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ABSTRACT 

Given a cubic knot K, there exists a projection  of the Euclidean space  onto a suitable plane  

such that p(K) is a knot diagram and it can be described in a discrete way as a cycle permutation. Using this fact, we 
develop an algorithm for computing some invariants for K: its fundamental group, the genus of its Seifert surface and its 
Jones polynomial. 
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1. Introduction 

Considering the set consists of the lattice  
and all the straight lines parallel to the coordinate axis 
and passing through points in , we say that a knot 

3 S 3
3

3K    is a cubic knot if it is contained in . In [1] it 
was shown that any classical knot is isotopic to a cubic 
knot and by [2] we know that there exists a generic pro-
jection p of any cubic knot into a suitable plane. If we 
combine these two results, we have that p(K) is a dia-
gram of K and it can be described in a discrete way as a 
cyclic permutation of points 

S

 , , , nw1 2w w  (with some 
restrictions). This allows us to develop an algorithm for 
computing the fundamental group of K, the genus of its 
Seifert surface and its Jones polynomial.  

2. Discrete Knots and Some Invariants 

Consider an oriented cubic knot K. In [2] it was proved 
that we can associate to K a unique sequence of points 

 such that , i j ,  1 2, , , nv  v   v  3
iv  v v 1 ,i j n  , 

i  is joined to 1i  by a unit edge, nv  is likewise 
joined to 1  by a unit edge, and the numbering of the 

i ’s is compatible with the orientation of K. Henceforth, 
we will assume that all the coordinates of the points in K 
are positive. 

v
v

v

v 

An advantage of cubic knots is that there exists a ca-
nonical generic projection p (for details see [2]). In fact, 
let , where  is the well-known tran-
scendental number. Let P be the plane through the origin 

in  orthogonal to N and consider the orthogonal pro-
jection . Then 

 21,π,πN  

P

π

3
3:p  3p   is injective. Let  

 K̂ p K  be its projection into the plane P. Thus K̂  
is a polygonal curve contained in P with some self-in- 
tersections called inessential vertices or crossings. The 
crossings are not contained in    3 : Pp p   K  and 
are transverse, hence p is regular. The projections of the 
vertices of K are contained in P , and are called verti-
ces. Hence we can write K̂  as a cyclic permutation of 
points  1 2, , ,w w w

n
n  where i P , i j ,  w  w w

1 ,i j  w and i  is joined to 1i  by a straight line 
segment whose preimage is a unit edge and in the same 
way  is likewise joined to  (for details see [2]). 

w 

w
n 1

Definition 2.1. A discrete knot K̂ is the equivalence 
class of the n cyclic permutations of n points  

w

 , , , nw1 2  in Pw w P   such that the ’s satisfy 
the above assumptions. 

iw

ˆNext we will describe the crossings of K . Consider 
an orthonormal basis β of the plane , given by 3P  

   2 3 2π ,π , 1 π
1 1

0 ,
A B

π, 1,     
 

 

where 2π 1A    and 2 4 62π 2π π 1B
w

  

4
ˆ

iw K
 . Con-

sider four points 
1i

, 
2i

, 
3i

 and  whose 
coordinates with respect to the basis β are 

w w
 y,

ji j j . 
The following lemma gives us a criteria to know when 
the line segment 

w x

1 2i i intersects the line segment w w

3 4i i . Notice that for the computing algorithm purpose, 
we just need to consider only the quadruples of points 
w w
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where  and  (see [2]). 2 1 4 3

Lemma 2.2. Let 
3i

 and , whose 
coordinates are 

ji j . Let 
r s

 and 
consider the 2 × 2 matrices, ,  

1i i 

1,3 4,3u  

1i i 

1i
, 

2i
w , w

 , jw x y


3,1 2,1C u u  

w




4
ˆ

iw K
iu w 

4,3u  
D u

,r s iw

32,A u

B u ,  and . 4,1 2,1u  
Then the line segment 

1 2i i  intersects the line seg-
ment 

w w

3 4i iw w  if and only if    det det 0A B   and 
.   detC det 0D 

 
Algorithm 1. Projection and crossings 
Require: List of points at , 3  1 2, , , nL v v v


, where 

, list of points at P,  , ,i i i iv a b c  1 1 2, ,L w w , nw , an 
empty set I, the constant numbers A and B given above. 
  for all  do sv L

   
2 3 2π π π π

,s s s s s s
s

a b a b c c
w  

A B

    
 














 

  for all  do 1

   Create matrices 
,i kw w L

   ,    1 1i k k kM w w w w     

   ,    1k j k kN w w w w
    

   ,     1k i i kO w w w w    

      1 1k k i kP w w w w     
  where  ,s s sw x y  and  , s r s r s rw w x x y y   

 
 

    if  and   det detM N  0   det det 0O P   
          then 
      if  and   ,i j I ,j i I  then add  ,i j  to I  

Suppose that the line segment 1i i il w   intersects 
the line segment 

w
1k k k . We will determine which 

crosses “over” the other. Since, the line segments i  and 

k  are the image under the projection p of two segments 
whose endpoints are 1i , i  and 1k , k , respec-
tively, we have that these both segments are parallel to 
two different canonical coordinate vectors. Let  

 y 1k k k k k k . 
If i

l w w



l

 , ,y

l
v 

 iz

v v 

v 

v

x1 , ,i i i i iu v v x y  
k

u v z

x x
 , ,i iv a b

a

, then we compare the first coordinate of the 
vectors i i  and , i.e., we 
compare  and ak. Thus, 

c  , ,kb k kv a kc

i

 If ai < ak we say that kl  crosses over il  (over 
crossing). 

 If ak < ai we say that kl  crosses under il  (under 
crossing). 

If i k , then we compare the second coordinate of 
the vectors i  y k , and we have the same criteria of 
the previous case changing a by b. The last case zi = zk is 
analogous to the previous one. 

y y
v v

Let c be a crossing point of the segment  over the 
segment . Consider the vectors 1i i i ,  

 and construct the 2 × 2-matrix  

kl
wil

1

u w
k ku w w 


k

k iM u u . Thus we have two possible configurations: 
If det(M) > 0, we say that c is a positive crossing; If 
det(M) < 0, then c is a negative crossing. 

Algorithm 2. Crossing criteria 
Require: The list of indexes of intersection points 
     1 1 2 2, , , , , ,r rI i k i k i k  

3
 and the list of points in 

  1 2, , , nL v v v , where  and   , ,i i i iv a b c 
 1 1 2, , , nL w w w  . 

  for all  ,i j I  do 
   where  1 , ,s s s s s sv x y z 

u v v
u v   

      1i i i   
      1k k v ku v   
      if i kx x  then 
       if ai < ak then 
         print 1i iw w  crosses under 
        else 
         print 1k kw w  crosses under 
      if i ky y  then  
       if bi < bk then 
         print 1i iw w  crosses under 
        else 
         print 1k kw w  crosses under 
     if i kz z  then  
       if ci < ck then 
         print 1i iw w  crosses under 
        else 
         print 1k kw w  crosses under 

2.1. Fundamental Group 

Let  1 2
ˆ , , , nK w w w 

, , , rc
 be an oriented discrete knot and 

1 2  be its crossings. We will compute the fun-
damental group K denoted by 
c c

 1 KP , using the Wirt-
inger presentation (see [3,4]). We will start describing 
the set of generators of  1 KP  (see [2]). 

Suppose that jc  is the crossing point of the linear  

segment 1j jk kl w w
jk over the linear segment 

1j j ji i i

ings 
l w w . Now we are going to rearrange the cross- 

jc  in such a way that 1 2 r . Let i  be 
the segment of 

i i i   g
K̂  whose endpoints are  and ic 1ic   

(where 1rc  1c ). Thus ,   1 1 11, 2, ,i i    2ig
   ,i2 2  2 3 1 ,  

where each index 
1, 2i i  , , , ,  g g 1, 2,r r ri i   i

ji  is considered mod n. We know by 
Wirtinger presentation that there exists a bijection be-
tween the set of segments  and the set of 
generators of 

, 1, ,i i r g
 1 KP , so the set of generators of 

 1 KP  is  1, ,a a r

Again, by the Wirtinger presentation we know that for 
each 

. 

j jj i kc l l 
la l

 corresponds a relation among the 
generators , 1a  and sa , where the indexes s and l 
satisfy that j sk g  and j li g . So 

 If    1 1det 0
j j j ji i k kw w   w w 

     , then we have  

the relation  given by . lR 1l s s la a a a

 If    1 1det 0
j j j ji i k kw w   w w 

    
, then we write  

the relation  given by lR 1s l la a a a s . 
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Therefore   1 1 1, , , ,r rK R R  P a a . 
Algorithm 3. Fundamental group 
Require: The list of indexes of intersection points 
     1 1 2 2, , , , , ,r rI i k i k i k   . 

  Create lists 

   

 
 

 

1 1 1 2

2 2 2 3

1

1, 2, ,

1, 2, ,

1, 2, ,r r r

i i i

i i i

i i i

  
  

  







g
g

g

  for all  do ,j ji k L
    Search r and l such that j sk g  and j li g . 
    Create a matrix,  

       1 1j j j ji i k kA w w w w 
  
 

   if  then  det 0A 
    print 1s l l a a sa a  
   else 
     print  1l s s la a a a

2.2. Seifert Surface 

Given a knot K there exists an algorithm to construct its 
Seifert surface via an oriented diagram of it (for details 
see [3,4]). Roughly speaking, suppose that the corre-
sponding diagram has r crossings, then the crossings are 
replaced by two disjoint arcs respecting the orientation. 
At the end, we obtain a collection of s simple closed 
curves called Seifert curves. We construct a Seifert sur-
face F for K considering each Seifert curve as the bound-
ary of a disk. The disks are connected at each crossing by 
a twisted band (so we need r bands). The genus of F is  
1

2

s r 
. The Seifert genus of a knot is the minimal ge- 

nus possible for a Seifert surface of that knot. 
Next, we apply the above algorithm to our case. As in 

the previous section,  1 2
ˆ , , , n K w w w 

1 2, , , rc c c
 denotes an 

oriented discrete knot and  are its crossings, 
where jc  is as above. Let  1 rA i i , ,

 1 2, , ,n nw w w
A l B

 and  
. In [2] it was defined the bijective map 

, given by  
 if  and , 

 1 , ,
1 2: ,w w

l l

rB k k
, ,s

  1w w s
 w 

l   1sl kw w s  if 

sl i  s, or  if 1sl iw w  sl k . 
This permutation can be expressed as a product of s 

disjoint cycles, where each cycle represents a Seifert 
curve. Hence we can compute the Seifert genus g. 

 
Algorithm 4. Seifert surface 
Require: The set or indexes  1, , r A i i   and  

 such that  1, , rB k k   1j jiwiw   crosses under  

1j jk k . The empty sets , and w w 1 2, , , nLL L 1r   and 
the genus of the knot . 0g 
  Create a function    where l is an index 
   if  and l B    1l lw w s l A 
  If sl A l  i  so that  w  1sl kw s  

  If sl B l k    so that    1sl iw w s
  Now we will form cycles 
  for 1 1s r ri L L L    do 
    Add si L to  and r sm i  
    while  si  m  do 
      Add  m  to  and  rL  m m
    r++ 
 print     1 2 rL L L  

    
2

s r1
g

 
 

 print g 

2.3. Jones Polynomial 

The Jones polynomial is a very important invariant of an 
oriented knot K. We compute the Jones polynomial of a 
cubic knot K using the method described on “The knot 
atlas website” ([5]) applied to our case.  

Let  1 2
ˆ , , , nK w w w   be as above. Let  ,j ji k  be 

pairs of indexes such that 
jk  crosses over l

jil ,  
1,j , r  . Consider the sequence  
 1, , 1r rk k1 1 1 1, 1, , 1, , r ri k k i , ic i       and up to re-

arrangement, we can assume that  
 11 1 2 2 2, 1, , 1, ,l l l l 2,k klC l      is an increasing se-

quence. Consider the segments of curves 
 1 1 1 21, 2, ,C l l l    , ,···,  2 2 2 31, 2, ,C l l l   
 2 2 21, 2, ,k k kC l l    1l , where the index n + 1 is 

equal to 1. 
For each pair  ,s si k , consider the segments as , 

, cs  and ds  such that is  Ccs, is + 1  Cas, ks  
Cds and ks + 1  Cbs. Now we take the following expres-
sions  

C

bsC C C

 If    1 1det 0
s s s si i k kw w w w 

     , then we con- 

sider      1, , , ,A as ds bs cs A as bs cs ds  , 

 if     0w w w w 
1 1det

s s s si i k k     , then we con- 

sider      1, , , ,A as ds cs ds A as ds bs cs  , 
as formal sums, where A denotes a variable and s = 1, ···, 
r. Notice that in the above expressions the order does not 
matter; for instance, the expressions [as, ds] and [ds, as] 
are equal. Now, we compute the formal product of all the 
above expressions to obtain a new expression Q. 

We calculate the Kauffman bracket, denoted by  t A  
from Q replacing first   , ,as bs bs cs  by  ,as cs  and 
afterward replace  ,as as 2 by 2A A  . Next we com-
pute the writhe number denoted by w, which is equal to 
the number of positive crossings minus the number of 
negative crossings. 

Finally, the Jones polynomial  J q  is equal to 

 

131

4 4

1 1

2 2

w

q t

J

q

q

q

q


   
      
   
 

, 
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where q denotes a variable, 
1

4t q
 
  
 

 is the Kauffman  

bracket evaluated at 
1

4q  and w is the writhe number. 
 
Algorithm 5. Jones polynomial 
Require: The list of indexes of intersection points 
     1 1 2 2, , , , , ,r rI i k i k i k  



, bracketKauffman, poly-
nomJones and writhe ← 0. 
  Create array  
    1 1 1 1, 1, , 1, , , 1, , 1r r r rc i i k k i i k k    

  Sort C and produces 1 2 n, , ,C l l l  where 
   1 2 n

  Take curve segments 
l l l  

  

 
 

 

1 1 1 2

2 2 2 3

1

1, 2, ,

1, 2, ,

1, 2, ,n n n

C l l l

C l l l

C l l l

  

  

  








 

  for all  do ,s si k L
   Take s li C , s m 1k C , s n 1i C  , s p

   such that l, m, n, p are the labels of the edges around 
k C   

   that crossing, starting from the incoming lower edge 
   l and proceeding counterclockwise direction. 
   Example: 
    , , ,l m n p  such that m is next to l in counterclockwi- 
   se direction, n is next to m in counterclockwise direc 
   tion, etc.  
   Save  , , ,l m n p  
 Replace each        1, , , , ,n p A l p m n A l m n p, ,l m  
 bracketKauffman ← Multiply all replacements 
 bracketKauffman←Replace     , , ,as bs bs cs as cs  
 and    2

, ,as bs as as 
 bracketKauffman  Replace and simplify  
  2 2,as as A A     
 print t(A) = bracketKauffman 
 for all  do ,s si k L
   Create matrix    1 1s s s si i k kU w w w w 

    
   if  then 

 det 0U 
   writhe++ 
   else 
   writhe-- 

 PolynomJones ←
   3

2 2

writhe
A t A

A A



 
 

 PolynomJones ← replace and simplify 
1

4A q  
 print  J q  = PolynomJones 

3. Examples 

3.1. Left-Handed Trefoil Knot 

Considering the left-handed trefoil knot as a cubic knot, 
see Figure 1, where you can see the corresponding vec-
tors vi’s; . 1, , 24i  

Now, we apply our program to compute its fundamen-
tal group, genus Seifert and Jones polynomial. See Fig-
ure 2. In this case, its fundamental group has 3 genera-
tors a1, a2, a3; and relations: a3a2 = a2a1, a1a3 = a3a2, 
a2a1 = a1a3. Its genus surface is one and its Jones poly-
nomial is   4 3q q qJ q     . 

3.2. Figure Eight Knot 

Considering the figure eight knot as a cubic knot, in this 
case, we have 40 vertices. See Figure 3. 

We now compute its fundamental group, its genus sur-
face and its Jones polynomial. Thus, its fundamental 
group has 4 generators a1, a2, a3, a4; and relations: a2a4 
= a1a2, a1a3 = a3a2, a4a2 = a3a4, a3a1 = a1a4. Its genus 
surface is one and its Jones polynomial is  
  2 11q q q qJ q 2     . See Figure 4. 

 

 

Figure 1. Cubic left-handed trefoil knot. 
 

 

Figure 2. Left-handed trefoil knot invariants. 
 

 

Figure 3. Cubic eight knot. 
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