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ABSTRACT 

This paper is a sequel to Kageyama et al. [1], in which a Markov-type hybrid process has been constructed and the cor-
responding discounted total reward has been characterized by the recursive equation. The objective of this paper is to 
formulate a hybrid decision process and to give the existence and characterization of optimal policies. 
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1. Introduction 

The credibility theory, developed by Liu [2], is useful in 
dealing with uncertainty in human thinking. In the real 
world, we often encounter the complex problem with 
human thinking, which could not be treated only by 
probability theory. To deal with such complex problem, 
Li and Liu [3] have introduced a more flexible uncertain 
theory, called chance theory, which is a hybrid of prob-
ability and credibility. Also, recently, Kageyama et al. [1] 
have given a method of constructing a Markov-type hy-
brid process from stochastic kernel and credibilistic ker-
nel. Imagining the much wider applications of hybrid 
processes in the near future, it is meaningful to consider 
the case where the behavior of hybrid processes given in 
Kageyama et al. [1] may be influenced by a suitable 
choice of decisions or actions. The objective of this paper 
is to formulate a hybrid decision process, referring a 
modeling of stochastic control system known as a Markov 
decision process (cf. [4,5]), and to give the existence and 
characterization of optimal policies. 

In the remainder of this section, we shall establish the 
notation that will be used throughout the paper and recall 
the chance measure and hybrid variables whose expected 
values are defined. For any non-empty set X , a function 

 : 0,0.g X  5  is said to satisfy condition  with K
X  if  

  0.5,sup
x X

g x


                 (1.1) 

and 

   
*

*

,

0.5 if 0.5.sup
x x x X

g x g x
 

        (1.2) 

The set of such functions will be denoted by  XK . 
A Borel set is a Borel subset of a metric space. Let X  

and  be arbitrary Borel sets. We denote by Y  X  
and  XP  the sets of the Borel subsets and the power 
set of X  respectively. Let  X  be the set of 
probability measures on X . The subset X Y   is 
called an event if    x Y   for all x X , where  

    ,x y Y x y .           (1.3) 

The set of all events will be denoted by  
   X YP . 

For any      ,g p X K Y , a function   on 
   X YP  is defined by, for each  

   X YP ,  

     , .sup
x X

g p g x p x


          (1.4) 

where  min ,a b a b   for any real numbers . ,a b
For any      ,g p XK Y  the chance measure 
 Ch ,g p  on X Y  is given (cf. [3,6]) as follows: for 

any    X YP , 
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Ch ,

1 , if ,
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where   is a complement of a set . The triplet 
     , ,Ch ,X Y X Y g p  BP  is a chance space 

constructed from    ,  g p X K
: :r X Y    

P Y
0,

. 
The function  is called a hy-

brid variable if the set  

        , ,x y X Y r x y a X Y     P  for any  

a  . We denote by Y XK   the set of all func- 

tions  y xq  on X Y  such that    x Y q K  for  

each x X . The function Y Xq K   is called a 
credibilistic kernel ([7]). Let us denote by Y X   the 
set of all stochastic kernel on  given Y X  ([8]). 

In Section 2, We define a hybrid decision process by 
using the credibilistic kernel and stochastic kernel, which 
is analyzed to show the existence and functional charac-
terization of optimal policies in Section 3. An example is 
given in Section 4. 

The expected value  ,E r g p   of the hybrid variable 
 is defined by the Choquet integral: :r X Y   

    
0

, Ch ,E r g p r t g p t


   d .  

2. Hybrid Decision Processes 

The state and parameter of some dynamic systems will 
be denoted respectively by points in a Borel set X  and 
a finite set  1 2: , , , ,l     . Let  , 1 2: , , kA a a a   
be a finite action space. 

Let , where     : S  X K

        


1 2: , , ,

satisfies the condition

lg g g g

g

     K

K
. 

The discrete-time Markov-type hybrid decision proc-
ess with the state space X  is a five-tuple  , , , ,A rX q p  ,  

where   , A  q Ka    is a credibilistic ker-

nel,   ,y x a P Y X A p 
0,

 a stochastic kernel and  

 : :r S A      
 ,g p

 a reward function. 
For any initial state 0 0  X , if the action a A  

is chosen, then two things happen. 
1) The state  0 0, g p


 of the system moves to the new 

state  1 1,g p  X  as the following state equation:  

      1 0 0max ( ) , :

for any ;

g g a T g a


    




   



qq 
  (2.1) 

        

 
1 0, d :

for any .

X
p B B x a p x T p a B

B X

 



 pp



0



   (2.2) 

2) The expected value  of reward func-
tion  occurs, where  

 0 0, ,r g p a
r

       1 1 0 0, , : Ch , , , , d .r g p a x r x a t g p t     (2.3) 

Once the state has been translated into the new state, a 
new action is chosen and the processes is repeated. 

The metric on the state space X  will be defined by, 
for any state    , , ,g p g p   X , 

        , , , : max ,
TV

g p g p g g p p


  


       (2.4) 

where 
TV

p p  is the total variation metric which is 
defined by  

 
   : 2 .sup

TV
X

p p p B p B


   


 

We denote by  X  the Borel subsets of X  gen-
erated by the ρ-metric topology. 

The stationary policy  is measurable if, 
for any action 

:f X A
a A ,  aB X , where  

      : , ,aB g p f g p a    .X X     (2.5) 

We denote by  the set of all measurable stationary 
policies. 



For any initial state 0 0,g g p p   with  ,g p  X , 
under the stationary policy , we define the total 
discounted reward function  by 

f 
 0  1

,t t   
0

, , ,t
f t t

t

g p r g p f g p 


 


     (2.6) 

where 

  
  

0 0

1 1 1

1 1 1

, ,

, ,

, ,

t t t t

t t t t

g g p p

g T g f g p

p T p f g p t

  

  

  
 


1. 

q

p

     (2.7) 

The value function  ,g p  on X  is given as  

  , : sup ,f
f

.g p g 





p           (2.8) 

The policy *f   is called optimal if, for any 
 ,g p  X , 

  *,
f

, .g p g  p           (2.9) 

3. Analysis 

In this section, we will utilize the method of dynamic 
programming (cf. [4,5,9]) to drive the discounted opti-
mality equation, from which the existence of optimal 
policies is shown. As first, we show the measurability of 
the total discounted reward function and the value function. 

Lemma 3.1. For any stationary policy f  , the 
function   , , ,t t t tr g p f g p  is a measurable function 
of the initial state  0 0,g p  ,g p  X . 

Proof. For the case of 1t  , it suffices to prove that  

       1 1 1 1: , , , ,

for any ,

d g p r g p f g p d

d 

 



 X
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where 1g  and 1  are given by (2.1) and (2.2). From 
(1.4) and (1.5), for any ,  

p
Aa

    Ch , , , , x S r x a t g p    is measurable in  

 ,g p  X , so that, by (1.5),  is measurable 
in 

 , ,r g p a
 ,g p  X . 

The set  is rewritten by  d
    

      

1 1

1

, , ,

| , |

d
a A

a ,

g p r g p a d

T a T a





 

 



q p





 

where a  is given in (2.5). Since  A  is finite, together 
with (2.1), (2.2) and (2.5),  d  X

2t 
 follows. 

For the case of  and , the measurability of 
 can be proved, by induction, simi-

larly to the above. This completes the proof.          

0t 
t , , ,t t tr g p f g p 

Theorem 3.1. For any stationary policy , the dis-
counted total reward function 

f 
 ,f g p  is measurable 

on the state space X . 
Proof. From Lemma 3.1 and the definition of φf(g, p), 

the assertion holds obviously.                     
Let X  denote the class of all bounded measurable 

functions on X . For ,  X , we define the metric 
  on X  by  

 
 

   
,

, : , ,sup
g p

.g p g p    


  
X

   (3.1) 

Then, it is clear that the space  , X  is complete. 
For any policy , f   ,g p  X  and h X , we 

define the operator fU  on X  as follows:  

    
      

, , , ,

, , ,

fU h g p r g p f g p

h T g f g p T p f g p



 q p .
(3.2) 

Lemma 3.2. The operator fU  is a contraction on the 
space X . 

Proof. For any state  ,g p  X , we have 

   

      
      

 
     

,

, ,

, , ,

, , ,

, , ,sup

f f

g p

U h g p U h g p

h T g f g p T p f g p

h T g f g p T p f g p

h g p h g p h h



 








.   

q p

q p

X

 

Thus, we have   ,f fU h U h h h  ,  . This com-
pletes the proof.                                

Theorem 3.2. The discounted total value f  is a 
unique fixed point of the operator fU , i.e.  

.f f fU                (3.3) 

Proof. As  is a non-negative and bounded function, 
there exists a  such that . So, we have  

r
M 0 0 r M 

that 0
1f

M


 


 for all  ,g p  X , which shows  

f  X  from Theorem 3.1. Since  

 

     

     

    

0 0 0 0
1

1
0 0 0 0

1

0 0 0 0 1 1

,

, , , , , ,

, , , , , ,

, , , , ,

f

t
t t t t

t

t
t t t t

t

f

g p

r g p f g p r g p f g p

r g p f g p r g p f g p

r g p f g p g p





 












 

 

 




 

we have f f fU  . 
From the Banach fixed point theorem, the conclusion 

of the theorem follows.                          
In order to describe the optimality equation with re-

spect to the value function  , g p , we define the 
operator  on U X  as following:  

         
 

, max , , ,

, , .

a A
Uh g p r g p a h T g a T p a

g p h




 

 

q p

X X

,
 

(3.4) 

Then, we have the following. 
Lemma 3.3. The operator  is a contraction with 

modulus 
U

  on the space X . 
Proof. From the definitions of X  and U , it is 

obviously that  is the mapping from U X  to X . For 
any  ,g p  X  and any ,h h X ,  

   

         

 
   

 
,

, ,

max , ,

, ,sup

, .

a A

g p

Uh g p Uh g p

h T g a T p a h T g a T p a

h g p h g p

h h













 

 



q p q p

X

 

Thus, we have   ,Uh Uh h h   ,  , which com-
pletes the proof.                                 

Lemma 3.4. The value function   is a bounded and 
measurable function. i.e.,   X . 

Proof. For any f  , we observe that f  X  from 
Theorem 3.1. By Lemma 3.3, it holds that n

fU    
as  (cf. [4,5]). Since n  n

fU   is a measurable,   
is a measurable. Noting that  0 1M    , we have 
  X , as described.                            

Here, we can state the main result which shows the 
existence of optimal policies.  

Theorem 3.3. It holds that  
1) The value function   is the unique fixed point of 

the operator . U
2) An optimal stationary policy  exists. *f 
3) The policy f   such that fU U   is the op- 

timal policy. 
Proof. For 1), we have, for any  ,g p  X , 
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t
f t t

t

t
t t t t

t
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U g p

 





















 

 

 

   







 

Therefore,    sup , ,f f g p g p U     . 
Let us prove that U  . Because A  is finite, there 

exists  which satisfies  *f 
        *

1 1, , , , , , ,U g p r g p f g p g p g p   . X  

From U  , we get  

      
 

*
1 1, , , , ,

, .

U g p r g p f g p U g p

g p

  

 X

,
 

Repeating the above inequality, we have  

 

    * 1
1 1

0

,

, , , , .
n

t n
t t t t n n

t

U g p

r g p f g p g p



  
 



 
 

As  1
1 1, 0n

n ng p 
    as , we have that  n 

*f
U    . Thus, U   follows. 

For 2) and 3), we have been already shown in the 
proof of 1).                                    

4. The Controlled Floating Exchange Rate 
System 

In this section, we will give an example for application of 
our model. 

For simplicity, let us denote by  ,    a normal dis-
tribution with the mean      0


 and variance 

. Let  be  , t 0    S ,  X  be the amount of 
wealth at time , whose controlled system equa-
tion will be defined by: 

 0 t t

1 ,t t t tX X a Z               (4.1) 

where tZ  is a sequence of i.i.d. income random vari-
ables with the normal distribution  and  is an 
action at time , selected from the action space  

 1,1 ta
t

2 , , , l0 1: ,A a a

0 1a a 
a a

2a 
  with  

. 10 1l la a  
Let  0. 7,0.86,0. ,0.9,1.0   be the possible exchange 

rate. Then, the real income will be defined by  

   , , , , , ,r x a d x a x S a A     

where, is a reward when the action 

   (4.2) 

 ,d x a  a A  is 

 the stattaken to e x  and the exchange rate   . 
We assume tha 0t X  is distributed with norm the al 

distribution  ,  . Then, tX  is distributed with the  

normal distr n ibutio  2,
t

k ka a    . So, we  
1

t

k 1k

ndican restrict the state s ng hybrid pace of the correspo
decision process to the following:  

     , 0 , , ,g g     X K ,   (4.3) 

where  ,0  de s one point distribution with note  

   x 11  if x  ,     0x 1  if otherwise. 
ibilis s follows  The cred tic kernel is given a

  

0.5 0.5 0 0 0

0 0.5 0.5 0

0 0 0.5 0.5

0 0 0 0.5

0.5 0 0 0

j iq  

0

.0

0.5

0.5

 
 
 
 
  
 
 
 
  

 

f a A

q   (4.4) 

Here, is ass ed to be independent oq  um  . The 
correspon ing operate Tq  has a fixed point  d

 * 0.5,0.5,0.5,0.5,0.5g  , i.e., * *g T g q  (cf. [7]). 
So, putting     ,*g0 , ,      , we  have the fol-

lowing optimal 3, 

   
 equ tion by Theorem 3.a

    0 0, m

for all , 0,

a     

 


  

   
 

* , , ,r g a 2

(4.5) 

where, 

ax
a A



,a 

  , ,r g a   is defined by (2.3). ,
It is shown in [7] that for any  g  K ,  
    *n g g  Tq  n   and tha 0n t there exist 1  such  

that    0nT g *gq  for all  g  K . Letting  

 g*
0G  the seque by  , define nce   kG  

      1 1G g T G   1k k1G T 
k k g    K 

   . P

q q .  

Then, it clearly holds that u0

0

n

kk
G

 K tting 
    , , , ,k g g       for kg G , from Theorem 

 
3.3 we have that  

     2
1 0

1

, , ,

for ,

, , max ,
a A

g r g a a

g G

  





 

a     

(4.6) 

and  

       2
1m , , ,

for 2

k k
a A

k

r g a a

g G k

     
  

  

ax

.

g

, ,g , a

(4.7) 
Noting that if kG  then  an 1kT G q

nction 
d that  

  0

0

n
G


  value fu   , ,gkk

K , the     ca
vely by (4.5)-(4.7). 

n 
be obtained recursi
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