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ABSTRACT 

In this paper, a new topological approach for studying an integer sequence constructed from Logistic mapping is pro-
posed. By evenly segmenting  0,1  into N non-overlapping subintervals which is marked as , representing 

the nodes identities, a network is constructed for analysis. Wherein the undirected edges symbolize their relation of ad-
jacency in an integer sequence obtained from the Logistic mapping and the top integral function. By observation, we 
find that nodes’ degree changes with different values of 

1,2, , N

  instead of the initial value— 0X , and the degree distribu-

tion presents the characteristics of scale free network, presenting power law distribution. The results presented in this 
paper provide some insight into degree distribution of the network constructed from integer sequence that may help 
better understanding of the nature of Logistic mapping. 
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1. Introduction 

Graphical representations are widely used for displaying 
relations among informational units because they help 
readers to visualize those relations and hence to under- 
stand them better. By representing individuals or organi- 
zations as nodes and interaction or relation between them 
with edges, complex networks can be constructed and 
analyzed [1-3]. Examples include the Internet, World 
Wide Web, social networks of acquaintance between 
individuals, metabolic networks, food webs, etc. [4-8]. 

Recently, the general theory of complex dynamical 
networks, which is an extension to the classical graph 
theory, has been reconsidered for a better understanding 
of the intrinsic relations, common properties and shared 
features of possibly all kinds of networks in the real 
world. 

In this paper, a new topological approach is introduced 
to analyze an integer sequence with sufficiently long 
length generated by Logistic mapping and the top inte- 
gral function. The integer sequence is used to construct a 
network, from which its properties are studied under a 
general complex network framework. We make research 
on the degree distribution through computer simulation, 
and come to the conclusion that the degree distribution  

presents the characteristics of scale free network, pre-
senting power law distribution. 

2. Network Modeling Based on Logistic 
Mapping 

2.1. Generating Nodes 

Given a interval of  0,1

,3, ,

, we segment it evenly into  
non-overlapping subintervals, each of which represents a 
unique node identity in the network to be built, wherein, 
the width of each subinterval is equal. In accordance with 
the order from left to right, the subintervals are recorded 
respectively as , so there are a total of  
nodes in the network to be built, the width of each subin-
terval is 

N

N1, 2 N

1 N , and the  subinterval  
—

-tk h
 1 ,k N k N  represents node k. For example, given 

10N  , there are 10 nodes in the network. In detail, 
evenly segment the interval of  0,1  into 10 non-over- 
lapping subintervals, thus the width of each subinterval is 
0.1. The subinterval—  0,0.1  represents node 1,  
 0.1,0.2  represents node 2,  0.2,0.3  represents node 
3, , and  0.9,1  represents node 10. It should be noted 
that, where the interval is left-open and right-closed. In 
accordance with this principle, we get 10 nodes in the 
network we studied, as is shown in Figure 1. 



X. L. YU  ET  AL. 1559

 

Figure 1. Segment of [0, 1] and nodes generation. 

2.2. Logistic Mapping 

One-dimensional Logistic mapping from a mathematical 
point of view is a very simple form of chaotic maps, and it 
is given by (1). Here 

1 1n n nX X X                  (1) 

in which  0,4 


 is called Logistic parameter, and 
wherein 0,1nX  . Given different values of 0X  and 
 , after several iterations, we will get different se- 
quences. Studies have shown that the smaller the value of 
4   is, the more evenly the corresponding sequence 

distributed throughout the entire interval—  0,1 . More- 
over, only when  0,1nX , the corresponding Logistic 
mapping sequence generated by 0X  is of non-periodic, 
non-convergence. If not, the corresponding sequence will 
converge at a certain specific value. In this paper, we 
analyze the integer sequence with sufficiently long length 
generated by Logistic mapping. Therefore, we only study 
the particular situation, in which  0,1nX  and  

 3.5  699456,4 .  

2.3. Generating the Integer Sequence 

First, computer generates a random number, which be-
longs to the interval—  0,1 , marked as 0X . Then, for 
the given  ,  and the specific number of iterations, 
which is denoted as , we use Logistic mapping itera-
tions to generate 1

N
m

1 2, , , nX X 
,

X 

1, 1
, which can be denoted 

as k , 0, 2,X k n  , wherein kX  means the 
value of the Logistic mapping at the  iteration. 
Seen from above, if  is given large enough, then there 
are plenty of 

-thk
m

kX  in the corresponding sequence, namely 

k  ,, 0 1,2, , 1X k n    is an integer sequence with 
sufficiently long length. 

It is noteworthy that, for given , each kN X  in the 
sequence above corresponds to a unique node, which is 
denoted as k . Based on the rule of node’s generation, 
for each k

Y
X , we can get its corresponding node in the 

network, according to the subinterval it belongs to. For 
example, given , m  and 10N  0.X  7 0.798X n  , 
since mX  and nX  respectively belong to the two sub-
intervals—  0.6,0.7  and  0.7,0.8 , so Xm and Xn re-
spectively correspond to node 7 and node 8, namely, 

 and Y . 7mY  8n

If we regard kX  as the independent variable, k  as 
the dependent variable, then we can use the top integral 
function to describe the correspondence relationship be-
tween them. The top integral function is the function that 
its value is the smallest integer greater than the inde-

pendent variable or equal to it, is given by (2). Here 

Y

   mink k kY N X m Z N X m          (2) 

in which kX  represents the value of the Logistic map-
ping at the  iteration, kY  represents the correspond-
ing node of k

-tk h
X ,  means the total number of nodes in 

the network and Z represents the set of integers. There-
fore, for any sequence of  

N

, 0,1,2, ,k 1X k n  , we 
can use Equation (2) to obtain the corresponding integer 
sequence—  Y k, 0,1, 2, , 1nk   , through which we 
can get the rule of edge connection in the network we 
constructed. 

2.4. Generating Networks 

In the network we constructed, whether two nodes are 
connected or not, depends on their locations in  
 , 0,1,2, ,kY k n 1  . In detail, it’s determined by their 
adjacency in the integer sequence above. For node kX , 
it is just connected to its adjacent nodes—node 1kX   
and node +1kX . Note that the edge we studied is undi-
rected and unweighted. 

For example, given 10N  , 3.8  ,  and X0 
= 0.7, we got the integer sequence, as is shown in Table 
1. 

10n 

Then we get the rule of edges’ generation as follow. 
The first edge is (7, 8), the second one is (8, 7), the third 
one is (7, 10) and the fourth one is (10, 4), , and so on. 
Namely, the first edge is connected between node 7 node 
8, the second is also connected between node 8 and node 
7, the third is connected between node 7 and node 10, 
and so on. Wherein, reconnection is allowed. But in case 
of 1k kY Y  , we skip over it, since it is not allowed that 
a node can be connected to itself. Connect other nodes in 
accordance with the rule above, and then we get the net-
work topology, as is shown in Figure 2. 

3. Parameters’ Influence on Nodes’ Degree 

It mainly refers to two parameters in the process of the 
network’s generating, namely the initial value 0X  and  

 
Table 1. Integer sequence. 

0 0.7 7 

1 0.798 8 

2 0.6125448 7 

3 0.901867938 10 

4 0.336308208 4 

5 0.84817899 9 

6 0.489331286 5 

7 0.949567478 10 

8 0.181978513 2 

9 0.565676868 6 
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Figure 2. Network topology generated from sequence: 7, 8, 
7, 10, 4, 9, 5, 10, 2, 6. 

 
the Logistic parameter  . Seen by the nature of the cha-
otic sequence, slight difference between the initial values 
will come to completely different chaotic sequences, and 
it’s the same with the Logistic parameter. So, the com-
plex networks obtained by different initial values and 
parameters are completely different. What about the nodes’ 
degree? By simulation, we find that the nodes’ degree in 
various networks showed particular properties as follow. 

3.1. Initial Value’s Influence on Nodes’ Degree 

Given 3.9  , N = 200 and n = 1000, we study nodes’ 
degree influenced by 100 different initial values. We carry 
out a hundred of experiments through computer simula-
tion, since there are a hundred of different values of 0X .  

In each experiment, the computer first generated a ran-
dom number— 0X , then carried out the iterations of a 
thousand times. Based on the result of the iterations and 
the top integral function, we get the final integer sequence 
of nodes. Then we carry out the connection of adjacent 
nodes according to the final sequence, and get the data of 
nodes’ degree. The data is shown graphically in Figure 
3. 

As is shown in the figure above, there are 200 nodes in 
the network, wherein the horizontal axis represents the 
200 nodes, while the vertical axis represents the 100 ex-
periments. In the right side of this figure, we use a color 
bar to describe different values of the degree by different 
colors. The color bar shows that when the color changes 
gradually from blue to red, the corresponding value of 
the degree also synchronously increases. Wherein the color 
of dark blue represents the value of the degree is zero, 
namely the dark blue nodes in the figure are all isolated 
nodes. 

 

Figure 3. Nodes’ degree influenced by 100 different initial 
values. 

 
As is shown in Figure 3, in each of the 100 experi-

ments, the value of each node’s degree almost has no 
change although 0X  takes different values. In particular, 
the number of the isolated nodes in the figure is almost 
the same, which is the initial value has little effect on the 
number of isolated nodes. It reveals that in the condition 
of   is given; the initial value has little effect on the 
nodes’ degree. 

3.2. Logistic Parameter’s Influence on Nodes’ 
Degree 

Given 200N   and 1000n  , we study the influence 
on nodes’ degree caused by a total number of 100 dif-
ferent Logistic parameters. Since there are a hundred of 
different values of  , so we carry out a hundred of ex-
periments through computer simulation, w 1 1i i i      
herein the value of   in the  experiment is noted 
as i

thi
 , 1 i 100  . For each i , we set, namely the 

value of i  increases with the increasing of . And the 
value of each i

i
  belongs to the interval that we ob-

tained hereinabove—[3.5699456, 4]. 
In each experiment, the computer first generated a 

random number— 0X , then carry out a thousand of itera-
tions according to each value of i . Based on the result 
of the iterations and the top integral function, we get the 
final integer sequence of nodes. Then connect the adja-
cent nodes according to the final sequence, and get the 
data of nodes’ degree. The data is shown graphically in 
Figure 4. Here in which the horizontal axis represents 
the 200 nodes, while the vertical axis represents the 100 
experiments. As is shown in the figure, in most of the 
100 experiments, the value of nodes’ degree increase 
with the increase of  . What’s more, in the whole net-
work, the total number of the isolated nodes decreases 
with the increase of the  . It reveals that the larger   
is, the better the connectivity of the network is. 

From what has been discussed above, we come to the 
conclusion that   have more influence on nodes’ de-
gree and the connectivity of the network than 0X , al-
though it has important influence on the corresponding  
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Figure 4. Nodes’ degree influenced by 100 different Logistic 
parameters. 

 
integer sequence. In detail, the larger   is, the less the 
isolated nodes’ number is, and the better the connectivity 
of the network is, while the initial value has little effect 
on the nodes’ degree. 

4. Degree Distribution 

On the basis of the conclusion above, we conduct further 
research on the degree distribution by constructing six 
typical networks. In the network we constructed, we need 
to choose applicable parameters to decrease the number 
of isolated nodes, since the less the number of isolated 
nodes is, the better the connectivity is, and it is of little 
significance to the study of degree distribution. 

Given N = 100,00, and the value of  is respectively 
as follow, 10,000, 50,000, 100,000, 500,000, 1,000,000, 
and 5,000,000. Therefore, there are ten thousands of nodes 
in the network, the total number of iterations is large 
enough, and the result of iteration is the corresponding 
integer sequence with sufficiently long length. Then we 
get the figure of degree distribution in each of the net-
works above through computer simulation, and the result 
is shown in Figure 5. 

n

As is shown in Figure 5, in dual-logarithm coordinates 
system, the degree distributions of all the networks above 
approximate a straight line, presenting the characteristics 
of power law distribution. It is similar to the degree dis-
tribution of scale free network. Therefore, in terms of the 
degree distribution, the network we constructed from in-
teger sequence presents the characteristics of scale free 
network.  

The results presented above provide some insight into 
distributions of the integer sequence that may help better 
understanding of the nature of the Logistic mapping. 

5. Conclusion 

In this paper, we have studied the degree distribution of a 
network which is constructed from Logistic mapping. It 
is found that   has more influence on nodes’ degree 
and the connectivity of the network than 0X . Further 

 

Figure 5. Probability versus degree. 
 

more, the degree distribution of the network shows power 
law distribution, presenting the characteristics of scale 
free network. The results presented in this paper also 
provide some insight into how networks are constructed 
from integer sequences, as well as how integer sequence 
is generated from the Logistic mapping. 

REFERENCES 
[1] R. Albert and A.-L. Barabasi, “Statistical Mechanics of 

Complex Networks,” Reviews of Modern Physics, Vol. 74, 
No. 1, 2002, pp. 47-97. 
http://dx.doi.org/10.1103/RevModPhys.74.47 

[2] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of 
Networks,” Advances in Physics, Vol. 51, No. 4, 2002, pp. 
1079-1145.  
http://dx.doi.org/10.1080/00018730110112519 

[3] M. E. J. Newman, “The Structure and Function of Com-
plex Networks,” SIAM Review, Vol. 45, No. 2, 2003, pp. 
167-224. http://dx.doi.org/10.1137/S003614450342480 

[4] R. Pastor-Satorras, A. Vazquez and A. Vespignani, “Dy-
namical and Correlation Properties of the Internet,” Physi-
cal Review Letters, Vol. 87, No. 25, 2001, pp. 1-4. 
http://dx.doi.org/10.1103/PhysRevLett.87.258701 

[5] G. Bianconi and A. L. Barabasi, “Competition and Mul-
tiscaling in Evolving Networks,” Europhysics Letters, Vol. 
54, No. 4, 2001, pp. 436-442. 
http://dx.doi.org/10.1209/epl/i2001-00260-6 

[6] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley 
and Y. Aberg, “The Web of Human Sexual Contacts,” 
Nature, Vol. 411, No. 6840, 2001, pp. 907-908. 
http://dx.doi.org/10.1038/35082140 

Open Access                                                                                             AM 

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1080/00018730110112519
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1103/PhysRevLett.87.258701
http://dx.doi.org/10.1209/epl/i2001-00260-6
http://dx.doi.org/10.1038/35082140


X. L. YU  ET  AL. 

Open Access                                                                                             AM 

1562 

[7] R. Albert, H. Jeong and A.-L. Barabasi, “Error and Attack 
Tolerance of Complex Networks,” Nature, Vol. 406, No. 
6794, 2000, pp. 378-382. 
http://dx.doi.org/10.1038/35019019 

[8] M. Granovetter, “The Strength of Weak Ties,” American 
Journal of Sociology, Vol. 78, No. 6, 1973, pp. 1360-1380. 
http://dx.doi.org/10.1086/225469 

 

http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1086/225469

