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ABSTRACT 

In this paper, I discuss whether superluminal particles exist in the general relativistic theory of gravity. It seems that the 
answer to this question is negative. In truth, the result may only represent a difficulty to special but not general relativ-
ity, the later allowing both Lorentzian and Euclidian metrics. An Euclidian metric does not restrict speed. Although 
only the Lorentzian metric is stable, an Euclidian metric can be created under special gravitational circumstances and 
persist in a limited region of space-time causing possible superluminality. 
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1. Introduction 

It is well known that our daily space-time is approxima- 
tely of Lorentz (Minkowski) type with a metric  

 diag 1, 1, 1, 1     . 

The above statement is taken as one of the central 
assumptions of the theory of special relativity and has 
been supported by numerous experiments. But one 
should ask why should it be so? 

Many textbooks [1] state that in the general theory of 
relativity, any space-time is locally of the type  

 diag 1, 1, 1, 1     , 

although it can not be presented so globally due to the 
effect of matter. This is a part of the demands dictated by 
the well known equivalence principle. The above princi- 
ple is taken to be one of the assumptions of general rela- 
tivity other assumption such as diffeomorphism invarian- 
ce, and the requirement that theory reduce to Newtonian 
gravity in the proper regime lead to the Einstein equa- 
tions: 

4

8πG
G

c
T                 (1) 

in which G  is the Einstein tensor, T  is the stress- 
energy tensor,  is the gravitational constant and  is 
the velocity of light. 

G c

The Principle of Equivalence rests on the equality of 
gravitational and inertial mass, demonstrated by Galileo, 
Huygens, Newton, Bessel, and Eötvös. Einstein re- 

flected that, as a consequence, no external static homo- 
geneous gravitational field could be detected in a freely 
falling elevator, for the observers, their test bodies, and 
the elevator itself would respond to the field with the 
same acceleration [1]. This means that the observer will 
experience himself as free, not feeling the effect of any 
force at all. Mathematically speaking for the observer 
space time is locally (but not globally) flat and Min- 
kowskian. 

The point is that one need not assume that space-time 
is locally Lorentz based on an empirical (unexplained) 
facts, rather one can derive this property from the field 
equations based on the stability of the Minkowskian 
solution. Other unstable flat solutions of non Minkows- 
kian type, such as an Euclidian metric  diag 1,1,1,1   
can exist in a limited region of space-time. In an Eucli- 
dian metric there are no speed limitations and thus the 
alleged particle can travel in faster than light speed. The 
reader should notice that already Eddington [2, Page 25] 
has considered the possibility that the universe contains 
different domains in which some domains are locally Lo- 
rentzian and others have some other local metric of the 
type  

 diag 1, 1, 1, 1       

or the type  

 diag 1, 1,1, 1     . 

The stability of those domains was not discussed by 
Eddington. 

Many authors have suggested explanations to the lo-  
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cally Lorentzian nature of space-time [3-6]. What is 
common to all the above approaches is that additional 
theoretical structures & assumptions are needed. In 
previous works [7-9] it was shown that General relativis- 
tic equations and linear stability analysis suffice to obtain 
a unique choice of the Lorentzian metric being the only 
one which is stable. Other metrics are allowed but are 
unstable and thus can exist in only a limited region of 
space-time. The analysis will not be repeated here, the 
reader is referred to the original literature. It should be 
mentioned that the choice of coordinates in the Fisher 
approach to physics is also justified using the stability 
approach [10]. The nonlinear stability question of the 
Lorentzian metric was settled by D. Christodoulou & S. 
Klainerman [11]. As for the nonlinear instability of other 
spaces of constant metric this remains an open question 
at this time. 

The plan of this paper is as follows: in the first section 
we describe possible mechanisms of metric change. In 
the following section we describe a particle trajectory in 
a general flat space. The next section includes analysis of 
particle trajectories in Lorentz space-time for both the 
subluminal and superluminal cases. The following sec- 
tion will discuss dynamics in the presence of an Eucli- 
dean metric. Then the possible physical implications of 
the current theory are described. Finally some concluding 
remarks are given. 

2. Possible Mechanisms of Metric Change 

It was shown in [7] that among the possible flat space 
metrics only the Lorentzian metric is stable and can 
persist for a considerable region of space-time. Neverthe- 
less one may still inquire if a mechanism exists by which 
a metric change does occur1, can we create some how a 
metric of the type  

 diag 1, 1, 1, 1g       

in some region of space-time? The answer obviously has 
to do with the only reason a metric should change accor- 
ding to Equation (1) and this is T . Looking at availa- 
ble solution of general relativity one finds that metric 
changes are quite common. 

The Schwarzschild square interval (in terms of spheri- 
cal coordinates , , ,t r   ) is given by: 


2

2 2 2 2 2 2 22d
d 1 d d dsin

1

s

s

r r
c c t r

rr
r

         
  

 (2) 

In which   is the proper time, and sr  is the 
Schwarzschild radius (in meters) of the massive body, 
which is related to its mass M  by  

2

2
s

GM
r

c
 . 

It is obvious that while for > sr r  the metric is locally 
(up to scaling)  

 diag 1, 1, 1, 1g      . For < sr r  

the metric is locally (up to scaling)  

 diag 1, 1, 1, 1g      . 

Hence the direction of temporal and (one) spatial axis 
is exchanged. Notice, however, that although the sign of 
the eigen-values did change we are still left with a Lo- 
rentzian metric. 

Another example is the Friedman-Lemaitre- Robert- 
son-Walker square interval which is well known in 
cosmological models: 

   
2

22 2 2 2 2 2 22
2

d
d d d dsin

1

r
c c t a t r

r
 


 

     
  (3) 

 a t  is known as the “scale factor” and   may be 
taken to have units of length , in which case  has 
units of length and 

2 r
 a t  is unitless.  is then the 

Gaussian curvature of the space at the time when 


 a t 1 . Hence for radial distances such that  

1
<r


 

the metric is locally (up to scaling)  

 diag 1, 1, 1, 1g       

that is Lorentzian. However, for  

1
>r


 

the metric is locally (up to scaling)  

 diag 1, 1, 1, 1g      . 

this means that a particle propagating in a radial direc- 
tion will experience an Euclidean metric. 

One should notice that in the above cases a signature 
change is accompanied by a metric singularity [12] while 
the signature changes considered by Eddington [2] invol- 
ve zeros. However, metric singularities are not curvature 
singularities and can be removed by proper choice of 
coordinates. 

It will be also interesting to find a metric which is 
completely Euclidean in some regime of space-time, 
while being Lorentzian in another such a transitory me- 
tric may take the form  

   

 

2 2
0 0

2 2

2
0

2

diag 1,2e 1, 2e 1,

2e 1

x x x x

x x

g
   

 



 
 

 







  




 





 

1In the sense that the eigen-values of the metric change signs. 
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which is necessary to create an Euclidean domain of a 
width  located at 0 x  . More analytical effort should 
be invested in order to describe accurately the conditions 
under which space-time will become locally completely 
Euclidean. 

3. Particle Trajectories in Flat Space 

Let us now look at a particle travelling in a space-time 
with a constant metric of arbitrary form. Such a particle 
can be described by the Action  and Lagrangian :  L

1
d ,

2

q
L L mu u u A

c
 

         (4) 

In the above   is some parameter along the trajec- 
tory, x

2 are the particle coordinates,  

d

d

x
u 
 
 , 

m  is the particle mass,  is the particle charge and q
A  are some functions of the particle coordinates (that 

transform as a four dimensional vector). Basic variational 
analysis leads to the following equations of motion:  

 d

d

u q
m u A

c


   A 

          (5) 

It is customary to use as a parameter the length of the 
trajectory: 

2d d dx x 
              (6) 

in which   is the metric. 

3.1. Lorentz Space-Time 

Let us assume a Lorentz Space-Time with a metric  

 diag 1, 1, 1, 1     . 

Hence space-time is dissected into spatial and temporal 
coordinates. The spatial coordinates are  

 1 2 3, ,x x xx  

and the temporal coordinate is 0x . Since it is customary 
to measure time in different units (seconds) than space 
(meters) we write 0x ct , in which  serves as a units 
conversion factor. We now define the velocity:  

c

d

dt


x
v . 

In a similar way we dissect A  into temporal and spa- 
tial parts: 

   0 1 2 3 0, , , , ,A A A A A A
c
   
 


A A    (7) 

Using Equation (7) , we can define a magnetic field: 

 B A                 (8) 

(  has the standard definition of vector analysis) and an 
electric field:  

t


  

A

E               (9) 

For subluminal particles  we can than write <v c
2d  as:  

2 2
2 2 2

2 2
d d 1 , d d 1

v v
c t c t

c c
 

 
    

 
  (10) 

And using the above equations one can write the spatial 
part of Equation (5) as: 


2

2

d

d
1

m q
t v

c

 
 
     
  
 

v E v B      (11) 

The above equation shows clearly that a subluminal 
particle in a Lorentz space must remain subluminal. 
Since as the particle is accelerated to  its “effective 
mass”  

c

2

2
1

eff

m
m

v

c





 

becomes infinite. On the other hand for superluminal 
particles (which are  at >v c 0  ) we can write 2d  
as:  

2 2
2 2 2

2 2
d d 1 , d d

v v
c t c t

c c
 

 
1   

 
   (12) 

And using the above equations one can write the 
spatial part of Equation (5) as: 


2

2

d

d
1

m q
t v

c

 
 
     
  
 

v E v B     (13) 

Here the difficulty would be to go below the velocity 
 (invalidating claims that the particle losses energy by 

interacting with the gauge field and becomes subluminal 
again). In the absence of forces the velocity of the above 
particle remains constant and superluminal. We conclude 
that in a Lorentz space time there is a difficulty to pass 
the velocity  from below or above as is well known. 

c

c

3.2. Euclidean Space-Time 

Let us assume an Euclidean space-time with a metric  

 diag 1, 1, 1, 1      . 2Raising and lowering indices is done using the metric as is customary.
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Here space-time is dissected (arbitrarily) into spatial and 
temporal coordinates as in the Lorentz space which are 
measured in the customary units. Again we define the 
velocity:  

d

dt


x
v  

and dissect A  into temporal and spatial parts as in  
Equation (7). Using Equation (7), we can define the 
magnetic field as in Equation (8) but the electric field is 
defined now as:  

t


  

A

E               (14) 

notice that this definition for the electric field is different 
than in the Lorentz space but is necessary in order to 
maintain Faraday’s law. For all particles either (sublu- 
minal or superluminal) we can than write 2d  as:  

2
2 2 2

2
d d 1 , d d 1

v
c t c t

c
 

 
    

 

2

2

v

c
  (15) 

And using the above equations one can write the spatial 
part of Equation (5) as: 


2

2

d

d
1

m q
t v

c

 
 
     
  
 

v E v B     (16) 

The above equation shows clearly that particles in an 
Euclidean space are quite indifferent to passing the 
velocity . c

4. Some Possible Physical Implications 

One obvious physical implication of the previous 
analysis is that a particle can be accelerated to a velocity 
close to the velocity  in a Lorentz space, enter into an 
Euclidean space and be accelerated further in this region 
to velocities above the speed  and emerge in a Lorentz 
space in which it will remain above the speed c  for 
ever unless it is decelerated in an Euclidean space again. 

c

c

This certainly may happen to a particle which travels 
radially in a Friedman-Lemaitre-Robertson-Walker me- 
tric passing outwards the critical radius of  

1
cr 
  

and then coming back at superluminal velocities. 
But if such particles do exist how would their existence 

bear on existing physical and astrophysical problems? 
An obvious implication has to do with the homo- 

geneity problem, superluminal particle are not restricted 
by the velocity of light and hence can bring a very young 
universe into thermal equilibrium. Of course a more 

popular mechanism for achieving this is inflation [13]. 
However, one should notice that a Higgs type fields do 
not give the correct density perturbation spectrum [13], 
hence one is forced to postulate a new field which is not 
a part of any particle model and thus is a possible but 
inelegant solution of the homogeneity problem. Alterna- 
tively one can speculate that homogeneity is achieved by 
ordinary matter which can become superluminal as the 
current analysis shows. 

Another implication which is less obvious is that 
superluminal particle consist of at least some part of 
galactic or inter-galactic dark matter [14] (26.8% of the 
matter in the universe are known to be dark). Since a 
quantum theory of superluminal particles is not well 
developed at this stage, such a theory once elaborated 
may suggest that those particles do not interact effi- 
ciently with radiation and thus appear dark. 

A further implication has to do with the accelerating 
cosmological expansion. Since space-time has a different 
metric for  it may be that physics is different for 
such extreme distances. This bears on the correct inter- 
pretation of red shifts in such extreme distances as well. 

> cr r

Last but not least one should remember that although 
classical physics is assumed to take place in a Lorentzian 
background, quantum field theory calculations are done 
in an Euclidean background using the Wick rotation. 
This is usually justified on the basis that it is an analytic 
continuation. But an analytic continuation is a mathe- 
matical technique which has no physical justification in 
Lorentzian space-time but makes perfect sense if part of 
space-time, in particular the part which is very close to 
the particle is Euclidean. Hence one may speculate that 
each elementary particle may carry with it a "bubble" of 
a microscopic Euclidean space-time. 

5. Conclusion 

We have shown that general relativity allows for non- 
Lorentzian space-times, in particular this is allowed in 
part of the Friedman-Lemaitre-Robertson-Walker univer- 
se. The result of which is that superluminal particles can 
exist in such a cosmology. Some of the cosmological im- 
plications of superluminal particles regarding the homo- 
geneity problem, and dark matter problems are under- 
lined. Some other possible implications of non Lorent- 
zian metrics which are not connected to superluminality 
but may be a consequence of non-Euclidean metrics are 
also suggested. Of course much more detailed analysis is 
needed to reach a definite conclusion regarding any of 
the above physical problems, but the existence of non- 
Lorentzian space-times and superluminal particles su- 
ggests a plausible solution. 
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