

Algorithms for Computing Some Invariants for Discrete Knots

Gabriela Hinojosa, David Torres, Rogelio Valdez

Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, México Email: gabriela@uaem.mx, david.tormor@gmail.com, valdez@uaem.mx

Received April 18, 2013; revised May 18, 2013; accepted May 25, 2013

Copyright © 2013 Gabriela Hinojosa *et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Given a cubic knot *K*, there exists a projection $p : \mathbb{R}^3 \to P$ of the Euclidean space \mathbb{R}^3 onto a suitable plane $P \subset \mathbb{R}^3$ such that p(K) is a knot diagram and it can be described in a discrete way as a cycle permutation. Using this fact, we develop an algorithm for computing some invariants for *K*: its fundamental group, the genus of its Seifert surface and its Jones polynomial.

Keywords: Cubic Knots; Discrete Knots; Algorithms

1. Introduction

Considering the set $\mathbf{S} \subset \mathbb{R}^3$ consists of the lattice \mathbb{Z}^3 and all the straight lines parallel to the coordinate axis and passing through points in \mathbb{Z}^3 , we say that a knot $K \subset \mathbb{R}^3$ is a *cubic knot* if it is contained in \mathbf{S} . In [1] it was shown that any classical knot is isotopic to a cubic knot and by [2] we know that there exists a generic projection p of any cubic knot into a suitable plane. If we combine these two results, we have that p(K) is a diagram of K and it can be described in a discrete way as a cyclic permutation of points (w_1, w_2, \dots, w_n) (with some restrictions). This allows us to develop an algorithm for computing the fundamental group of K, the genus of its Seifert surface and its Jones polynomial.

2. Discrete Knots and Some Invariants

Consider an oriented cubic knot *K*. In [2] it was proved that we can associate to *K* a unique sequence of points (v_1, v_2, \dots, v_n) such that $v_i \in \mathbb{Z}^3$, $v_i \neq v_j$, $1 \le i, j \le n$, v_i is joined to v_{i+1} by a unit edge, v_n is likewise joined to v_1 by a unit edge, and the numbering of the v_i 's is compatible with the orientation of *K*. Henceforth, we will assume that all the coordinates of the points in *K* are positive.

An advantage of cubic knots is that there exists a canonical generic projection p (for details see [2]). In fact, let $N = (1, \pi, \pi^2)$, where π is the well-known transcendental number. Let P be the plane through the origin

in \mathbb{R}^3 orthogonal to N and consider the orthogonal projection $p: \mathbb{R}^3 \to P$. Then $p|_{\mathbb{R}^3}$ is injective. Let

 $\hat{K} = p(K)$ be its projection into the plane *P*. Thus \hat{K} is a polygonal curve contained in *P* with some self-intersections called *inessential vertices* or *crossings*. The crossings are not contained in $p(\mathbb{Z}^3) := \Lambda_p = p(K)$ and are transverse, hence *p* is regular. The projections of the vertices of *K* are contained in Λ_p , and are called *vertices*. Hence we can write \hat{K} as a *cyclic permutation of points* (w_1, w_2, \dots, w_n) where $w_i \in \Lambda_p$, $w_i \neq w_j$, $1 \le i, j \le n$ and w_i is joined to w_{i+1} by a straight line

segment whose preimage is a unit edge and in the same way w_n is likewise joined to w_1 (for details see [2]).

Definition 2.1. A *discrete knot* \hat{K} is the equivalence class of the *n* cyclic permutations of *n* points (w_1, w_2, \dots, w_n) in $\Lambda_P \subset P$ such that the w_i 's satisfy the above assumptions.

Next we will describe the crossings of \hat{K} . Consider an orthonormal basis β of the plane $P \subset \mathbb{R}^3$, given by

$$\beta = \left\{ \frac{1}{A} (\pi, -1, 0), \frac{1}{B} (\pi^2, \pi^3, -1 - \pi^2) \right\}$$

where $A = \sqrt{\pi^2 + 1}$ and $B = \sqrt{2\pi^2 + 2\pi^4 + \pi^6 + 1}$. Consider four points w_{i_1} , w_{i_2} , w_{i_3} and $w_{i_4} \in \hat{K}$ whose coordinates with respect to the basis β are $w_{i_1} = (x_j, y_j)$. The following lemma gives us a criteria to know when the line segment $w_{i_1}w_{i_2}$ intersects the line segment $w_{i_3}w_{i_4}$. Notice that for the computing algorithm purpose, we just need to consider only the quadruples of points

where $i_2 = i_1 + 1$ and $i_4 = i_3 + 1$ (see [2]).

Lemma 2.2. Let w_{i_1} , w_{i_2} , w_{i_3} and $w_{i_4} \in \hat{K}$, whose coordinates are $w_{i_j} = (x_j, y_j)$. Let $u_{r,s} = w_{i_r} - w_{i_s}$ and consider the 2×2 matrices, $A = \begin{bmatrix} u_{2,3} & u_{4,3} \end{bmatrix}$, $B = \begin{bmatrix} u_{1,3} & u_{4,3} \end{bmatrix}$, $C = \begin{bmatrix} u_{3,1} & u_{2,1} \end{bmatrix}$ and $D = \begin{bmatrix} u_{4,1} & u_{2,1} \end{bmatrix}$. Then the line segment $\overline{w_{i_1}w_{i_2}}$ intersects the line segment $\overline{w_{i_3}w_{i_4}}$ if and only if $\det(A)\det(B) < 0$ and $\det(C)\det(D) < 0$.

Algorithm 1. Projection and crossings

Require: List of points at \mathbb{R}^3 , $L[v_1, v_2, \dots, v_n]$, where $v_i = (a_i, b_i, c_i)$, list of points at *P*, $L_1[w_1, w_2, \dots, w_n]$, an empty set *I*, the constant numbers *A* and *B* given above. for all $v_i \in L$ do

$$w_s \leftarrow \left(\frac{a_s \pi - b_s}{A}, \frac{a_s \pi^2 + b_s \pi^3 - c_s - c_s \pi^2}{B}\right)$$

for all $w_i, w_k \in L_1$ do

Create matrices

$$M = \left[\begin{pmatrix} w_{i+1} - w_k \end{pmatrix} \begin{pmatrix} w_{k+1} - w_k \end{pmatrix} \right],$$

$$N = \left[\begin{pmatrix} w_k - w_j \end{pmatrix} \begin{pmatrix} w_{k+1} - w_k \end{pmatrix} \right],$$

$$O = \left[\begin{pmatrix} w_k - w_i \end{pmatrix} \begin{pmatrix} w_{i+1} - w_k \end{pmatrix} \right],$$

$$P = \left[\begin{pmatrix} w_{k+1} - w_k \end{pmatrix} \begin{pmatrix} w_{i+1} - w_k \end{pmatrix} \right]$$

where $w_s = (x_s, y_s)$ and $w_s - w_r = (x_s - x_r, y_s - y_r)$ if $(\det(M)\det(N) < 0)$ and $(\det(O)\det(P) < 0)$ then

if $(i, j) \notin I$ and $(j, i) \notin I$ **then** add (i, j) to *I* Suppose that the line segment $l_i = w_{i+1}w_i$ intersects the line segment $l_k = w_{k+1}w_k$. We will determine which crosses "over" the other. Since, the line segments l_i and l_k are the image under the projection *p* of two segments whose endpoints are v_{i+1} , v_i and v_{k+1} , v_k , respectively, we have that these both segments are parallel to two different canonical coordinate vectors. Let

 $u_i = v_{i+1} - v_i = (x_i, y_i, z_i)$ y $u_k = v_{k+1} - v_k = (x_k, y_k, z_k)$. If $x_i = x_k$, then we compare the first coordinate of the vectors $v_i = (a_i, b_i, c_i)$ and $v_k = (a_k, b_k, c_k)$, *i.e.*, we compare a_i and a_k . Thus,

- If $a_i < a_k$ we say that l_k crosses over l_i (over crossing).
- If $a_k < a_i$ we say that l_k crosses under l_i (under crossing).

If $y_i = y_k$, then we compare the second coordinate of the vectors $v_i \ y \ v_k$, and we have the same criteria of the previous case changing *a* by *b*. The last case $z_i = z_k$ is analogous to the previous one.

Let c be a crossing point of the segment l_k over the segment l_i . Consider the vectors $u_i = w_{i+1} - w_i$,

 $u_k = w_{k+1} - w_k$ and construct the 2 × 2-matrix

 $M = \begin{bmatrix} u_k & u_i \end{bmatrix}$. Thus we have two possible configurations: If det(M) > 0, we say that *c* is a *positive crossing*; If det(M) < 0, then *c* is a *negative crossing*.

Algorithm 2. Crossing criteria

Require: The list of indexes of intersection points $I(i_1,k_1),(i_2,k_2),\cdots,(i_r,k_r)$ and the list of points in $L[v_1, v_2, \dots, v_n]$, where $v_i = (a_i, b_i, c_i)$ and \mathbb{R}^3 $L_1 = \begin{bmatrix} w_1, w_2, \cdots, w_n \end{bmatrix}.$ for all $(i, j) \in I$ do where $u_{s} = v_{s+1} - v_{s} = (x_{s}, y_{s}, z_{s})$ $u_i \leftarrow v_{i+1} - v_i$ $u_k \leftarrow v_{k+1} - v_k$ if $x_i = x_k$ then if $a_i < a_k$ then **print** $w_{i+1}w_i$ crosses under else **print** $w_{k+1}w_k$ crosses under if $v_i = v_k$ then if $b_i < b_k$ then **print** $w_{i+1}w_i$ crosses under else print $W_{k+1}W_k$ crosses under if $z_i = z_k$ then if $c_i < c_k$ then **print** $w_{i+1}w_i$ crosses under else **print** $w_{k+1}w_k$ crosses under

2.1. Fundamental Group

Let $\hat{K} = (w_1, w_2, \dots, w_n)$ be an oriented discrete knot and c_1, c_2, \dots, c_r be its crossings. We will compute the fundamental group *K* denoted by $\Pi_1(K)$, using the Wirtinger presentation (see [3,4]). We will start describing the set of generators of $\Pi_1(K)$ (see [2]).

Suppose that c_j is the crossing point of the linear segment $l_{k_j} = \overline{w_{k_j+1}w_{k_j}}$ over the linear segment

$$\begin{split} l_{i_j} &= \overline{w_{i_j+1}w_{i_j}} \text{ . Now we are going to rearrange the crossings } c_j \text{ in such a way that } i_1 < i_2 < \cdots < i_r \text{ . Let } \gamma_i \text{ be the segment of } \hat{K} \text{ whose endpoints are } c_i \text{ and } c_{i+1} \\ \text{(where } c_{r+1} = c_1 \text{). Thus } \gamma_1 = (i_1 + 1, i_1 + 2, \cdots, i_2), \\ \gamma_2 = (i_2 + 1, i_2 + 2, \cdots, i_3), \cdots, \gamma_r = (i_r + 1, i_r + 2, \cdots, i_1), \end{split}$$

where each index i_j is considered mod *n*. We know by Wirtinger presentation that there exists a bijection between the set of segments $\gamma_i, i = 1, \dots, r$ and the set of generators of $\Pi_1(K)$, so the set of generators of $\Pi_1(K)$ is $\{\alpha_1, \dots, \alpha_r\}$.

Again, by the Wirtinger presentation we know that for each $c_j = l_{i_j} \cap l_{k_j}$ corresponds a relation among the generators α_l , α_{l+1} and α_s , where the indexes *s* and *l* satisfy that $k_j \in \gamma_s$ and $i_j \in \gamma_l$. So

- If det $\left[\left(w_{i_j+1} w_{i_j} \right) \left(w_{k_j+1} w_{k_j} \right) \right] > 0$, then we have the relation R_l given by $\alpha_l \alpha_s = \alpha_s \alpha_{l+1}$.
- If det $\left[\left(w_{i_j+1} w_{i_j} \right) \left(w_{k_j+1} w_{k_j} \right) \right] < 0$, then we write the relation R_l given by $\alpha_s \alpha_l = \alpha_{l+1} \alpha_s$.

Therefore $\Pi_1(K) = \{\alpha_1, \dots, \alpha_r | R_1, \dots, R_r\}$. **Algorithm 3.** Fundamental group **Require:** The list of indexes of intersection points $I[(i_1, k_1), (i_2, k_2), \dots, (i_r, k_r)].$ Create lists

 $\begin{array}{l} \gamma_{1} = \left(i_{1} + 1, i_{1} + 2, \cdots, i_{2}\right) \\ \gamma_{2} = \left(i_{2} + 1, i_{2} + 2, \cdots, i_{3}\right) \\ \vdots \\ \gamma_{r} = \left(i_{r} + 1, i_{r} + 2, \cdots, i_{1}\right) \end{array}$

for all $i_j, k_j \in L$ do Search *r* and *l* such that $k_j \in \gamma_s$ and $i_j \in \gamma_l$. Create a matrix,

$$A = \left[\left(w_{i_j+1} - w_{i_j} \right) \quad \left(w_{k_j+1} - w_{k_j} \right) \right]$$

if det(A) < 0 then print $\alpha_s \alpha_l = \alpha_{l+1} \alpha_s$ else

print
$$\alpha_l \alpha_s = \alpha_s \alpha_{l+1}$$

2.2. Seifert Surface

Given a knot *K* there exists an algorithm to construct its Seifert surface via an oriented diagram of it (for details see [3,4]). Roughly speaking, suppose that the corresponding diagram has *r* crossings, then the crossings are replaced by two disjoint arcs respecting the orientation. At the end, we obtain a collection of *s* simple closed curves called *Seifert curves*. We construct a *Seifert surface F* for *K* considering each Seifert curve as the boundary of a disk. The disks are connected at each crossing by a twisted band (so we need *r* bands). The genus of *F* is 1-s+r

 $\frac{1-s+r}{2}$. The *Seifert genus* of a knot is the minimal ge-

nus possible for a Seifert surface of that knot.

Next, we apply the above algorithm to our case. As in the previous section, $\hat{K} = (w_1, w_2, \dots, w_n)$ denotes an oriented discrete knot and c_1, c_2, \dots, c_r are its crossings, where c_j is as above. Let $A = (i_1, \dots, i_r)$ and

 $B = (k_1, \dots, k_r). \text{ In } [2] \text{ it was defined the bijective map} \\ \sigma : (w_1, w_2, \dots, w_n) \rightarrow (w_1, w_2, \dots, w_n), \text{ given by}$

 $\sigma(w_l) = w_{l+1} \quad \text{if} \quad l \notin A \quad \text{and} \quad l \notin B \quad , \quad \sigma(w_l) = w_{k_s+1} \quad \text{if} \quad l = i_s \,, \text{ or } \sigma(w_l) = w_{i_s+1} \quad \text{if} \quad l = k_s \,.$

This permutation can be expressed as a product of s disjoint cycles, where each cycle represents a Seifert curve. Hence we can compute the Seifert genus g.

Algorithm 4. Seifert surface

Require: The set or indexes $A = (i_1, \dots, i_r)$ and $\underline{B} = (k_1, \dots, k_r)$ such that $\overline{w_{i_j+1}w_{i_j}}$ crosses under $\overline{w_{k_j+1}w_{k_j}}$. The empty sets L_1, L_2, \dots, L_n , and $r \leftarrow 1$ and the genus of the knot $g \leftarrow 0$.

Create a function $\sigma \in \mathbb{Z}$ where *l* is an index

 $\sigma(w_l) = w_{l+1}$ if $l \notin A$ and $l \notin B$

If
$$l \in A \Longrightarrow l = i_s$$
 so that $\sigma(w_l) = w_{k_s+1}$

If
$$l \in B \Longrightarrow l = k_s$$
 so that $\sigma(w_l) = w_{i_s+1}$
Now we will form cycles
for $i_s \notin L_r \bigcup L_{r-1} \bigcup \cdots \bigcup L_1$ do
Add i_s to L_r and $m \leftarrow i_s$
while $i_s \neq \sigma(m)$ do
Add $\sigma(m)$ to L_r and $m \leftarrow \sigma(m)$
 $r++$
print $(L_1)(L_2)\cdots(L_r)$
 $g \leftarrow \frac{1-s+r}{2}$
print g

2.3. Jones Polynomial

The Jones polynomial is a very important invariant of an oriented knot K. We compute the Jones polynomial of a cubic knot K using the method described on "The knot atlas website" ([5]) applied to our case.

Let $\hat{K} = (w_1, w_2, \dots, w_n)$ be as above. Let (i_j, k_j) be pairs of indexes such that l_{k_j} crosses over l_{i_j} , $j = 1, \dots, r$. Consider the sequence

 $c = (i_1, i_1 + 1, k_1, k_1 + 1, \dots, i_r, i_r + 1, k_r, k_r + 1)$ and up to rearrangement, we can assume that

 $C = (l_1, l_1 + 1, l_2, l_2 + 1, \dots, l_{2k}, l_{2k} + 1)$ is an increasing sequence. Consider the segments of curves

 $C_1 = (l_1 + 1, l_1 + 2, \dots, l_2), \quad C_2 = (l_2 + 1, l_2 + 2, \dots, l_3), \dots, \\ C_{2k} = (l_{2k} + 1, l_{2k} + 2, \dots, l_1), \text{ where the index } n + 1 \text{ is equal to } 1.$

For each pair (i_s, k_s) , consider the segments C_{as} , C_{bs} , C_{cs} and C_{ds} such that $i_s \in C_{cs}$, $i_s + 1 \in C_{as}$, $k_s \in C_{ds}$ and $k_s + 1 \in C_{bs}$. Now we take the following expressions

- If det $\left[\left(w_{i_s+1} w_{i_s} \right) \left(w_{k_s+1} w_{k_s} \right) \right] < 0$, then we consider $A\left[as, ds \right] \left[bs, cs \right] + A^{-1} \left[as, bs \right] \left[cs, ds \right]$,
- if det $\left[\left(w_{i_s+1} w_{i_s} \right) \left(w_{k_s+1} w_{k_s} \right) \right] > 0$, then we consider $A[as, ds][cs, ds] + A^{-1}[as, ds][bs, cs]$,

as formal sums, where A denotes a variable and $s = 1, \dots, r$. Notice that in the above expressions the order does not matter; for instance, the expressions [as, ds] and [ds, as] are equal. Now, we compute the formal product of all the above expressions to obtain a new expression Q.

We calculate *the Kauffman bracket*, denoted by t(A) from Q replacing first [as,bs][bs,cs] by [as,cs] and afterward replace [as,as] by $-A^2 - A^{-2}$. Next we compute *the writhe number* denoted by w, which is equal to the number of positive crossings minus the number of negative crossings.

Finally, the Jones polynomial J(q) is equal to

$$J(q) = \frac{\left(-q^{\frac{1}{4}}\right)^{3w} t\left(q^{\frac{1}{4}}\right)}{-q^{\frac{1}{2}} - q^{-\frac{1}{2}}},$$

where q denotes a variable, $t\left(q^{\frac{1}{4}}\right)$ is the Kauffman bracket evaluated at $q^{\frac{1}{4}}$ and w is the writhe number.

Algorithm 5. Jones polynomial

Require: The list of indexes of intersection points $I[(i_1,k_1),(i_2,k_2),\cdots,(i_r,k_r)]$, bracketKauffman, polynomJones and writh $\leftarrow 0$.

Create array $c = (i_1, i_1 + 1, k_1, k_1 + 1, \dots, i_r, i_r + 1, k_r, k_r + 1)$ Sort *C* and produces $C[l_1, l_2, \dots, l_n]$ where $l_1 \le l_2 \le \dots \le l_n$ Take curve segments $C_1 = [l_1 + 1, l_1 + 2, \dots, l_2]$ $C_2 = [l_2 + 1, l_2 + 2, \dots, l_3]$ \vdots $C_1 = [l_1 + 1, l_2 + 2, \dots, l_3]$

$$\mathbf{C}_n = \begin{bmatrix} l_n + 1, l_n + 2, \cdots, l_1 \end{bmatrix}$$

for all $i_s, k_s \in L$ do

Take $i_s \in C_l$, $k_s \in C_m$, $i_{s+1} \in C_n$, $k_{s+1} \in C_p$ such that l, m, n, p are the labels of the edges around that crossing, starting from the incoming lower edge l and proceeding counterclockwise direction. Example:

[l, m, n, p] such that *m* is next to *l* in counterclockwise direction, *n* is next to *m* in counterclockwise direction, etc.

Save [l, m, n, p]Replace each $[l, m, n, p] \rightarrow A[l, p][m, n] + A^{-1}[l, m][n, p]$ bracketKauffman \leftarrow Multiply all replacements bracketKauffman \leftarrow Replace $[as, bs][bs, cs] \rightarrow [as, cs]$ and $[as, bs]^2 \rightarrow [as, as]$ bracketKauffman \rightarrow Replace and simplify $[as, as] \rightarrow -A^2 - A^{-2}$ print t(A) = bracketKauffmanfor all $i_s, k_s \in L$ do Create matrix $U = [(w_{i_s+1} - w_{i_s}) (w_{k_s+1} - w_{k_s})]$ if det(U) < 0 then writhe++ else writhe--PolynomJones $\leftarrow \frac{(-A)^{3 writhe} t(A)}{2}$

 $PolynomJones \leftarrow \frac{(-A)^{3writhe} t(A)}{-A^2 - A^{-2}}$ $PolynomJones \leftarrow \text{replace and simplify} \quad A \to q^{\frac{1}{4}}$ **print** J(q) = PolynomJones

3. Examples

3.1. Left-Handed Trefoil Knot

Considering the left-handed trefoil knot as a cubic knot, see **Figure 1**, where you can see the corresponding vectors v_i 's; $i = 1, \dots, 24$.

Now, we apply our program to compute its fundamental group, genus Seifert and Jones polynomial. See **Figure 2**. In this case, its fundamental group has 3 generators a1, a2, a3; and relations: a3a2 = a2a1, a1a3 = a3a2, a2a1 = a1a3. Its genus surface is one and its Jones polynomial is $J(q) = -q^4 + q^3 + q$.

3.2. Figure Eight Knot

Considering the figure eight knot as a cubic knot, in this case, we have 40 vertices. See **Figure 3**.

We now compute its fundamental group, its genus surface and its Jones polynomial. Thus, its fundamental group has 4 generators a1, a2, a3, a4; and relations: a2a4 = a1a2, a1a3 = a3a2, a4a2 = a3a4, a3a1 = a1a4. Its genus surface is one and its Jones polynomial is

 $J(q) = q^2 - q + 1 - q^{-1} + q^{-2}$. See **Figure 4**.

Figure 1. Cubic left-handed trefoil knot.

	Delint	3D Coordinates	00.0			
	Point	(0,0,0)	2D Coordinates (0.0, 0.0)			
	1	(0.1.0)	(-0.30331447105335285 , 0.9037977204723827)			
	2	(0.1.1)	(-0.30331447105335285, 0.5869611076331868)			
	4	(0,1,2)	(-0.30331447105335285, 0.2701244947939909)			
	5	(0,1,3)	(-0.30331447105335285, -0.046712118045204816)			
	6	(0,0,3)	(0.0, -0.9505098385175875)			
	7	(0,-1,3)	(0.303314471053352851.8543075589899702)			
	8	(11.3)	(1.25620498504204031.5666198094532366)			
	9	(1, -1, 2)	(1.2562049850420403, -1.2497831966140407)			
	10	(1,-1,1)	(1.25620498504204030.9329465837748451)			
		(1 0 1)	(accasecaces (accase (accase)			
	Crossing	Points	Jones Polynomial			
(5,18)			The Kauffman bracket			
(10,20)			t(A): -A^9 +A^1 +A^-3 +A^-7			
(11,24)			The writhe of K: 3			
ter den energie			The writhe of K: 3			
	sing indexes	4				
10,18,2			Jones Polynomial			
Over crossing indexes: (20 . 5 . 11 .)			J(q): -q^4 +q^3 +q^1			
20.5.11						
Fundamental Group			Seifert Surface			
Generators			(1.2.3.4.5.19.20.11)			
al. a2. a3			(6.7,8,9,10,21,22,23,24,12,13,14,15,16,17,18)			
al. a2. a3	Relations:					
	a3a2 = a2a1		Seifert Genus:			
Relations:	al		1			
Relations: a3a2 = a2a			1			
Relations:	a2		1			
Relations: a3a2 = a2a a1a3 = a3a	a2		1			
Relations: a3a2 = a2a a1a3 = a3a	a2		1			
Relations: 3a2 = a2a 1a3 = a3a	a2		1			
Relations: 33a2 = a2a 11a3 = a3a	a2		1			

Figure 2. Left-handed trefoil knot invariants.

Figure 3. Cubic eight knot.

File Date	2					
(1,19) (6,31) (10,30) (20,35) Under cros (1,10,20)	Point 1 2 3 4 5 6 7 8 9 10 Crossing F sing indexes: , 31,) ng indexes:		(0.346261571 (1.299152085) (2.252042599) (3.204933113) (2.901618642) (2.598304171) (2.294989700) (2.294989700) (2.294989700)	88 9916, 1.144773351 570659, 1.422461101 5593563, 1.720148851 974691, 2.9116342461 879452, 2.007386000 974691, 2.91163423041 87965, 4.71352020176 87955, 5.825020876 7413378, 4.449105267 Jones Polynomial	500645) 3373788) 574112) 64954) 518878) 9126) 304555) 59651)	
Fundamental Group al. a2, a3, a4 Relations: a2a4 = a1a2 a1a3 = a3a2 a3a1 = a1a4			Seffert Surface (1.20, 36, 37, 38, 39, 40) (2, 3, 4, 56, 32, 33, 34, 35, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 11, 12, 13, 14, 15, 16, 17, 18, 16 (7, 8, 9, 10, 31) Seffert Genus: 1			
	Crossing C		Fundamental Group	Seifert Genus	Polynomial Jones	1.

Figure 4. Figure eight knot invariants.

4. Acknowledgements

Gabriela Hinojosa thanks CONACyT (México), for its financial support CB-2009-129939 and all the authors thank PROMEP (México) for supporting the publication of this paper.

REFERENCES

- M. Boege, G. Hinojosa and A. Verjovsky, "Any Smooth Knot Sⁿ → ℝⁿ⁺² Is Isotopic to a Cubic Knot Contained in the Canonical Scaffolding of ℝⁿ⁺²," *Revista Matemática Complutense*, Vol. 24, No. 1, 2011, pp. 1-13. http://dx.doi.org/10.1007/s13163-010-0037-4
- [2] G. Hinojosa, A. Verjovsky and C. V. Marcotte, "Cubulated Moves and Discrete Knots," 2013, pp. 1-40. http://arxiv.org/abs/1302.2133
- [3] D. Rolfsen, "Knots and Links," AMS Chelsea Publishing, American Mathematical Society, Providence Rhode Island, 2003.
- [4] R. H. Fox, "A Quick Trip through Knot Theory. Topology of 3-Manifolds and Related Topics," Prentice-Hall, Inc., Upper Saddle River, 1962.
- [5] "The Knot Atlas," 2013. http://katlas.math.toronto.edu