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ABSTRACT 

This paper presents a numerical scheme for space fractional diffusion equations (SFDEs) based on pseudo-spectral 
method. In this approach, using the Guass-Lobatto nodes, the unknown function is approximated by orthogonal poly-
nomials or interpolation polynomials. Then, by using pseudo-spectral method, the SFDE is reduced to a system of ordi-
nary differential equations for time variable t. The high order Runge-Kutta scheme can be used to solve the system. So, 
a high order numerical scheme is derived. Numerical examples illustrate that the results obtained by this method agree 
well with the analytical solutions. 
 
Keywords: Riemann-Liouville Derivative; Pseudo-Spectral Method; Collocation Method; Fractional Diffusion  

Equation 

1. Introduction 

Anormalous diffusion model, where a particle spreads at 
a rate inconsistent with the classical Brownian motion 
model, has been applied in many fields, such as in frac-
tured and porous media, in chaotic or turbulent processes 
[1-6]. It is known that anomalous diffusion processes 
can be described by fractional partial differential equa-
tions 
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where the fractional derivatives are defined as the Rie-
mann-Liouville’s representation. The former is referred 
as time fractional diffusion equation and the latter as 
space fractional diffusion equation. The difference be-
tween two cases can be shown using the interpolation of 
operator. It is well-known that the unknown  ,u x t  
denotes the probability density function, which is the 
probability of finding the particle at position x  and at 
time . For time fractional diffusion Equation (1.1), it 

can be rewritten as (under suitable conditions) 

t
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where f  depends only on f . Hence, from the view 
point of mathematics, the Equation (1.3) can be thought 
as the interpolation of the equations in the case 0   
and the case 1  . In a word, the particles described by 
the Equation (1.3) are diffused slowly in comparison 
with the classic situations, namely sub-diffusion. 

On the other hand, the fractional derivative of Equa-
tion (1.2) can similarly be thought as the interpolation of 
operators x   and 2 2x  . Note that u x   de-
scribes the free transport of particles and 2u x  2 , the 
diffusion, due to the collisions of particles. So, in the 
model of space fractional diffusion the velocity of parti-
cle is larger than one of ordinary diffusion, namely su-
per-diffusion. 

Several methods have been developed for numerical 
solving the fractional diffusion equation. Langlands and 
Henry studied sub-diffusion equation based on L1 scheme 
[7]. The authors proposed an implicit difference scheme 
which is unconditional stable. Based on Grünwald-Let- 
nikov formula, an explicit difference scheme has been 
presented for sub-diffusion equation [8,9]. 

In contrast to sub-diffusion equation, numerical solu- *Corresponding author. 
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tion of supper-diffusion equations have been studied and 
some methods are also developed. It is interesting to note 
that the explicit and implicit difference schemes based on 
Grünwald-Letnikov formula are all unconditional unsta-
ble for super-diffusion Equation (1.2) and advection- 
diffusion equation [10,11]. However, the authors proved 
that a shifted Grünwald-Letnikov formula can produce 
stable difference scheme [10,11]. 

The finite difference method is the most classic method 
for fractional differential equation [12-16]. The recent 
works can see the references [17-19]. However, high order 
accuracy schemes are seldom derived by finite difference 
method. In general, extrapolation method is applied in 
order to obtain a high accuracy [10,16]. It is well-known 
that spectral methods are superior to finite different 
methods in many instances for partial differential equa-
tions [20-24]. In the recent paper [25], the authors pre-
sented a spectral method to calculate the fractional de-
rivative and integral, and studied the numerical solution 
of differential equations by the spectral method. 

In this paper, we shall deal with the numerical solution 
of the one-dimensional variable coefficients space frac-
tional diffusion equation 
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with the initial condition  for   ,0u x h x 0 x L 
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and boundary conditions  and  0, 0u t   , t g t

, t
u L
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. 
Here,  is variable coefficient and  source 
term. 

 d x

Chebyshev spectral collocation method (often called 
pseudo-spectral) is used in this paper. By employing the 
Chebyshev polynomials and Gauss-Lobbato nodes, the 
unknown is approximated by using the orthogonal pro-
jection and interpolation. So, the spatial fractional de-
rivatives are easily computed and a system of ordinary 
differential equations in time can be derived. Then, high 
order Runge-Kutta method can be utilized and a high 
order accuracy scheme is obtained. In a comparison with 
the finite difference method, the Chebyshev spectral 
method used here shows remarkably superiority in terms 
of accuracy and the number of grid points required. 

The paper is arranged as follows. The Section 2 intro-
duces some basic concepts of fractional derivative and 
Jacobi orthogonal polynomials and their properties. The 
third section presents the spectral method for calculating 
the Riemann-Liouville fractional derivative. The pseudo- 
spectral method and its implement are proposed in Sec-
tion 4. In Section 5, several numerical examples are pro-
vided. These numerical examples illustrate the high ac-
curacy and efficiency of our method. Finally, we give the 
conclusion in Section 6. 

2. Preliminary 

2.1. Fractional Derivative 

The Riemann-Liouville fractional integral of order α(α > 
0) for casual function  f x  is defined by 
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where  .  is the Gamma function. Riemann-Liouville 
fractional integral is an analogue of the well-known Cauchy 
formula, which reduces the n-fold integration 
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The Riemann-Liouville representation of fractional 

derivative of order  0    for  f x  is defined by 
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here 1m m   . 
By the part integration formula, one can easily derive 

the following properties. 
Proposition 2.1. Let 1 ,m m m N    , then 
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Proposition 2.2. Let 1, 0,     then 
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2.2. Jacobi Orthogonal Polynomials 

Given a weight function  x , the orthogonal polyno-
mials sequence    0j j

P x  , with  deg jP j  can be 
written into [26] 

   0 11, ,P x P x x 1    
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here  ,    denotes weighted inner product of a Hilbert 
space. 

For , the 
Jacobi polynomials is a orthogonal polynomials sequence 

      1 1 , , 1, 1,
a b

x x x a b x        1

  ,
0

a b
n nJ x 

  with 

     

       

, ,
0 1

, , , , , ,
1 1

1 1
1, 2 ,

2 2

, 1

a b a b

a b a b a b a b a b a b
n n n n n n

J x J a b x a b

J x A x B J x C J x n 

      

    

 

(2.5) 

where 

  
  

, 2 1 2

2 1 1
a b
n

n a b n a b
A

n n a b

     


   
2



     (2.6) 

  
  

2 2

,
2 1

2 1 1 2
a b
n

b a n a b
B

n n a b n a b

   


     
    (2.7) 

     
   

, 2

1 1 2
a b
n

n a n b n a b
C

n n a b n a b

    


     
2

   (2.8) 

The following is some useful properties of Jacobi poly-
nomials that will be used in present paper [26] (also refer 
to [25] and references therein). 

Proposition 2.3. 1) High order derivative for Jacobi 
polynomials 

   , , ,
,

d
, ,

d

m
a b a b a m b m
n n m n mm

J x c J x n m m N
x

 
     (2.9) 

where 

 
 

,
,

1

2 1
a b
n m m

n m a b
c

n a b

    


   
. 

2) Expression by the derivative of Jacobi polynomials 
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By the previous Jacobi polynomials some special or-
thogonal polynomials can be obtained. Legendre and Che-
byshev polynomials are two important polynomials of 
the special cases of the Jacobi polynomials. For the case 
of  0, 1a b x   , the corresponding polynomials is 
said to Legendre polynomials; and the case of  
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 corresponds to Chebyshev  

polynomials. 

3. Spectral Approximation to Fractional  
Derivative 

Let NH  denote the set of polynomials of degree not 
exceeding N. It is clear that 
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in which 

 
    

 
   

 
     

, , ,

, ,

1 1 !

1 2

1 ! 1 1 !

a b a b
n n

a b a b
n n

n b
z

n a n

n b n b

n a n n a n

 

 

 

   

     
 
      

 

and , ,, ,a b a b a b
n n n

,A B C  is defined as (2.6)-(2.8), ,a b
n , 

,a b
n  ,a b

n  as (2.11). Therefore, we obtain by (2.3) and 
(2.9) that 

 
 

   

   

   
      

 

,
1

, ,

0

1 ,

1

,1
,

0

, , ,
,

d
1

d 1
1

1 d
d

( ) d

1 1
1

1 1 !

ˆ

k
a b

m nk ka b
n

k

m
x m a b

nm

n k a bm
kn k

k

a b a m b m m
n m n m

J
xd x x

k

x J
m

c n b
x

k b k n k

c d x











 
 








 












  



 

  

 
 

   
 

      









 (3.4) 

Remark 1. By the standard theory of orthogonal pro-
jection, the spectral accuracy to approximate the frac-
tional derivative  D u x  can be obtained (refer to the 
references [25,26]). 

4. Collocation Method 

This section presents the Chebyshev collocation method 
(often called pseudo-spectral method) for solving the 
space fractional diffusion Equation (1.4). Firstly, we shall 
consider the Gauss-Lobatto nodes in order to obtain the 
collocation equation. 

Consider the Chebyshev polynomials  nT x  of the 
first kind, which are the special case of Jacobi polynomi-
als 

   
   

22 1 1
,

2 2
2 !

, 0,1, 2,
2 !

n

n n

n
T x J x n

n

 
      (4.1) 

for 1 1x   . Chebyshev polynomials are the weighted 
orthogonal polynomials with weight function 

 
2

1

1
w x

x



. 
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One can easily obtain the three-term recurrence for-
mula 

   
     

0 1

1 1

1, ,

2 ,k k k

T x T x x

T x xT x T x k 

 

   1,2,
 

Denote 1N N N  , here p, 
q is determined by satisfying . Then the roots 
of  is named as the Chebyshev Gauss-Lobatto 
points (in this paper is also called Gauss-Lobatto points). 
Gauss-Lobatto points can be explicitly written as [26,27] 

       1Q x T x pT x qT x  
 1 0Q  

0 Q x

cos , 0,1, 2, , .k

k
x K N

N


    

Define the discrete inner product  N
  as 

        
0

, ,
N

k kN
k

u x v x u x v x k


   

where k  are the associated weights of Chebyshev 
Gauss-Lobatto integration 

2 for 0, ,
,

1 for 1, , 1.k k
k

k N
c

k Nc N
         

By orthogonality it can easily be derived that 

   
0

, if
N

i k j k k
k

T x T x i j N


      (4.2) 

Next, let us consider the following Gauss-Lobatto 
points 

cos , 0,1,2, , .
2 2k

L L k
x K

N


    N     (4.3) 

Assume that the approximate solution of the space 
fractional diffusion Equation (1.4) has separable forma-
tion 

       
0

2
ˆ ˆ, , ,

N

N n
n

1
x

u x t u x t t T x x
L




     

for  0, .x L  Replacing  in (1.4) by  ,u x t  ,Nu x t  
it results in the following equations on kx  

       

     0

, ,

1, 2, , 1

, 0, ,

N k k N k k

N N N

u x t d x u x t q x t
t x

k N

u x t u x t g t





  
  

 
  





, ,



 (4.4) 

with initial condition , where   ,0Nu x h x 1 2  .  

Set 
2

ˆ 1k
k

x
x

L
  , then Equations (4.4) can be written  

into 

   

       
0

ˆ ˆ
0

d
ˆ

d

ˆ , ,
k

N

n k n
n
N

k n k x x n k
n

T x t
t

d x D T x t q x t
















for 1,2, , 1k N 
0

. In addition, the boundary condi-
tions for x  and Nx  can be expressed by 

         0
0 0

ˆ ˆ0,
N N

n n N n n
n n

t T x t T x g t 
 

      (4.6) 

Equations (4.5) and (4.6) is called the collocation 
equation for fractional diffusion Equation (1.4), and kx  
defined by (4.3) is called the collocation points. 

The Equation (4.5) is a system of ordinary differential 
equations. The calculation of  can be imple-
mented by 

 nD T x

       

     

 
   

2
1

2 0

2 1ˆ

2 1

22
, ,

1 d ˆˆ d
2 d

1 d ˆ ˆˆ d
ˆ2 2 d

2 !
ˆ

2 2 !

x

n n

x

n

n
a b
n

D T x x T
x

L
x T

x

nL
d x

n









  


  











 
 

      

   
 



  

here  ˆ 2 ,l L a b     1 2 , therefore  n kD T x  
can be conveniently calculated by making use of (3.4). 

Remark 2. 1) Equations (4.5) and (4.6) is also said to 
be the strong form of the collocation method. 

2) In order to get high order schemes, high order 
Runge-kutta methods can be used to solve the system of 
ordinary differential Equation (4.5). 

Now, we employ the discrete inner product to deal 
with the initial condition. Notice that 

   ,0 ,0Nu x h x x L   , 

can be written into  

     
0

2
ˆ ˆ ˆ0 ,

N

n n
n

1
x

T x h x x
L




    

Therefore, making use of (4.2) it gives 

 
 
 

,
0 , 1,2, ,

,
k N

k
k k N

h T
k N

T T
 1.         (4.7) 

In order to conveniently deal with the boundary condi-
tions and initial condition, let us consider another form of 
the collocation method based on interpolation. Based on 
the Gauss-Lobatto nodes (4.3) above, the Lagrangian 
interpolation basis function  k x  are given by  

  , 0,1, ,j
k

j k k j

x x
x k N

x x





 

  . 

Assume that the approximation  be the in-
terpolation 

 ,Nu x t

     
0

,
N

N j
j

u x t t x 


  j  


  (4.5) 

Note that  j ix ji  , here δji denotes the Kronecker 
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delta symbol. Then, the Equations (4.6) simply become  

     0 , 0Nt g t t   , 

and the initial condition (4.7) is altered by 

   0 , 1,2, ,j jh x j N    1,



      (4.8) 

Let 

        T

1 2 1( , , , Nt t t t      . 

Equation (4.5) is correspondingly modified into 

       t DM t Ng t Q t           (4.9) 

where 
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2 0 2

1 0 1N N
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N

d D x









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 
 
   
 
 
 


   

 
 

 

1

2

1N

q t

q t
Q t

q t

 
 
   
 
 
 



and  

 1 2 1diag , , , ND d d d   , 

with  for 1 1 .     , ,d d x q t q x t i i i i

In order to compute conveniently the coefficient ma-
trix M, we expanse 

i N  

 k x  into Taylor series  

       
    21

0 0 0 .
2 !

N N
k k k kx x x

N
         


  

Therefore, making use of Prop. 2.1 and Prop. 2.2 one 
can derive. 

 
   

 0

0
,

1

mN
j m

j
m

D x x
m

 








    

for 0 1x   and 0 . j N 

5. Numerical Examples 

In this section, we consider the space fractional diffusion 
equations for different source terms and the values of   
utilizing the collocation method. Here, the fourth order 
Runge-Kutta method is used for all the examples with 
time step . The first example is a fractional 
equation with 1

0.05t 
1.5   and time variable belongs to 

 0, . The second example is associated to the prob-
lem of time belonging to finite interval with 1.5 2  . 
For the first example, we use the second kind of colloca-
tion method, namely based on the Lagrange interpolation, 

with 3N  . The second example is solve by the Cheby-
shev polynomials approximation with . 3N 

Example 1. Consider the following asymptotic prob-
lem with 1.2   

       q x t

     

1.2

1.2
, , , ,

, 0,1 0,

u x t d x u x t
x

x t


 


  

t  

with the initial condition 

  2,0 , 0,1u x x x    

and boundary conditions 

    0, 0, 0, 1, e ,tu t u t t      

in which  

    2.21.8

2
d x x


 , 

and  

  2, 1q x t x x   e t

u x

. 

The exact solution (Ex-solution) is   2, e tt x 
1t

. 
The numerical solution (CM-solution) at time  , us-
ing the collocation method based on the Lagrange inter-
polation, is shown in Figure 1. 

Example 2. Consider the following finite interval 
problem with 1.8   

 

        , 0   
1.8

1.8

,

, , , ,1 0,

t

u x t q x t x t T
x


   



tu x

d x


 

with the initial condition 

  2,0 , 0,1u x x x    

and boundary conditions 
 

 

Figure 1. The exact solution and collocation solution for 
asymptotic problem with α = 1.2 at time t = 1. 
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     0, 0, 1, e , 0,tu t u t t T    

where 

    0.81.2

2
d x x


  

   , 1 tq x t x x 
2 t

e

e

. 

The exact solution is . The numerical so-
lution at time t = 1, using the collocation method based on 
the Chebyshev polynomials with , is shown in Fig-
ure 2. The error 

 ,u x t x

3N 
err Nu u   is illustrated in Table 1. 

6. Conclusion 

The collocation method, namely called pseudo-spectral 
method, is proposed in present paper. This kind of method 
can be efficiently applied to fractional partial differential 
equations. The remarkably superiorities, efficiency and 
high accuracy have been found through the numerical 
examples presented in this paper. The high accurate ap-
proximation only by a few grids can be derived. How-
ever, the space and time steps must satisfy certain condi-
tion in order to guarantee the stability for finite differ-
ence method. It must be stressed that the higher order 
collocation method based on Lagrange interpolation maybe 
result in numerical instability because of the ill-condition 
of the matrix . It is hoped that the error esti-
mated on the spectral method for fractional differential 
equations will be studied in future work. 

 k lD x

 

 

Figure 2. The exact solution and collocation solution for 
finite interval problem with α = 1.8 at time t = 1. 

 
Table 1. The error of the collocation solution with N = 3. 

x 0.1 0.2 0.3 0.4 0.5 

err 0.2465e−05 0.3628e−05 0.3771e−05 0.3178e−05 0.2131e−05

x 0.6 0.7 0.8 0.9 1.0 

err 0.9139e−06 0.1909e−06 0.9002e−06 0.9309e−06 0 
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