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ABSTRACT 

Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density 
function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for ex-
acerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of 
the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and 
obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lob-
ules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of 
which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, 
the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter con-
cerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was as-
sumed to have a common variance parameter in the state variables, which would originate from the variability in meta-
bolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respi-
ratory rhythm generator through Shrödinger’s wave equation for IBIs. 
 
Keywords: Biological Variability; Stochastic Processes; Optimal Stochastic Control Theory; Probability Density  

Function; Shrödinger’s Wave Equation 

1. Introduction 

Classical physiology is grounded on the principle of ho-
meostasis, in which regulatory mechanisms act to reduce 
variability and to maintain a steady state [1]. Cherniack 
et al. [2] applied a systems engineering approach to the 
control of respiration, describing a controller (brain stem 
respiratory pattern generator), sensors (chemo- and mech-
anoreceptors), and a plant (airways, chest wall, muscles, 
and pulmonary tissue). With this model, fluctuations are 
often dismissed as “noise” of little or no significance. 
However, since many systems in nature, including respi-
ration, operate away from an equilibrium point, the im-
portance of taking fluctuations into account was well 
known from early models of the respiratory control 
mechanism. For example, measured interbreath intervals 
of a preterm baby at 39 and 61 weeks of postconcep-
tional age have shown that the baby’s breathing pattern 
was highly irregular at 39 weeks, and that the fluctua-
tions were significantly reduced by 61 weeks [2]. 

For constructing realistic models of control mechanisms  

with biological variability in spontaneous breathing, one 
is faced with the problem of finding suitable ways to 
characterize them. A characteristic feature of fluctuations 
is the impossibility of precisely predicting their future 
values, and thus some researchers have tried to use statis-
tical concepts to model fluctuations. From this statistical 
viewpoint, Frey et al. and Suki have suggested three 
points on noisy biological variables: 1) the fluctuations 
obey their own probability distribution; 2) irregular fluc-
tuations can carry information through the probability 
distribution; and 3) the probability distribution may be 
sensitive to physiological or pathological changes [3,4]. 
Thus, to define the physiological or pathological mean-
ing of biological variability, it is important to show why 
the probability distribution of noisy breathing variables is 
sensitive to physiological or pathological changes. 

This paper introduces a stochastic optimal control the-
ory to model spontaneous breathing. By implementing a 
stochastic process, the method reveals that the probabil-
ity density function of noisy spontaneous breathing obeys 
a Shrödinger’s wave function, which was introduced for  
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describing motions of a quantum particle. Based on the 
wave function for noisy breathing, this paper concludes 
that the probability density function of inter-breath in-
tervals will be a marker of neuroplasticity in the central 
rhythm generator. 

2. Differentiable Stochastic Processes [5] 

2.1. Fluctuations as a Sequence of Random 
Variables 

A characteristic feature of fluctuations is the impossibil-
ity of precisely predicting their values. A successful at-
tempt is to model a disturbance as a sequence of random 
variables or a stochastic process. A stochastic process 
can be defined as a family of random variables  

  0 0, , 1,X t t t t  


. It is possible to assume that the 
random variables X t  represent values on the real line 
or in an n-dimensional Euclidean space. A stochastic 
process is a function of two arguments   ,X t  , where 
ω belongs to the sample space Ω. For fixed t,  ,X t   is 
a random variable and for fixed ω,   ,X   is a func-
tion of time which is called a sample function or a tra-
jectory. The trajectories can be regarded as elements of 
the sample function space Ω. For ordinary random vari-
ables whose sample function spaces are Euclidean spaces, 
probability measures can be assigned by ordinary distri-
bution functions and denoted by P. 

Let us assign a probability function to the multidimen-
sional random variable for any k and arbitrary time  
with a distribution function F as follows, 

jt
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which satisfies the conditions of symmetry in all pairs 
 , j jt  and consistency. The consistency condition is 
expressed by  
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Thus, the mean value of a stochastic process m(t) is 
defined by use of the probability distribution density 

 d ,F t  as follows, 

     d ,m t F t E X t 




    .    (2.1.3) 

The symbol E[ ] denotes expectation, that is, integra-
tion with respect to the measure P. The covariance of 

 X s  and  X t  are also given by 
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When both the mean value function m(t) and the co-
variance r(s, t) exist, the stochastic process is said to be 
of second order. 

2.2. A Wiener Process and a Markov Process 

Let us consider the stochastic process of second order 
  , 1, 2,3, ,jX t j k  , and . When 

the set elements  
1 2 3 kt t t t   
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X t X t X t

  



2 ,
 

are mutually independent, the process is called a process 
with independent increments. If the variables are only 
uncorrelated, the process {X(t)} is called a process with 
uncorrelated or orthogonal increments. A Wiener process 
is one with orthogonal increments defined by the follow-
ing conditions: 1) X(0) = 0, 2) X(t) is normal, 3) m(t) = 0 
for all t > 0, and 4) the process has independent station-
ary increments. Since a Wiener process has independent 
stationary increments and X(0) = 0, the variance of the 
process is    2var XX t t ct    , and the covariance 
of the process is r(s, t) = c × (the minimal difference 
between t and s), where the parameter c is called the vari-
ance parameter. 

A stochastic process   X t  is called a Markov proc-
ess if 

        
    

1 2   , , , k

k

P X t X t X t X t

P X t X t







 


.  (2.2.1) 

where   kP X t  denotes the conditional probability 
given   kX t . When the initial probability distribution 
    1 1, X t1 1F t P    and the transitional probabil- 


. (2.1.4) 

ity distribution       , ,?t s t ss P X t X sF t        

are given, the distribution function of the trajectory 
      1 2, , , kX t X t X t  is given by the Bayes’ rule as 

follows, 
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 t
. (2.2.2) 

(2.2.2) shows that a Markov process is defined by both 
the initial probability distribution and the transition prob-
abilities. 

2.3. Stochastic State Models 

State models, i.e., systems of first order difference or 
differential equations, are very convenient for the analy-
sis of systems. An extension of this concept to stochastic 
state models requires that the probability distribution of 
the state variable x at future times should be uniquely 
determined by the actual value of the state. If X(t + 1) is a  
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random variable which depends on the state variable x at 
the time t 

       1 , ,X t X t b x t x    t .    (2.3.1) 

where  ,b x t  and  ,x t  are the conditional mean of 
X(t + 1) and a random variable given the state variable x 
at the time t. When the model (2.3.1) is a Markov process, 
the conditional distribution of  ,x t  given x is normal 
and the stochastic variable  ,x t  can always be nor-
malized by its variance 2  through a Wiener process 
w(t) with unit variance parameter, 

   ,x t w  t .            (2.3.2) 

2.4. Stochastic Differential Equations of State 
Models 

Starting with the difference 

       2,X t h X t b x t h o h    .   (2.4.1) 

where the term o(h2) denotes the omit terms of higher 
order than 2. One can easily obtain a stochastic differ-
ence equation by adding a disturbance  ,x t , 

   
       2, , ,

X t h X t

b x t h x t h x t o h 

 

      
. (2.4.2) 

When the disturbance   ,x t  is a Markov process 
with independent increments, the conditional distribution 
of    , ,x t h x t  

 


 
 given x is normal. Hence 

  , , x t h x t w t h w t        . (2.4.3) 

where   w t  is a Wiener process with unit variance 
parameter. Thus, the stochastic state model is obtained 
for the stochastic process   X t


 

  
       2,
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. (2.4.4) 

Therefore, the expectation    E X t h X t    and 

the variance    var X t h X  t  are obtained as (2.4.5)  

and (2.4.6) respectively, 

       2,E X t h X t b x t h o h      .   (2.4.5) 

   

     
 

22 2
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  var X t h X t

E w t h w t o h
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.     (2.4.6) 

Then, let h go to zero in (2.4.4) and one obtains the 
following formal expression (2.4.7) 

         d d , d dX t t X t X t b x t t w t     .(2.4.7) 

function of  ,b x t  is called a forward drift function of 
the state x at e t. 

The stochastic differ
the tim

ential (2.4.7) is defined as the 
limit of (2.4.4). However, another expression is possible 
for dX(t) as follows, 

     dX t X t X t h   .       (2.4.8) 

The difference     dw t w t h w      * t  is not de- 
ndent on  X t h  but on X(t), and the variance of  pe

 *dw t  is  *va dt tr dw   . Then, another stochastic 
erential equation is possible diff as follows, 

         d*d d , d *X t X t t X t b x t    t w t . 

(2.4.9

where 

) 

 * ,b x t  
process 

is a backward drift function of t

3. A Stochastic Control Model of Noisy 

3.1 bles in Noisy Breathing 

es of tidal 

he sto-
chastic given x at the time t. 

Breathing 

. State Varia

Spontaneous breathing is described as a seri
volumes or changes in respiratory rhythm. A series of 
tidal volumes is produced from the neural activity of the 
respiratory center in the brain. The neural activities of the 
respiratory center induce changes in the length of respi-
ratory muscles, which are transformed into changes in 
the pleural pressure through the architectural properties 
of the ribcage. The changes in the pleural pressure are 
transformed to the alveolar pressure through the lung 
parenchyma. The alveolar pressure is transformed into 
airway pressure by the pulmonary lobule, and goes into 
the environment by producing airflows through the frac-
tal bronchial tree (Figure 1). It is important to note in 
Figure 1 that there are two origins of fluctuations in this 
process: in the respiratory rhythm generator (the neural 
center of respiration) and in the fractal airway modulator 
(the phasic asynchronous contractions of airway smooth 
muscles in the lobular bronchioles) [6]. Then, based on 
that bronchial flow F(t) is composed of N-number of 
phasic lobular flow (q), a tidal volume VT is defined as 
following, 
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d d
I

I

N N

T j
j j

I EI I

V F t t q t q t
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dj





 

   

   
     

   

  

   
. (3.3.1) 

where 



is inspiration priod, and j  I  is 0 or 1 for the 
j-th lobular bronchiole. I  and  E  are the mean value 
of  j  during inspirat  and e ration, respectively. 
On y state it is presumed that 

ion xpi
stead I E     and is 

less than 1 or sin  , then TV  i  by the s expressed
following, which is called a stochastic differential equation. The  
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(a) 

 
(b) 

Figure 1. Components of respiratory system and produ ing 
of breathing motions. (a) Co ystem: 

c
mponents of respiratory s

the ribcage consists of thoracic structures and the dia-
phragm, the right lung parenchyma consists of many lob-
ules, a sliced face of right upper lobe lobules with a single 
bronchiole, and a fractal bronchial tree integrates many 
lobules; (b) A series of tidal volumes is produced from the 
neural activity of the respiratory center in the brain. The 
neural activities of the respiratory center induce changes in 
the length of respiratory muscles, which are transformed 
into changes in the pleural pressure through architectural 
properties of the ribcage. The changes in the pleural pres-
sure are transformed into alveolar pressure through the 
lung parenchyma, which is composed of a large number of 
lobules. The alveolar pressure is transformed into airway 
pressure by the pulmonary lobule, and goes into the envi-
ronment by producing airflows through the fractal bron-
chial tree, each branch of which has own bundle of smooth 
muscles. Bundles of airway smooth muscles dynamically 
change in length-tension to adapt with conditions of breath-
ing. 

 

 sinTV qN  .           (3.1.2) 

During a voluntary forced expir
lobule exhales a flow simultaneously. T
ex

ation maneuver each 
hen, the forced 

piration volume in one second (FEV1.0) is defined by 
the following, 

 
1

1.0
0

FEV dF t t qN   

Thus, the state variable of noisy breathing x is VT nor-
malized by FEV1.0 as the following, 

1.0

sin
FEV

TV
x   .         (3.1.3) 

The variable

 

   is the interbreath interval (IBI), and 
sin  is the pr tion of simultaneously relaxed lobular 
br  

cterized by a series of 

opor
onchioles in the lung during a breath. 

3.2. A Stochastic State Model 

The spontaneous breathing is chara
respiratory variables  TV . One will consider the series 
 TV  as a stochastic process   X t  characterized by 
the following stochast ation with the state variable x 

e variance 2
ic equ

and th  , 
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d
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   * *, d d d 0b x t t w t t
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 w t  and  *w t  where are the forward Wiener proc-
ess an ackw ner process with unit variance d the b ard Wie
parameter, spectively e function,  re . Th ,b x t  or  * ,b x t  
is called the forward drift function or the backward drift 
function of state variable x at the giv spect  en t, re ively as
follows, 
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) 

 tEwhere  denotes the conditional expectation  of 

stochastic ables at the given t. vari

itions of the  
Stochastic State Model 

3.3. Optimal Controlled Cond

Optimal control deals with the problem of finding a con-
trol that a certain optimality law for a given system such 
criterion is achieved. The optimality criterion includes a 
value of H similar to the total energy of a mechanical 
system. In the case of noisy breathing, a cost function H(t) 
should be of equilibrium at optimal controlled conditions 
as follows,  

       

 

2 2*, ,1 b x t b x t
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d
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where U(x) is a potential function of the respiratory sys-
tem. By use of the probability density function ρ(x, t), the 
stochastic optimal controlled conditions are expressed by 
the following, 

       , d 0
d 2 2 2

U x x t x
t

    
    
 .  

(3.3.1) 

2 2*, ,d 1 b x t b x t   

3.4. Einstein’s Diffusion Equation 

Consider a function f a continuous real valued function. 
The variable   f X t  is also a stochastic variable. 
Based on the  of stochastic differentia definitions ls, two 
differentials for   f X t  are defined by use of the 
state variable x as follows, 
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Thus, the differential of   E f X t    by t is ex- 

pressed as follows, 

  
     

     

     

d 0

d 0

22

2

d

d
d

lim
E f X t t t  

d
d

lim
d

d d
,

d 2 d

t
t

E f X t
t

E f X

t
f X t t f X t

E E
t

f x f x
E b x t

x x



 

  
     

  
   
    

 
  

  

 (3.4.1) 
t 



When the series of stochastic variables   X t  have 
a probability density function  ,x t  of state variable x,  

the differential of   E f X t   by t pressed  is also ex

as follows, 
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.  (3.4.2) 

d

d

x

x
t

f x


Comparing (3.4.1) and (3.4.2), the following relation 
is necessary if the function f(x) is arbitrary, 

        t .(3.4.3a) 
2 2
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, d d
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Starting from (3.3.1b), the following equation is also 
necessary, 
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(3.4.3b) 

By combining (3.4.3a) and (3.4.3b), two equations are 
obtained as follows, 
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. 
2 dx

(3.4.5) 

Here, let us introduce two functions, v(x, t) and u(x, t) 
as follows 

      *1
, ,

2
v x t b x t b x t   ,

      *1
, , ,

2
u x t b x t b x t   

Then, the functional relationships of  ,v x t ,  ,u x t  
 ,x t  can be established by the fo o equa-llowi g twn

tions, 
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  .   (3.4.6b) 
d 2 dx x

(3.4.6b) is equal to the diffusion equation of Einstein 
as follows 

   
2 d

, log
2 d

u x t x t
x

  .,      

4.

ger’s Wave Equation as Optimal 
Controlled Conditions 

According to (3.3.1), the optimal condition of noisy breath-

    (3.4.7) 

 Motion Equations for Noisy Breathing 

4.1. Shrödin

ing is defined using of functions  ,v x t ,  ,u x t and 
 ,x t  as follows 

        2 2d 1
, ,

d 2
v x t u x t

t
 

, d 0U x x t x  


. 


(4.1.1) 

It is possible to transform (4.1.1) to the following 
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equatio dix for details regarding the refer-
ence [7]), 

n (see Appen
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The probability density function

   

 

  ,x t  obeys the 
Fokker-Planck equation as follows, 
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A set of transformations are applied to the functions 
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Let us introduce a complex function  as fol-
lows, 

      , , exp ,x t x t iS x   t

By use of  ,x t
formed t

, the Equations (4.1.5a) and (4.1.5b) 
can be trans o a single motion equation which 
equates to Shrödinger’s wave equation as follo
cording to reference [7]), 
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While noisy breathing is in the steady stat of optimal 
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4.2. Distribution of Temporal and R l Lung 
V
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ntrolled con , the cost function would be equal to 

an optimal value of H. Thus, the wave function of noisy 
ventilations is defined by the following 

     
4 2d

U x


 
22 d

x H x
x

 


 
 

.    (4.2.1) 

When the state variable x is expressed by (3.1.3), the  
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If the potential function U(x) is dependent on only the 
variable τ, (4.3.1) can be transformed to the Equation 
(4.2.3) after rewriting the wave function as  
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be a constant  . An equation for   is obtained from 
the right side term of (4.2.3) as follows, 
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When the transformation of cos s   is applied 
(4.2.4), the following equation is obtained, 
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e

(4.2.5) is a Legendre equation, whose solutions are 
obtained as Leg ndre orthogonal polynomials only when 
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sted that  s  would relate to patterns of temporal 
and regional ventilations emerging as a result of phasic 
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oles. The parameter   would be a marker for em
pattern of regional ventilations in the lung. 
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3. Shrödinger’s Wave Equation for  

rm of (4.2.3) an equation is obtained 
as follows, 
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When  P   is introduced as    P T   , the fol-
lowing equation is obtained as another wave equation for 
 P  , 

 

 

Figure 2. Probability distribution of regional ventilations in 
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One can produce a distribution density by  
    2

P    
probability of 
tween 

at the optimal value of H, which is a 
inter-breath intervals (IBIs) observed be-

  and d  . 
For an optimal condition of H, one assumes that the 

wave function P(τ) is expressed by two functions    
and    as follows, 
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By        4.3.2a 4.3.2b Φ     calculating, one 
obtains the following equation: 
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If   , t    hen both and   0  . There-
fore, (4.3.3) is 3.4) as follows, 
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Thus, the state of the rhythm generator is uniquely de-
termined with dependence on the value of H. 

   (4.3.4) 

The probability density function ρ(IBI) is expressed by 
the wave function in (4.3.1) as follows:  
    2
IBI P  . When the wave function  P   is

ssed b g, 
 

expre y the followin

    expP f   .          (4.3.5) 

 U   is expressed by the following, 
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The Equation (4.3.6) explains how the probability den-
sity function (PDF) relates to the function of the central 
rhythm generator. 

5. iscuss

bility? 

Biological processes in the body provide  endless and 
astounding source of complexity. This variability is not 

ply attributable to random noise superimposed on regu-
processes. Instead, some researchers have suggested  

 where 

Y0(s) = 1, Y1(s) = s,    2
2 3 1Y s s 
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that hidden in the noise are tempo
ma  
di

l variables 
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in of biological 
variability. In thi

epresented by a single value, 

ral structures which 
y be important markers of numerous acute and chronic

seases [1]. Frey et al. and Suki have suggested that the 
probability distribution of noisy physiologica

ould have biological information [3,4]. However, little 
work has been done in regard to the orig

s study, fluctuations in respiratory state 
variables are assumed to be r

2 . 
and
bolic fl
com

level 

Based on recent in vitro experim
 colleagues have proposed that e

u ell are essential 
ponents of biological variability [8]. If any biological 

variability originates from the variability of ene
of the cell, it will be acceptable to hypothesize t

the fluctuati

ental studies, Suki 
nergetic and meta-

ctuations at the level of the c

rgy at the 
hat 

ons of physiological state variables are de-
scribed by the single quantity of 2 . That is, a living 
cell would produce biological variability through mo-
lecular fluctuations, and this ability could 

e universal constant 
 biological vari

be modeled by th 2 , much like the 
 the quantum

I

 the medullary 
atory 
inger 

com opriobulbar neurons in the 

 

-
te
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function (PDF) of inter-b h intervals (IBIs). 

Planck constant in  physics. 

5.2. Temporal and Regional Distribution of 
Lobular Ventilations 

By using the lobule and fractal bronchial tree model 
(LBT model) [6], the state variable of spontaneous noisy 
breathing was expressed by the polar coordinate x, which 
is composed of two dimensional variables τ and θ. The 
biological variability of θ may be determined through the 
variability in the amplitude of tidal volume VT based on 
(3.1.3). The Legendre Equation (4.2.5) would describe 
the temporal and regional distribution of pulmonary ven-
tilations, which Venegas et al. recently demonstrated as 
the images of positron emission tomography (PET) [9]. 

f biological variability originates at the level of the 
cell, the biological variability of perfusion in the lung is 
also expected to have the same motion equation as (4.2.5). 
In the case of pulmonary perfusion, it is necessary to 
define the state variable from the stroke volume (SV). If 
the biological variability in both VT and SV is measured 
simultaneously, one would be able to describe the venti-
lation-perfusion matching in the lung according to (4.2.6). 

5.3. Neuroplasticity of the Respiratory Rhythm 
Generator (RRG) 

Respiratory rhythm generation arises in
neurons that initiate rhythmic inspiratory and expir
activity. Several studies suggest that the pre-Bötz

plex, a discrete group of pr
ventrolateral medulla, plays a critical role in respiration 
rhythm generation, although this hypothesis is not with-
out controversy [10]. Pattern-forming neurons include 
premotoneurons and motoneurons in the brain stem or 
spinal cord, where complex activation patterns arise from 

interactions between their intrinsic properties and synap-
tic inputs. Pattern formation establishes the detailed spa-
tio-temporal motor output of respiratory muscles, coor-
dinating their activation to produce a breath with the ap-
propriate characteristics. These coordinated, complex in

ractions among groups of neurons in the brain produce 
an optimal breathing rhythm which is described by P(τ) 
in (4.3.6). 

Mitchell and Johnson have stated that a comprehensive 
conceptual framework of neuroplasticity in the respira-
tory control system is lacking [10]. However, the Equa-
tion (4.3.6) can provide a comprehensive framework for 
respiratory rhythm generation since this expression in-
cludes an optimal total energy H of the respiratory sys-
tem, the topographical distribution parameter λ of re
gional ventilation in the lung, and the probability density

reat
Frey et al. [3] and Fadel et al. [11] demonstrated the 

fractal properties of PDFs of IBIs in preterm, term babies 
and a third of adults at rest. When there are fractal prop-
erties in PDFs of IBIs as follows       , according 
to (4.3.6) the potential U(τ) of the RRG is expressed by 
the following, 

   
4

2
2 1

2
U H

   


       .    (5.3.1) 

This potential of the RRG shows that development of 
the RRG in infants leads to a change in parameters α and 
λ, but no change in the structure of the potential function. 
If a change in the structure of the potential function sig-
nals neuroplasticity, the developmental change of the 
RRG is not a neuroplastic process. 

6. Conclusion 

ave equa-

nd ano

ned as a complex function including 
probability density functions of biological v
both rhythm and amplitude of spontaneous noisy
in

Variability in spontaneous breathing is not simply attrib-
utable to random noise superimposed on a regular respi-
ratory process. Biological variability should originate from 
energetic fluctuations at the level of the cell, and thus it 
is acceptable to assume that biological variability is a 
universal constant amongst all physiological variables. 
Under this assumption, a stochastic state model for spon-
taneous noisy breathing produced Shrödinger’s w
tion as the motion equation. Based on the lobule and 
fractal bronchial tree model of the lung, two wave equa-
tions were obtained from the Shrödinger’s equation: one 
for the respiratory rhythm generator a ther for the 
modulator of airway smooth muscles in the lung. From 
these equations, the function of the respiratory rhythm 
generator was defi

ariability in 
 breath-

g. The stochastic control model analysis in this study 
can thus provide a new tool applicable for the analysis of 
any noisy biological processes. 
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Appendix 
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The first term of (4.1.1) is calculated as follows, 
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(A.1) 
The second term of (4.1.1) is also transformed as follows, 
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(A.2) 

The third term of (4.1.1) is expressed by following, 
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   (A.3) 

By combining (A.1), (A.2) and (A.3), the criterion of optimal control is expressed by the following, 
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      (A.4) 

The Equation (4.1.2) is obtained as the necessity for the criterion of control (A.4) as follows, 
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