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ABSTRACT 

In this paper, comprehensive methods to apply several formulations of nonlinear estimators to integrated navigation 
problems are considered and developed. The problem of linear and nonlinear filters such as Kalman Filter (KF) and 
Extended Kalman Filter (EKF) is stated. Analog solution which is based on fisher information matrix propagation for 
linear and nonlinear filtering is also developed. Additionally, the idea of iterations is included through the update step 
both for Kalman filters and Information filters in order to improve accuracy. Through this development, two new for-
mulations of High order Kalman filters and High order Information filters are presented. Finally, in order to compare 
these different nonlinear filters, special applications are analyzed by using the proposed techniques to estimate two 
well-known mathematical state space models, which are based on nonlinear time series used to apply these estimation 
algorithms. A criterion used for comparison is the root mean square error RMSE and several simulations under specific 
conditions are illustrated. 
 
Keywords: Kalman Filter; Information Filter; Extended Kalman Filter; Extended Information Filter; 2nd Order Kalman 

Filter; 2nd Order Information Filter 

1. Introduction 

Different kinds of filters exist and were developed in 
order to ensure high quality measurement in input-output 
systems and permit more accurate control system in sev-
eral fields such as in Aerospace, for aircraft’s navigation, 
ship, spacecraft, tracking etc. Kalman filter (KF) was 
firstly derived from using orthogonality principle and pre- 
sented in [1-3]. Generally so-called filter or/and estima- 
tor, is/are one of several techniques of estimation based 
on LMMSE (Linear Minimum Mean Square Error) [4]. 
In 1970, Kalman and Bucy introduced extended Kalman 
filter for nonlinear estimation. Actually this kind of filter 
is called standard local filter and is based on approxima-
tion of nonlinear functions by Taylor series. The most 
common filter in the field of engineering and aerospace 
especially, is the extended Kalman filter. These local 
standard filters also contain the second order Kalman 
filter and the iterated filter. Other kinds of nonlinear  

filtering algorithms exist but are not treated in this paper 
[5]. The most interesting and main idea introduced in this 
paper is to use the parallel solutions to Kalman filter and 
standard local filters which are based on the Fisher In-
formation Matrix propagation [6,7]. It is analog to Kal-
man technique but is more efficient and robust to several 
constraints. The main idea is to use the inverse matrix 
lemma to develop analog estimator to Kalman filter with 
less computational time. These filters are more efficient 
when the number of the input is more than the dimension 
of the state vector. In this paper, we introduced classic 
information filters for linear and nonlinear filtering 
problem. Behind this was explored in our solution, the 
efficiency includes iterations through the updated step of 
the different algorithms [8]. Two new formulations are 
presented such as the iterated second order Kalman filter 
and the second order information filter followed by the 
second order Iterated Information filter. So, generally the 
step of initialization is the main important in nonlinear 
filtering and we propose to use the information filters to  *Corresponding authors. 
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solve the problem of initialization. Of course, informa-
tion filters present several other advantages when the 
state space model input is a combination of several sen-
sors as in data fusion or multi-sensors fusion, it was 
proven that comparing with Kalman filter and extended 
Kalman filter both for linear and nonlinear case, the in-
formation filters are more easy to implement in real time 
application with multiple information combination [9-12]. 
We apply these different nonlinear filters to dynamical 
state models such as references. It is expected that this 
work could serve in investigate integrated navigation 
system INS (Inertial navigation System)/GNSS (Global 
Navigation by Satellite System) problems, in order to 
show possible application in the field of aerospace. 

2. Kalman Filter and Nonlinear Filtering 

If the system is linear and the statistical distribution is 
Gaussian, then the Bayesian prediction and update equa-
tion can be solved analytically. The system is completely 
described by the Gaussian parameters such as mean and 
covariance and this filter is called the Kalman filter [13]. 
As a discrete statistical recursive algorithm, Kalman fil-
ter provides an estimate of the state at time k given all 
observations up to time k and provides an optimal mini-
mal mean squared error estimate of these states. 

Process Model: A linear dynamic system in discrete 
time can be described by 

1 .
0

.
k k k k

k k k k

x F x w
k

z H x v
  

  
         (1) 

Kalman filter is usually called as the optimal filter in the 
case of linear assumption and white Gaussian noises both 
in state and in measurement equations. 

2.1. Extended Kalman Filter 

In most real applications the process and/or observation 
models are nonlinear and hence linear Kalman filter al-
gorithm described above cannot be directly applied. To 
overcome this, a linearised Kalman filter or Extended 
Kalman Filter (EKF) can be applied which are estimators 
where the models are continuously linearized before ap-
plying the estimation techniques [14]. 

However, in most practical navigation applications, 
nominal trajectory does not exist beforehand. The solu-
tion is to use the current estimated state from the filter at 
each time step k as the linearization reference from which 
the estimation procedure can proceed. Such algorithm is 
called extended Kalman filter. If the filter operates prop-
erly, the linearization error around the estimated solution 
can be maintained at a reasonably small value [15-17]. 
However, if the filter is ill-conditioned due to modeling 

errors, incorrect tuning of the covariance matrices, or 
initialization error, then the estimation error will affect 
the linearization error which in turn will affect the esti-
mation process and is known as filter divergence. For 
this reason the EKF requires greater care in modeling and 
tuning than the linear Kalman filter. Let us describe bel-
low the algorithm of EKF [18]: based on state space 
model as: 

 
 

1 .
0

.

k k k k

k k k k

x f x w
k

z h x v

   
 

        (2) 

and on the linearization using taylor approximation at the 
first order we get the state space model given in [19]. 

 kF   is the Jacobian matrix of  and  kf   kH   is 
the Jacobian matrix of  kh  . 

Initialization:  

0x̂  et .              (3)  0P

Prediction: 

 
   
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     (4) 

Update:  

     


 

 

T T
/ 1 / 1 / 1 / 1 / 1

1

/ 1 / 1

/ 1 / 1 / 1

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

1;

k k k k k k k k k k k k k k

k

k k k k k k k k

k k k k k k k k k

K P H x H x P H x

R

x x K Z h x

P P K H x P

K K

   



 

  

 



    
 

 



(5)  

The meaning of the extended Kalman filter can be un-
derstudied by appreciating the same equation of gain 
calculation as in the Kalman filter at the difference that 
in the nonlinear filtering, EKF is sub-optimal filter. 

2.2. Iterated Filter 

One can distinguish the importance of the two different 
steps; prediction and update, it allows to observe the ef-
fect of new information given by the measurements in 
the filtering step. Let us focus on the estimation of the 
mean and the covariance of the state vector. In Equation 
(5) it is clear that ˆkx  contains more information about 

kx  than ˆkx . Nonetheless, the linearization was made in 
ˆkx . This fact is used and the linearization can be made in 

the kth step again but this time in ˆkx . This provides a 
new value of estimates and such a procedure may be re-
peated as long as a difference between two subsequent 
estimates is lower than a specified  . Thus, the follow-
ing equations will be implemented using the iterated 
form: 1ˆ ˆk kx x  and 1

kP Pk ; For   1, 2,3,i
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The iteration is stopped if 1ˆ ˆi i
k kx x I    with 0  ; 

and the value i + 1, i.e. the time instant of iteration, is 
denoted as imax. It is not possible to use the same iteration 
formulation for the prediction step because the prediction 
utilizes no new information from reality. So, the relation 
of prediction step is the same as in the extended Kalman 
filter. So, 

 1/ˆk k k kˆx f x                (7) 

   T

/ 1 1ˆ ˆk k k k k k k kP F x P F x  
i

Q        (8) 

where maxˆ ˆk kx x  and . maxP P i
k k

All the previous relations define the iterated filter 
which is an improvement of the extended kalman filter 
and improves local approximation for filtering estimate 
calculation. On the other hand, it is again local approxi-
mation and convergence of the estimate is not guaranteed 
as well. 

2.3. 2nd Order Kalman Filter 

In this part, another alternative of the extended Kalman 
filter is presented and will be used in simulations. Based 
on the Taylor series but used to the second term, let us 
consider the following approximations: 
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where ˆkx ,  correspond to the approxima-
tion used for the extended Kalman filter. 

   ,k kh H 

The dimension of the vector function  kh   is zn  
and the dimension of the state vector kx is xn . 

Then, the new approximation can be written such as 
described by:  

       1
ˆ ˆ ˆ

2k k k k k k k k kh x h x H x x x h         (10) 

Because of the second order terms in (10), analytical 
computation of the filtering step is not possible, so, we 
can solve this problem by replacing the quadratic form 
by its mean and we obtain then: 

     T
ˆ ˆ ˆik k k ik k k k ik aikh x x M x x tr P M h       ;  

Let us write: 
T

1 2, , ,
zak a k a k an kh h h h     and then, we 

obtain also:  

      ˆ ˆ ˆk k k k k k k k akh x h x H x x x h      ; 

From this result, we can learn that it is a linear function 

of kx , as all the remaining terms are known in the (k−1)th 
step. Thus we obtain the following integration equations: 
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
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It is possible to observe that the innovation sequence is 
different from the one of the extended Kalman filter. 
Now, to compute the prediction step, it is possible repeat 
the same steps as for the update formulation and we ob-
tain as bellow: 

       1
ˆ ˆ ˆ

2k k k k k k k k kf x f x F x x x f      ; 

By computing means of the nonlinearities, it is possible 
to write:  aik k ikf tr P N  &  

T

1 2, , ,
xak a k a k an kf f f f    ; 

Finally, we get:  

      ˆ ˆ ˆx k k k k k k k akf x f x F x x x f    ; 

and we obtain: 

 
   

1

T
1

ˆ ˆk k k ak

k k k k k k

x f x f

P F x P F x Q


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The equation of the Covariance integration is the same as 
in the extended Kalman filter, with different prediction 
step adding akf . So, the Equations (16) and (17) repre-
sent the second order filter. After describing the different 
nonlinear approximation used usually in nonlinear filter-
ing , let us pass to the second kind of filters which are the 
information filters both for linear and nonlinear case, let 
us describe the information filter [20] and the extended 
information filter [21,22], then novel formulations will 
be developed. 

3. Information Filter and Nonlinear 
Information Filters 

The information filter is mathematically equivalent to the 
Kalman filter except that it is expressed in terms of 
measures of information about the states of interest rather 
than the direct state and its covariance estimates. Indeed, 
the information filter is known to have a dual relationship 
with the Kalman filter. If the system is linear with an 
assumption of Gaussian probability density distributions, 
the information matrix  /Y k k , and the information 
state estimate  /k ky , are defined in terms of the in-
verse covariance matrix and state estimate. 

  1/ /Y k k P k k  ; 
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    / /k k Y k k x k ky /








        (13)  

When an observation occurs, the information state 
contribution i(k) and its associated information matrix I(k) 
are given by the following expressions:  

       T 1k H k R k z ki ;       (14) 

       T 1k H k R k H kI        (15) 

By using these variables, the information prediction 
and update equation can be derived from Kalman filter. 

Prediction: The predicted information state is ob- 
tained by pre-multiplying the information matrix  

 in Equation (22) and by representing it in 
information space, 
 / 1Y k k 

     
     
/ 1 / 1 / 1

/ 1

y k k L k k y k k

Y k k B k u k

   

 
    (16) 

where the information propagation coefficient matrix (or 
the similarity transform matrix) L   is given by  / 1k k 

      1/ 1 / 1 / 1L k k Y k k F k Y k k      (17) 

The corresponding information matrix is obtained by 
taking the inverse of Equation (18) and by representing it 
in information space, 

   
   1

/ 1 / 1

/ 1

L k k Y k k

F k Y k k

  

 
        (18) 

Estimation: The update procedure is simpler in the 
information filter than in the Kalman filter. The observa- 
tion update is performed by adding the information con- 
tribution from the observation to the information state 
vector and its matrix: 

    / / 1y k k y k k i k          (19) 

    / / 1Y k k Y k k I k   





       (20) 

If there is more than one observation at time k, the in-
formation update is simply the sum of each information 
contribution to the state vector and matrix, 

    
1

/ / 1
n

j
j

y k k y k k i k


   ;       (21) 
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1

/ / 1
n

j
j

Y k k Y k k I k


   ;       (22) 

where n is the total number of synchronous observations 
at time k. 

Note: As the information matrix is defined like the 
inverse of the covariance matrix, the information filter 
deals with the “certainty” rather than “uncertainty” such 
as in Kalman filter. Furthermore, given the same number 
of states, process and observation models, the computa-
tional complexity of the information filter and the Kal-

man filter are comparable. The update stage in the in-
formation filter is quite simple however the prediction 
stage is comparatively complex, which is exactly oppo-
site in the Kalman filter.  

However both filters can show different computational 
complexity depending on the dimension of the state and 
observations. If the number of observations increases, as 
in the case of the multi-sensor systems, the dimension of 
the innovation matrix of the Kalman filter increases as 
well, and the inversion of this matrix becomes computa- 
tionally expensive. In the information filter, however, the 
information matrix has the same dimension of the state 
and its inversion is independent to the size of observa- 
tions. This means that the information filter is an effi- 
cient algorithm when the dimension of observations is 
much greater than that of the state, thus, they are more 
suitable in complex data fusion problems based on mul- 
tiple sensors. 

In addition, the information filter can perform a syn- 
chronous update from multiple observations in contrast 
to the Kalman filter. The reason is that the innovations in 
the Kalman filter are correlated to the common underly- 
ing state while the observation contributions in the in- 
formation filter are not. This makes the information filter 
attractive in decentralizing the filter. Finally, the infor- 
mation filter can easily be initialized to zero information. 

Extended Information Filter 

The extended information filter can also be derived for 
the nonlinear process/observation model defined in Equa- 
tions [22]. 

Prediction: The predicted information vector and its 
information matrix are obtained by using the Jacobians 
of the nonlinear process model 

        / 1 / 1 / 1 , ,0y k k Y k k f x k k u k     (23) 
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  
  (24) 

Estimation: When an observation occurs, the infor- 
mation contribution and its corresponding matrix are: 

         
     

1T T
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x v v

x
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k h k x k k


     

    
   (25) 

           
1T T

x v v xI k h k h k R k h k h k


       (26) 

where the innovation vector is also computed as in the 
EKF 

      / 1 ,0k z k h x k k         (27) 

These information contributions are again added to the 
information state vector and matrix as in the linear in- 
formation filter 
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    / / 1 y k k y k k i k          (28) 

    / / 1Y k k Y k k I k           (29) 

In practice, the EKF and EIF are considered as the 
most useful filters. 

4. Contribution in Information Nonlinear 
Filtering 

In this section, new filters based on the presented tech- 
niques are introduced, using iterations to improve the 
second Order Kalman filter and the extended Information 
filter, these filters were called: Iterated 2nd Order Kalman 
Filter and Iterated Extended Information filter, we ap- 
plied these two new formulation in simulations and it is 
expected to have a good results. The main is to proof that 
the iteration can be also applied to High order Kalman 
filter and can improve the accuracy of the Extended in- 
formation filter. Of course, the computational time will 
increase instead of more accuracy.  

The second contribution in his paper is to extend in- 
formation filter to the second order based on the 2nd order 
Kalman filter and to apply also the iterations through the 
update of the new filter in order to improve its efficiency. 
These algorithms are called 2nd Order Information filter 
and Iterated 2nd Order Information filter. Let us begin by 
describe the Iterated 2nd order Kalman filter , the iterated 
Extended Information filter, the 2nd order Information 
filter and finally, the Iterated 2nd order Information filter. 

4.1. Iterated 2nd Order Kalman Filter 

The iterated filter from the previous section represents a 
way to improve the point of linearization of the nonlin- 
ear function  and the second derivation of this 
function. In this part, another alternative of the extended 
Kalman filter is presented and will be used in simulations. 
Based on the Taylor series but used to the second term, 
let us consider the approximations given in the Equation 
(9). Where 

 kh 

ˆkx kh, ,    kH   correspond to the ap- 
proximation used for the extended Kalman filter. 

The dimension of the vector function  kh   is zn  
and the dimension of the state vector kx  is xn . 

The same assumption such as made in the 2nd order 
Kalman filter is considered at expect of introducing the 
iterations through the update step of the algorithm. So, 
the same idea of the iterated filter will be applied again. 

Thus we obtain the integration equations given by 
Equation (15). It is proposed to transform this step by 
introduce iterations till the error between subsequent es- 
timates will be less then specified error minimum limit. 

So, the new update is given bellow: 1ˆ ˆ
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P P P H x H x P H x R

H x P







      
     

      


(30) 

If 1ˆ ˆi i
k kx x I    with 0  . Then stop the itera- 

tions, else, continue, end. 
So, one can observe that the update equations are the 

same such as in the iterated Kalman filter according to 
the covariance integration but is different in state estima- 
tion due to the correction term in the innovation. 

Now, to compute the prediction step, it is possible to 
repeat the same steps as for the update formulation and 
we obtain the following equation: 

       1
ˆ ˆ ˆ

2k k k k k k k k kf x f x F x x x f       

By following exactly the same steps such as in the 2nd 
order Kalman filter; we finally obtain:  

 
   

1

T
1

ˆ ˆk k k ak

k k k k k k

x f x f

P F x P F x Q





  

 k 
;     (31)  

where maxˆ ˆ ii
k kx x  and . maxii

k kP P
The equations of the state and Covariance integration 

are the same such as given in the 2nd order Kalman filter. 
So, the Equations (37) and (38) represent the second or-
der filter. 

4.2. Iterated Extended Information Filter 

The extended information filter can also be derived from 
the nonlinear process/observation model equations. 

Prediction: The predicted information vector and its 
information matrix are obtained by computing the Jaco- 
bian of the nonlinear process model given in the Equa- 
tion (2). 

Estimation: When an observation occurs, the infor- 
mation contribution and its corresponding matrix are 
written such as below: 

For  1, 2,3,j    

         

     

1T T

/ 1

j

j

j x v v

x

i k h k h k R k h k

k h k x k k


     

    

         
1T T

j x v v

   (32) 

 
j jxI k h k h k R k h k


       h k  

(33) 

where the innovation vector is also computed like in EKF 

      / 1 ,0k z k h x k k          (34)  

These information contributions are again added to the 

Open Access                                                                                            JSIP 



Contribution in Information Signal Processing for Solving State Space Nonlinear Estimation Problems 380 

information state vector and matrix such as in linear in-
formation filtering:  

    / / 1j j jy k k y k k i k         (35) 

    / / 1j jY k k Y k k I k   j       (36) 

when 

1

1 1
j j

k k

I
Y Y

   , 

where 0  , End. 

4.3. 2nd Order Information Filter 

Again, the same technique used in the extended informa- 
tion filter is used, based this time on the second order 
approximation of the state and the covariance using the 
corrected innovation. 

Prediction: The predicted information vector and its 
information matrix are obtained by computing the Jaco- 
bians of the nonlinear process model and the corrected 
form of the predict state in the second Kalman filter: 

        / 1 / 1 / 1 , ,0 aky k k Y k k f x k k u k f       

(37) 

       

     

1 T

1T

/ 1 1/ 1x xY k k f k Y k k f k

f k Q k f k 





     

  
 (38) 

where akf  is the second order term used to correct the 
predict state calculated in the previous section according 
the 2nd Order Kalman filter. 

Estimation: When an observation occurs, the infor- 
mation contribution and its corresponding matrix are: 

         
     

1T T

/ 1

x v v

x

i k h k h k R k h k

k h k x k k


    

  




   (39) 

           
1T T

x v v xI k h k h k R k h k h k


       (40)  

where the innovation vector is also computed as in the 
2nd order KF 

      / 1 ,0 akk z k h x k k h          (41) 

It is possible to observe that the innovation sequence is 
the same such as in the 2nd KF but is more accurate than 
in the Extended Information Filter (EIF). These informa- 
tion contributions are again added to the information 
state vector and information matrix: 

    / / 1 y k k y k k i k         (42) 

    / / 1Y k k Y k k I k            (43) 

Let us now consider the 2nd Order Information Filter 
and compare with the 2nd Order Kalman filter through 

simulations in the last section. 

4.4. Iterated 2nd Order Information Filter 

The same philosophy such as in the previous section is 
used. Iterations are introduced through the update step, in 
order to increase accuracy of linearization and the second 
derivation. 

Prediction: The predicted information vector and its 
information matrix are obtained by using the Jacobians 
of the nonlinear process model and the corrected form of 
the predict state in the second Kalman filter: 

         / 1 / 1 / 1 , ,0 aky k k Y k k f x k k u k f      

(44) 

       

     

1 T

1T

/ 1 1/ 1x xY k k f k Y k k f k

f k Q k f k 





     

  
 (45) 

where akf  is the second order term used to correct the 
predict state calculated in the previous section according 
the 2nd Order Kalman filter. 

Estimation: When an observation occurs, the infor- 
mation contribution and its corresponding matrix are: 

For 1, 2,3,l    

         
     

1T T

/ 1

l

l

l x v v

x

i k h k h k R k h k

k h k x k k


     

    

         
1T T

l ll x v v

   (46) 

 xI k h k h k R k h k h


       k (47) 

where the innovation vector is also computed such as in 
the EKF 

      / 1 ,0 akk z k h x k k h         (48)  

These information contributions are again added to the 
information state vector and matrix as in the linear in-
formation filter 

    / / 1l l l y k k y k k i k         (49) 

    / / 1l l lY k k Y k k I k          (50) 

when  

1

1 1
l l

k k

I
Y Y

    

where 0  , End. 
After these modifications, it is expected to obtain more 

wide kind of information filters useful for nonlinear fil- 
tering problems and especially under critical conditions. 
Let us pass to the simulations based on two series; used 
widely in the field of filtering in order to compare the 
different algorithms of estimation. Finally all the filters 
presented in this paper are expected and planned to be 
applied to integrated navigation system INS/GNSS usu- 
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ally based on nonlinear filtering techniques [23-28]. 

5. Simulations 

The simulations are divided in three parts; the first gives 
an example with low nonlinearity, only in the measure- 
ment equation. The second example shows the effects of 
the high nonlinearity present both in state and in meas- 
urement using much known time series equation very 
useful in the field of filtering. The third part of simula- 
tion is about applying such proposed methods to real 
problems in navigation using different input “observa- 
tions” in order to compare both of accuracy and compu- 
tational time of each algorithm. So, several examples are 
presented, which illustrate the operation of the improved 
information filters comparing with the classic solutions.  

5.1. Consider the Following Set of Equations 
Such as an Illustrative Example 

   11 sin 0.04π 1 0.5k k 1kx k x     

2

v 



      (51) 

0.2 30

0.5 2 30
k k

k

k k

x w k
y

x w k

  
  

       (52) 

Simulations data:  
First case: (High noise level) 
a.k = 60; x(1) = 50; y(1) = 100; xr(1) = x(1); yr(1) = 

y(1); Q(1) = 100; R(1) = 10; Xest(1) = 0.0.x(1); P(1) = 
10000; Iterations number : imax = 1000; b – k = 60; x(1) = 
50; y(1) = 100; xr(1) = x(1); yr(1) = y(1); Q(1) = 0.1; R(1) 
= 0.01; Xest(1) = 0.0.x(1); P(1) = 1; Iterations number: 
imax = 1000. 

On Figures 1(a) and (b), one can observe easily that in 
the case of high noise level, the information filters are 
more efficient and more accurate than the classic ap-
proximated nonlinear filters based on Kalman filter. At 
the opposite, on Figures 2(a) and (b) when the noises are 
low level, we can apply more EKF, IEKF, EIF, and IEIF 
than the 2nd order information filters.  

All the difference between these filters can be seen 
between 0 and 30 because of the nonlinear measurement 
equation in this interval of time. 

5.2. Consider the Following Set of Equations 
Such as This Illustrative Example 

  1
1 2

1

0.5 25 cos 1.2 1
1

k
k k

k

x
1kx x

x





    


k v  (53) 

2

20
k

k

x
y   kw               (54) 

2nd case: (High noise level); k = 100; x(1) = 50; y(1) = 
100; xr(1) = x(1); yr(1) = y(1); Q(1) = 100; R(1) = 10; 
Xest(1) = 0.0.x(1); P(1) = 100; Iterations number: imax = 
1000. b − k = 100; x(1) = 50; y(1) = 100; xr(1) = x(1);  

 
(a) 

 
(b) 

Figure 1. (a) State, (b) MSE, illustration for the first system 
with high noise level. 
 
yr(1) = y(1); Q(1) = 100; R(1) = 10; Xest(1) = 0.0.x(1); 
P(1) = 100; Iterations number: imax=1000. 

On Figure 3, it is easy to observe again that in the case 
of high noise level, the information filters are more effi-
cient and more accurate than the classic approximated 
nonlinear filters based on Kalman filter. 

On Figures 4(a) and (b), when the noises are low level, 
we can apply more nonlinear approximated filters based 
on Kalman filter than the information filters. One of the 
most known applications in aerospace and navigation 
problems are connected with integrated navigations sys- 
tems and data fusion. This combines between different 
output of several sensors in order to estimate one or more 
state variables according to state space model including 
process and measurement stochastic differential equa- 
tions.  

6. Conclusion 

After several tests using different filters presented in this 
paper, it is the advisable and recommended to use the  
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(a) 

 
(b) 

Figure 2. (a) State illustration for the first system with low 
noise level; (b) MSE, illustration for the first system with 
Low noise level. 

 

 

Figure 3. MSE, illustration for the first system with high 
noise level. 

 
(a) 

 
(b) 

Figure 4. (a) State illustration for the first system with low 
noise level; (b) RMSE illustration for the first system with 
low noise level. 

 
information filters especially for high level noise which 
affects both of state and measurement. The observation is 
that low noise level; the classic algorithms perform the 
information estimators. In other way, the main advantage 
of Information based new formulations is that for zero 
information initialization of the several filers, the algo-
rithms based on the information propagation are better, 
more quickly and more accurately than the approximated 
nonlinear filters, which have real consequences in real 
time application, for example, in navigation, tracking and 
multi-sensors data fusion. Really, through simulations 
based on two well-known mathematical state space mod-
els, it is possible to appreciate the difference between the 
classic formulations of the nonlinear filters such as EKF, 
EIF, 2nd OK compared with the proposed information 
filters. It is observed then, more accurate estimate is due 
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to high nonlinearity both in system and measurement 
equations using new formulations of iterative extended 
Kalman filter, 2nd order information filter and 2nd order 
iterative information filter. Finally, original formulations 
based on sigma point Kalman filters and divided differ-
ence information filters are considered to be completed 
in the near future. It is expected in the future to apply 
these information filters to integrated navigation system 
based on combination between GNSS (GPS/GLONASS) 
and Inertial navigation system (INS) using nonlinear 
measurement equations in order to compare and confirm 
that really the new formulations give more accuracy in 
state estimation’s problems such as started in [29,30] and 
improved by the novel formulation proposed in this work. 
Finally, original formulations based on sigma point Kal-
man filters and divided difference information filters are 
considered to be completed in the near future, with addi-
tional ways of research on adaptive and robust formula-
tions of information filters in very aggressive noise en-
vironment. 
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