
Applied Mathematics, 2013, 4, 1485-1489 
Published Online November 2013 (http://www.scirp.org/journal/am) 
http://dx.doi.org/10.4236/am.2013.411200  

Open Access                                                                                             AM 

On Expressing the Probabilities of Categorical Responses 
as Linear Functions of Covariates 

Tejas A. Desai 
The Adani Institute of Infrastructure Management, Ahmedabad, India 

Email: tejasdesai4@gmail.com 
 

Received August 22, 2013; revised September 22, 2013; accepted September 29, 2013 
 

Copyright © 2013 Tejas A. Desai. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

Logistic regression is usually used to model probabilities of categorical responses as functions of covariates. However, 
the link connecting the probabilities to the covariates is non-linear. We show in this paper that when the cross-classifi-
cation of all the covariates and the dependent variable have no empty cells, then the probabilities of responses can be 
expressed as linear functions of the covariates. We demonstrate this for both the dichotmous and polytomous dependent 
variables. 
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1. Introduction 

The probability of a dichotomous response is usually 
modelled as functions of covariates using the following:  
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A feature of the above formulation is that the quantity 
on the right-hand side of the above equation is a fraction, 
and so the rule that probabilities have to lie in the interval 
[0, 1] is not violated assuming the estimates of  

1, , , p    exist. In this paper, we are interested in the 
following questions: under what conditions we can ex- 
press the probabilities as the following:  

 1 1 1 1Pr 1 , , p p pY X x X x x x p           

so that the quantities on the left-hand side of the above 
equations indeed lie in the interval [0, 1] once the esti-
mates of the unknown parameters are known to be finite. 
We show in the remaining paper that the above, linear 
formulation will yield estimates of probabilities lying in 
[0, 1] if the cross-classification of all the covariates and 
the dependent variable has no empty cells. In Section 2, 
we formulate the problem and prove our main result. In 
Section 3, we work out a detailed example wherein the 
dependent variable is dichotomous. In Section 4, we  

work out a detailed example wherein the dependent vari-
able is ordinally polytomous. In Section 5, we present a 
conjecture regarding the least-squares estimation of the 
parameters in our model. In Section 6, we end the paper 
with concluding remarks. 

2. Problem Formulation and the Main  
Result 

Let  be a categorical variable with possible values 
.  may be a dichotomous random variable, a 

nominal polytomous random variable, or an ordinal poly-
tomous random variable. The covariates, 

Y
, q0, Y

1, , pX X
 1; , ,

, 
may be categorical or continuous. Let j j jp , y x x
1 j n  , denote a data set with n  outcomes of Y  
and of each of the  covariates. For , let  p 1, ,j n
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Then we have the following result: 



T. A. DESAI 1486 

Theorem 1: Suppose that the cross-classification of the 
data 1 ; , , j j jy x x p , , has no empty cells. If 
the mle’s obtained by specifying the likelihood using (1.1) 
and (1.2) exist, then the estimates of probabilities of the 
response given the covariates are constrained to lie in the 
interval (0, 1). 
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Consider the function  
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Now suppose that 1
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the parameter space is either finitely positive or it is 
positive infinity. Suppose that the maximum of  is 
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would again be undefined. Thus all the estimates of the 
probabilities in (1.1) and (1.2) are constrained to lie in 
the interval (0, 1).  

3. Detailed Example: Dichotomous Response 

Consider the data in Table 1. The data comes from a 
study on coronary artery disease and is reported in [1]. 
The question of interest is whether gender and electro- 
cardiogram (ECG) measurement have an effect on disease 
status. 

Table 1. Coronary artery disease data. 

Gender ECG Disease No Disease

Female <0.1 ST segment depression 4 11 

Female ≥0.1 ST segment depression 8 10 

Male <0.1 ST segment depression 9 9 

Male ≥0.1 ST segment depression 21 6 

 
Let 1Y   if disease is present, and  if disease 

is absent. Let 
0Y 

0SEX   if gender is female and SEX = 1 
if gender is male. Let  if ST segment depres-
sion is less than 0.1 and  if ST segment 
depression is greater than or equal to 0.1. Consider the 
following relations:  

0ECG 
EC 1G 

 1 2 1 1Pr 1 ,Y SEX x ECG x x x2 2         

 1 2 1 1Pr 0 , 1Y SEX x ECG x x 2 2x          

We want to estimate ,  1,  and 2 ,  and check 
whether the estimated probabilities lie in the interval 
 0,1 . We wish to use the Newton-Raphson method for 
the purpose of estimation. To use the Newton-Raphson 
method, we need good starting estimates. As starting 
estimates, we use the estimates provided by least-squares 
estimation of the following linear model: 

Y SEX ECG       

The least-squares estimates are: ,  
, 

ˆ 0.23563 
ˆ 0.29023  ˆ 0.23467  . We use these as starting 

estimates of ,  1,  and 2 , respectively. We stop the 
Newton-Raphson algorithm when the absolute difference 
of successive iterates is less than  for all the 
three parameters. Using this criterion we notice that the 
Newton-Raphson algorithm converges and estimates we 
get are: 

0.00001

ˆ 0.2405112  , 1 ,  

2 . Note that we can now witness the 
effect of the covariates on the disease status. For example, 
as SEX goes from 0 to 1, the probability of being diseased 
goes up. Similarly, as ECG status goes from 0 to 1, the 
probability of being diseased goes up. The estimated 
probabilities, using our method and the least-squares me- 
thod, are given in Table 2. 

̂ 0.2892142
ˆ 0.2336  847

Note that the estimation of probabilities using the least- 
squares method is as follows: 

  1 2 1
ˆ ˆ ˆPr 1 ,Y SEX x ECG x x x2         

  1 2 1
ˆ ˆ ˆPr 0 , 1Y SEX x ECG x x x2          

Notice that all the estimates of probabilities in Table 2 
lie in the interval (0, 1). Also notice the striking similarity 
between the estimates using our method and the corre-
sponding estimates using the least-squares method. How-
ever, it seems difficult to prove a least-squares analogue 
of Theorem 1. 

Open Access                                                                                             AM 



T. A. DESAI 1487

Now we turn our attention to goodness of fit. The two 
traditional goodness-of-fit statistics are Pearson’s chi- 
square and the likelihood ratio chi square, namely, PQ  
and LQ , respectively. The latter statistic is also known 
as deviance. Let  if  and  if SEX 
= 1. Let  if  and  if 

0h 
ECG

0SEX 
0

1h 
EC0i  1i  1G  . 

Finally, let  if Y  (disease absent) and 0j  0 1j   
if  (disease present). It then follows that 1Y
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respo riable. T , for a ous r se, 

the following data in Table 4. The data is 
re

irements of 
Th

re no zero counts in the cross-classification in 
T

For the present model, there are four subpopulations 
and three parameters, giving us  degree of 
freedom for each of the Pearson’s and likelihood-ratio 
statistics. The values of 

4 3 1 

PQ  and LQ  and the respective 
p-values are given in Table 3. 

The goodness-of-fit statistics thus indicate that the 
above model fits the data reasonably well. It must be 
noted that there are sample-size guidelines to be followed 
in order to ensure that the Pearson’s and likelihood-ratio 
statistics approximately follow the chi-square distribution. 
These guidelines are mentioned in [1]. 

4. Detailed Example: Polytomous Response 

Logistic regression is defined in terms of a dichotomous  
 

Table 2. Estimates of probabilities. 

Estimates of Probabilities Our Method Least-Squares Method

  Pr 0 0, 0Y SEX ECG   0.75949 0.76437 

  Pr 1 0, 0Y SEX ECG    0.24051 0.23563 

  Pr 0 0, 1Y SEX ECG    0.52580 0.52969 

  Pr 1 0, 1Y SEX ECG    0.47420 0.47031 

  Pr 0 1, 0Y SEX ECG    0.47027 0.47414 

  Pr 1 1, 0Y SEX ECG    0.52973 0.52586 

  Pr 0 1, 1Y SEX ECG    0.23659 0.23946 

  Pr 1 1, 1Y SEX ECG    0.76341 0.76054 

 
Table 3. Goodness-of-fit Statistics and their respective p- 
values. 

Pearson Deviance 

Statistic Value p-Value Statistic Value p-Value 

nse va herefore  polytom espon
one has to form cumulative logits in case of ordinal 
response, and generalized logits in the case of a nominal 
response. Thus, logistic regression is indirectly applied. 
However, the application of our model is direct in the 
sense that the possibility of a polytomous response is 
already accounted for. We illustrate with the following 
example. 

Consider 
ported in [1] and it concerns an arthritis study wherein 

males and females were administered either a drug or 
placebo and their response (improvement) was measured 
as being one of “marked”, “some” or “none”. 

The data in Table 4 does not meet the requ
eorem 1 since there is one zero count in the cross- 

classification. Since our purpose here is to illustrate our 
model and estimation of model parameters, we will con-
sider the fictional data set obtained by replacing the zero 
count with a count of 1. The fictional data is presented in 
Table 5. 

There a
able 5. Let 1M   if improvement is marked, and 

0M   otherwise. t 1S Le   if there is some improve-
and 0Sment,   otherwise. Let 1N   if there is no 

improvement, and 0N   otherwis  will denote the 
gender variable as , and the treatment variable as 
TRT . Let 0SEX

e. We
SEX

  if gender is female and 1SEX   
et 0TRT   if treatment is placebo 

and 1TRT
if gender is male. L

  if treatme ive.Finally, let 1Ynt is act   if 
there mprovement, 2Y   if there is so m-
provement, and 3Y

 is no i me i
  if th  marked improvement. 

Our model is as follows: 
ere is

 1 2 2 21 1 22 2x x x       Pr 2 ,Y SEX x TRT 

 1 2 3 31 1Pr 3 ,Y SEX x TRT x x x         

 
32 2

Table 4. Arthritis data. 

 ent Improvem

Gender Treatment Marked None Some 

Female Active 16 5 6 

Female Placebo 6 7 19 

Male Active 5 2 7 

Male Placebo 1 0 10 

 
Table 5. Fiction . 

  

al arthritis data

Improvement

Gender Treatment Marked None 

0.215 0.643 0.214 0.644 

Some 

Female Active 16 5 6 

Female Placebo 6 7 19 

Male Active 5 2 7 

Male Placebo 1 1 10 
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 1 2

2 21 1 22 2 3 31 1 32 2

Pr   1 2

1 2 1

Pr 1 ,

ˆ ˆ ˆ ˆˆ ˆ1 S S S M M M

Y SEX x TRT x1 SE ,TRT

1

Y X x x

x x x x     

 

      
 

To estimate the model parameters, we specify the log- 
lik



2x x x     

  

       x
 

The goodness-of-fit tests are conducted as in Section 3 
except that the number of degrees of freedom for PQ  
and LQ  is    4 3 3 1 2    . The goodness-of-fit sta-
tistics and their respective p-values are given in Table 
7. 

elihood and apply the Newton-Raphson algorithm. 
Once again, we use least-squares estimates as starting 
values. Consider the following two linear models: 

S S S SS SEX TRT        
So both Pearson’s chi-square and the deviance statis-

tics seem to support model-fit. The response in this ex-
ample is ordinal, so the question arises whether an ana-
logue of the proportional-odds model can be defined. It 
can be defined as follows:  

M M MM SEX TRT M        

ˆThe least-squares estimates are: ,  0.20571S 
̂ 0.08760S   , ˆ 0.00507S   , ,  

, 

ˆ 0.20589M 
0ˆ 0.17161M   and ˆ 0.3649M 

2

. These are also
s for 

 our 
starting estimate  , 21 , 22 , 3 , 31 , and β32, 
respectively. As befo to e w -Raphson 
algorithm when the absolute difference of successive 
iterates is less than 0.00001 for all the six parameters. 
Using this criterion we e that the Newton-Raphson 
algorithm converges and estimates we get are:  

2ˆ 0.2025164

re, we s

notic

p th Ne ton

  , 21
ˆ 0.098328   , 22

ˆ 0.0  107827

 1 2 2 1 1Pr 2 ,Y SEX x TRT x x x        2 2  

 1 2 3 1 1Pr 3 ,Y SEX x TRT x x x        2 2  

 1 2

2 1 1 2 2 3 1 1 2

Pr 1 ,

1

Y SEX x TRT x

2x x x x     

  

      
 

, 

3ˆ 0.2056062 
32

ˆ 0.349480 
estimates, we ca

, ˆ

.  t from the 
 directly assess the effect of covariates 

on the probability of improvement. The estimated prob-
abilities are given in Table 6. 

Note that, once again, the p

31 0.13885  
Note, again, t

n

5 , and  
a1 h preceding 

The problem with the above model is that the resulting 
likelihood is multi-modal, and no good starting estimates 
for the Newton-Raphson algorithm are available. Indeed, 
the author found that with some starting estimates, the 
resulting probabilities lay outside the interval [0, 1]. More 
research is needed on this front. 

robabilities in Table 6 lie 
in the interval (0, 1). Also, once again, note the similarity 
between the estimated probabilities obtained using our 
method, and the ones obtained using the least-squares 
method. To take into account the ordinality in the re-
sponse, read the probabilities across the rows in Table 6. 
The response levels are correlated with the row prob-
abilities. Note that for any treatment, active or placebo, 
males perform poorly compared to females. As expected, 
both males and females respond better to active treatment 
than placebo in the sense that for both sexes, the prob-
ability of some or marked treatment goes up with active 
treatment. The least-squares estimates of probabilities 
were obtained as follows:  


5. A Conjecture Regarding the 
Least-Squares Estimates 

We saw in the preceding examples that the least-squares 
estimates of probabilities of responses lay in the interval 
[0, 1] if the cross-classification of the covariates and the 
responses contained no empty cells. The author believes 
that this is not a coincidence, but is unable to prove it. So 
we offer the following conjecture: 

 1 2Pr 2 ,Y SEX x TRT  1 2
ˆ ˆ ˆS S Sx x x        

  1 2 1
ˆ ˆ ˆPr 3 , M M MY SEX x TRT x x x         2

Conjecture 1: Let Y  be a categorical variable with 
possible values .  may be a dichotomous 
random variable, a nominal polytomous random variable, 
or an ordinal polytomous random variable. The covari-
ates, 

0,, q Y

1, , pX X , may be categorical or continuous. Let 
 1; , ,j j jp , y x x 1 j n  , denote a data set with  
outcomes of Y  and of each of the  covariates. Let 
the matrix of covariate values have full rank. Let 

n
p

 
Table 6. Estimates of probabilities. 

  Pr 1 ,Y SEX TRT     Pr 2 ,Y SEX TRT    Pr 3 ,Y SEX TRT  

Str m Our Method Least Squares Our Method Least Squares Our Method Least Squares atu

0,TRT 0SEX   0.5918774 0.5884 0.2025164 0.20571 0.2056062 0.20589 

0, 1SEX TRT   0.2316145 0.22857 0.2132992 0.20064 0.5550863 0.57079 

1, 0SEX TRT   0.8290608 0.84761 0.1041885 0.11811 0.0667507 0.03428 

1, 1SEX TRT   0.468798 0.48778 0.1149712 0.11304 0.4162308 0.39918 
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Table 7. Goodness-of-fit statistics and their respective p
alues. 

- 
v

Pearson Deviance 

Statistic Value p-Value Statistic Value p-Value 

0.613 0.736 0.615 0.735 

 
Y

Y q


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Consider the following model:  

q

Let 

1
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1 if 1 1 ifqZ Z
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f Y  0 q

1 1 11 1 1Z X      1

1 1

p p

q q q qp p

X
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
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
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ˆ ,k  1
ˆ ˆ, ,k kp 
aramete

,  be the resulting 
est

1, , ,k q 
rs obtained usiima ng ordinary least- 

squares. Then the following estimates of probabilities lie 
in the interval [0, 1]: 

tes of p

 Pr Y k X 1 1

1 1

, ,

ˆ ˆ ˆ , 1, , , and

p p

k k kp p

x X x

x x k q  

 
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 
 

 

 
1 1

1 1
1

Pr 0 , ,

ˆ ˆ ˆ1 .

p p

q

k k kp p
k

Y X x X x

x x  


  
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6. Concluding Remarks 

 that probability esti
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