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Figure 1. A typical thoracolumbar fixed structure. 
 

 

Figure 2. Simplified 3-D model with beam and bar structure. 
 

 

Figure 3. Fatigue test apparatus for thoracolumbar fixed 
structure. 
 
each fatigue test. 

According to the above described prototype of the fa- 
tigue test and the actual behavior of human vertebral 
body bending and lateral bending movement, a compres- 
sive load, a tensile load, a bending moment and a lateral 
load were added respectively for FEM analyses, as 
shown in Figure 4. Compressive loads and tensile loads 
of 100 N, 140 N, 180 N, 200 N and 220 N were used for 
the first run of calculation, bending moments of 200 
Nmm, 300 Nmm, 400 Nmm and 500 Nmm were used for 
the second run of calculation, and lateral loads of 20 N, 
40 N, 60 N and 80 N, were used for the third run of cal-
culation. 

 

Figure 4. Four loading methods: (a) Compressive load; (b) 
Tensile load; (c) Bending moment; (d) Lateral load. 
 
3. FEA and Fatigue Calculation 

The finite element analysis (FEA) by ANSYS software 
was carried out for the type of thoracolumbar fixed struc- 
ture with four corresponding loads. The fatigue lives of 
each load type were then calculated and listed in tables 
for comparison. 

3.1. The Finite Element Mesh Model 

The simplified three-dimensional model was created us- 
ing the 3-D solid-building software UG (Version 6.0). 
Then the 3-D model was imported into Workbench stat- 
ics analysis module of ANSYS. The whole-size control 
method was used for grid partition. The mesh unit sol- 
id185 is a small, six-degree freedom tetrahedron. The 
two beams and one bar were controlled with 1 mm unit 
size and the rest was controlled with 1.2 mm unit size. 
Automatic grid partition with same solid185 unit was 
applied on two UHMWPE holding blocks, screws, bar 
and beams. The meshing result was shown in Figure 5. 

3.2. FEA Results 

Four different loading methods were applied for cal- cu-
lation after grid generation: a pair of compressive loads, 
a pair of tensile loads, a pair of bending moments and a 
single lateral load were added on UHMWPE holding 
blocks respectively, as shown in Figure 3. Some results 
of the calculated stress clouds for the four loading types 
were shown in Figures 6-9. 

From Figures 6, 7 and 9, it can be seen that higher 
stress is distributed in the connection area of the beam 
and bar when the structure is loaded with compressive 
force, tensile force and lateral force. When the structure 
is loaded with bending moment, higher stress locates in 
the area of the middle of the beam, as shown in Figure 8.  
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Figure 5. Mesh model. 
 

 

Figure 6. Stress cloud for compressive load of 50 N. 
 

 

Figure 7. Stress cloud for tensile load of 50 N. 
 

 

Figure 8. Stress cloud for bending movement of 150 Nmm. 

 

Figure 9. Stress cloud for lateral load of 60 N. 
 
Table 1 lists the maximum stress of different compres-
sive and tensile loads. It can be seen that the maximum 
stress is approximately the same for same loads of com-
pressive and tensile methods, and approximately in-
creases linearly with the loading force. 

3.3. Calculation of Fatigue Life 

The classic stress fatigue theory relates the stress (S) with 
the fatigue life (N) by the S-N curve formula: 

mS N C  

where m and C are the parameters associated with ma-
terial properties, stress ratio, and the corresponding load- 
ing method. 

m can be calculated by taking two points of the high 
cycle fatigue S-N curve for TC4 [9], as shown in Figure 
10, using the following formula: 

 
 

10

10

1log 2
2log 1

N
Nm

S
S

   

and C is calculated with: 

1 1mC N S    

where (N1, S1) and (N2, S2) are any of two points on the 
S-N curve. 

Goodman Curve follows the following relationship: 

1

1a m

u

S S

S S

   

where Sa is the average stress, Sm is stress amplitude, S-1 
is stress cycling characteristics of the stress at cycle for 
symmetry, Su for material fatigue limit. 

Combining the S-N curve and Goodman curve, the cir-
cle life N the cervical steel plate can be calculated by the 
following steps: 
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Figure 10. High cycle fatigue S-N curve for TC4. 
 
Table 1. Different compressive and tensile loads and their 
highest stress. 

Load 
Max Stress (MPa) 

Compressive Tensile 

50 N 48.4 48.9 

100 N 97.6 97.7 

140 N 136.7 136.6 

200 N 195.3 195.4 

 

 
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  


 


 

  








where Smax is the maximum work stress of the plate under 
loads, Smin the minimum work stress under load, Ss the 
tensile strength for TC4, S_a the cyclic stress corres-
ponding to the stress ratio R = −1. 

The fatigue circle life N was calculated for the type of 
the thoracolumbar fixed structure under four loading 
methods. The results were listed in Table 2. 

From Table 2 it can be seen that the maximum stress 
increases with the increasing load, while the fatigue life 
decreases. US standard ASTM F1717-13 [1] requires a 
fatigue life of 5 million times without any damage, while 
China’s domestic requirement is 1 million times without 
any damage. Under the compressive load of 200N, or the 
bending moment 500N, or the lateral load of 60N, the 
fixed structure has fatigue life larger or close to 5 million 
times. When the body side bends, its lateral load is small. 
As the load increases, the fatigue life number decreases 
dramatically. When the compressive load is lager than 
195.3 N or the lateral load is lager than 80 N, the fatigue  

Table 2. The fatigue life of thoracolumbar fixed structure. 

Compressive load (N) Max stress(MPa) Fatigue circle life (106)

100 97.6 400 

140 136.7 50 

180 175.7 14.7 

200 195.3 5.0 

220 214.3 2.6 

Bending moment 
(N.mm) 

Max stress (MPa) Fatigue circle life (106)

200 19.2 4.18×106 

300 28.7 4.53×105 

400 38.3 9.02×104 

500 47.9 2.55×104 

Lateral load (N) Max stress (MPa) Fatigue circle life (106)

20 53.311 1.39×104 

40 106.62 237 

60 159.93 18.7 

80 213.25 2.72 

 
life is less than 5 million but greater than China’s domes-
tic requirement. 

4. Conclusion 

The FEM analyses of thoracolumbar fixed structure were 
carried out in this study. The stress distribution of the 
fixed structure was studied under four different types of 
loads: compressive loads, tensile loads, bending moment 
loads and lateral loads. The FEM results show that the 
most fragile part under bending moment is the central 
part of beam. When the fixed structure was loaded with 
compressive load, tensile load and lateral load separately, 
the most fragile part is the connection area between beam 
and bar. The fatigue life numbers were calculated through 
S-N curve and Goodman curve after FEM analyses under 
different types and different values of loads. The calcula-
tion results show that the fatigue life decreases rapidly as 
the value of the load increases. The type of thoracolum-
bar fixed structure meets the China’s domestic require-
ment of 1 million time under the compressive or tensile 
loads of 100 - 220 N, bending moment loads of 400 - 500 
Nmm or lateral loads of 20 - 80 N. 
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