the intrinsic 
parameters but also the position and orientation of both 
cameras relatively to each other. Unlike it, a simple in-
dependent computation of the projection matrices only 
describes the relationship between the world points and 
the camera image. Therefore, the calibration with the  

 

Figure 11. Reconstruction using the essential matrix. 
 

 

Figure 12. Reconstruction using the essential matrix and the 
light inhomogeneity correction. 

 
essential matrix can better match the coordinate systems 
of the two cameras than the independent calibration. 

5.2. Affine Reconstruction 

In respect to the fact that both cameras have telecentric 
lenses, their camera models can be approximated to the 
affine camera model—all projection lines are assumed to 
be parallel to each other and the last row of the projection 
matrix has the form (0, 0, 0, 1). Using this assumption, 
the affine reconstruction can be implemented to get the 
3D data from the corresponding image points. The re-
construction can be carried out with the help of the fac-
torization algorithm described in [8] (the algorithm 18.1). 
First of all, the origin of every image must be translated 
to the center of points in this image. The translation vec-
tor t for the camera with the index i is then 

1

1
,

n
i i

j
jn 

 t w               (44) 

where wi are points on the image i, j—index of the point, 
n—number of points on the image. The translation is de- 
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fined by the equation 

ˆ ,i i i  w w m t             (45) 

where wi are original image points in the image i, 
ŵi—new or translated points in the image i, m—the vec-
tor of size [n × 1], all the elements of which are equal 1. 

Then the measurement matrix M of size [4 × n] is 
composed from the new image coordinates ŵi: 

1 1 1
1 2
2 2 2
1 2

ˆ ˆ ˆ
.

ˆ ˆ ˆ
n

n

 
 
 

w w w
M

w w w




           (46) 

Then from its SVD M = UDVT the 3D normalized 
points are obtained from the first three columns of V. 

As described above, the affine reconstruction was 
tested using the same measurement data as used in chap-
ter 5.1; the geometric reconstruction error was analyzed 
as well. The results of the affine reconstruction are pre-
sented in Figure 13—without the light inhomogeneity 
correction and in Figure 14—with the light inhomogene-
ity correction. The average value of the reconstruction 
error for this method is approximately 3.25 micrometers. 

Unlike the reconstruction using the independent cali-
bration and essential matrix, the affine reconstruction 
does not require the computation of the camera projec-
tion matrices. The reconstruction occurs directly from the 
image data; at least four corresponding points are re-
quired though. However, this reconstruction method can-
not be used for an online-measurement of the 3D-posi- 
tion due to the computation effort caused by a large data 
volume. 

6. Conclusions 

The reconstruction results and the measurement accuracy 
can be analyzed more carefully. Figure 15 depicts a dis-
tribution of the reconstruction error for all the three de-
scribed methods. Here the whole error area is divided 
into 50 intervals. The number of points with the recon-
struction error is found in every interval and then pre-
sented as point-marks on the graphic. The average value 
of the error for all point is presented as a line. It is obvi-
ous from the figure that the distribution of the recon-
struction error is similar to the affine reconstruction and 
the reconstruction using independent calibration. The 
distribution of the error for the reconstruction using the 
essential matrix is very small in comparison to the other 
two methods. Furthermore, the average value of the re-
construction error in case of the essential matrix is sig-
nificantly smaller than in the other two cases. Therefore, 
the calibration using the essential matrix will be used for 
the calibration of the system as the standard method. The 
independent calibration will be only used to compute the 
initial values of the calibration matrices if the intrinsic 
parameters have somehow changed. 

 

Figure 13. Affine reconstruction. 
 

 

Figure 14. Affine reconstruction using correction of the 
light inhomogeneity. 

 

 

Figure 15. Distribution of the reconstruction error. 
 

Note that in order to estimate the accuracy of the 
measurement system, the image processing accuracy of 
1.5 micrometers (the pixel noise was strongly suppressed 
for the calibration measurement) must be added to the 
reconstruction error. Thus, if the average value of the 
reconstruction error using essential matrix is about 0.05 
micrometers, the accuracy of the measurement system is 
1.55 micrometers. 
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