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ABSTRACT 
We propose an integrative self-organizing map (iSOM) for exploring differential expression patterns across multiple 
microarray experiments. The algorithm is based on the assumption that observed differential expressions are random 
samples of a mean pattern model which is unknown a priori. The learning mechanism of iSOM is similar to the con-
ventional SOM. The mean pattern model which underlies the proposed iSOM models mean differential expressions 
using a one-dimension of mean differential expressions for the mean differential expressions. The feature map of an 
iSOM model can be used to reveal correlation between multiple medically/biologically related disease types or multiple 
platform experiments for one disease. We illustrate applications of iSOM using simulated data and real data. 
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1. Introduction 
The self-organizing map (SOM) is a popular unsuper- 
vised artificial neural network algorithm [1] used for 
topological pattern recognition. It explores hidden pat- 
terns in data and visualizes it in a two-dimensional array. 
In this array, each grid or neuron preserves or demon- 
strates a local pattern of the whole pattern hidden in data. 
The local patterns smoothly changes across the grids of 
the array. Neighboring neurons therefore show similar 
local patterns. SOM and its many variants have been 
widely used in data analysis/mining. 

However, SOM and its variants are designed for dis- 
covering topological structure hidden in one data set or 
experiment. Thus they cannot be directly used for an 
integrative study across multiple data sets for exploring 
common patterns. 

In cancer research, we may often wish to search for 
common cancer signatures [2-17], based on the under- 
standing that diseases may have some common gene ex- 
pression pattern in spite of diseases heterogeneity. For 
instance, it is believed that common gene signature may 
exists among various cancers [12] as well as among in- 
flammatory diseases [18]. The commonly used method 
for detecting a common gene signature is to integrate 
multiple microarray data sets into one study. From this, 
we can detect a subset of genes whose expressions can be 
highly correlated with experimental design for as many 
microarray data sets as possible. Various classification 
algorithms have been employed to train a classifier to 
maximize the prediction power of signatures [19]. 

In addition to these classification models, it is also 
important to determine signatures in terms of their com- 
mon or distinct expression differentiation without classi- 
fication labels. A simple way is to pool all the data sets 
into one data set and then use a clustering algorithm to 
partition the pooled data. However this is not possible 
when data sets have different number of samples (dimen- 
sions). On the other hand, separately analyzing each data 
set individually and then integrating the separate results 
may be inaccurate and inefficient. One popularly ap- 
proach is to use non-negative matrix factorization (NMF) 
[20,21]. However it has been noted that NMF is a linear 
algorithm which may not be able to explore complex 
pattern across multiple data sets [22]. 

We propose an extension to SOM, integrative SOM 
(iSOM), for exploring structural relationships in integra- 
tive studies. Based on modern high-resolution microarray 
technology, we assume that the differential expression 
variance of a gene is relatively low and that most micro- 
array expression data demonstrate a high positive corre- 
lation among replicates. We therefore propose a mean 
pattern model, i.e. all differential expressions are as- 
sumed to be random samples drawn from a mean pattern 
model. The model can be considered as a library of all 
possible mean differential expressions with variances. An 
integrative study of multiple microarray data sets then 
aims to reveal how the hidden and unknown mean pat- 
tern model shapes the observed differential expressions 
from multiple data sets. We can thereafter discover how 
differentialy expressed genes are common or distinct in 
multiple biologically related disease types or in different 
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platforms of the same study. 
The proposed iSOM is composed of two major steps. 

In the first step, the vector of all differential expression 
matrices across multiple data sets is analyzed using SOM 
leading to an array in which each neuron represents one 
local pattern, i.e., one mean differential expression. In the 
second step, we assume this mean pattern model under- 
lies the observed differential expressions. The standard 
SOM learning rule is thus altered. We show in this paper 
how iSOM can be useful for correlated pattern discovery 
using both simulated data and real data. 

2. Methods 
2.1. Data Pre-Processing and Filtering 
Each microarray expression data set is first normalized to 
the logarithm scale. After normalization, a significance 
analysis is carried out using eBayes [23]. Only those 
genes which show sufficient significant differential ex- 
pressions are selected for further analysis. This is be- 
cause the major aim of integrative study such as common 
gene signature discovery will not be interested in genes, 
which do not show significant differential expression. 
Afterwards, we save the differential expression matrix 
for significantly differentially expressed genes for each 
data. 

2.2. Self-Organizing Map Algorithm 
The conventional self-organizing map (SOM) is a two 
layer neural network in which the first layer is composed 
of input neurons for input variables (

 

xn, n stands for the 
nth input vector) while the second layer is composed of 
an array of output neurons. Each output neuron has a 
weight vector acting as a parameter vector, 

 

wk, where k 
represents the kth neuron. Note that 

 

wk and 

 

xn have 
the same dimensionality. The competitive learning of 
SOM is to update 

 

wk based on the distance between 

 

wk and 

 

xn 

 

∆wk
t+1 = ηtαn (xn − wk

t ) 

where 

 

0 < ηt < 1 is called a learning rate at time t and 

 

αn  is the neighborhood constrain associated with 

 

xn. 
Note that SOM employs an online learning strategy, i.e. 
model parameters are undated once one input vector is 
fed. 

2.3. iSOM 
We assume that each output neuron has a scalar weight 
functioning as a mean differential expression. This 
means that the feature map of iSOM is an array of mean 
differential expressions. We denote 

 

µk as the weight 
(mean differential expression) of the kth output neuron. 
Suppose we have two data sets, X and Y (it is easy to 

generalize the analysis of two data sets to multiple data 
sets), we denote the nth input of X as 

 

xn and the mth 
input of Y as 

 

ym. We assume that each vector of diffe- 
rential expression samples is a random sample drawn 
from a hidden signal, i.e. mean differential expression 
expressed by 

 

µk. Using the standard SOM learning rule, 
the learning rules for iSOM are 

 

∆µk = ηtαn (xn − µki)t i  

 

∆µk = ηtαm (ym − µki)t i  

where i is a vector of ones. These learning rules are used 
in building an iSOM model. 

2.4. Random Selection of Expressions in 
Training 

We wish to train an iSOM in such a way as to ensure the 
successful discovery of differential expression pattern 
between multiple data sets. Suppose we have two data 
sets, X and Y, their relationship may be one of the fol- 
lowing: 1) 

 

X ⊃ Y ; 2) 

 

Y ⊃ X ; 3) 

 

X ≡ Y ; 4) 

 

(X \ Y) ≠ φ  and φ≠X)\(Y . When 

 

X ≡ Y , any train- 
ing procedure will do well. For the remaining cases, the 
order of data selection of a training process is crucial. For 
instance, if 

 

X ⊃ Y  and we use Y to train an iSOM first, 
the iSOM will have fully learnt differential expression 
patterns from Y and leave no space for extra differential 
expression pattern in X. Consequently, the data structure 
learned from Y will then be lost during the learning 
process using X. This will then lead to biased pattern 
discovery. The same problem occurs also in the other 
two scenarios. To avoid this, we propose a random sam- 
pling strategy for iSOM training which randomly selects 
one microarray data set and one differential expression 
vector (corresponding to a gene) at every step of the 
training process. This ensures unbiased pattern discovery 
across multiple microarray data sets. 

3. Results 
3.1. Simulated Scenarios 
We design three simulated scenarios. The first satisfies 
the condition 

 

X ≡ Y . Here we design a mean pattern 
model with ten differential expression means (ϑ ) as −5, 
−4, −3, −2, −1, 1, 2, 3, 4, and 5. The X space is of two 
dimensions and the Y space is of three dimensions. Both 
X and Y spaces are composed of random vectors drawn 
from the mean pattern model. Each mean differential 
expression value is used to draw 100 vectors randomly 
for both X and Y spaces. In total, there are 2000 data 
points. Each vector is drawn from the mean pattern model, 
  

 

zn ~ G (µk,σ 2) , where H means the number of output 
neurons, 

 

µk ∈ ϑ , nz  is either nx  or ny  and 

 

σ ∈
(0.1, 0.2, 0.3, 0.4, 0.5). Each vector is labeled indi- 
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cating which mean differential expression value the vec- 
tor is drawn from. We then measure whether this topo- 
logical structure is maintained during iSOM modeling. 
For two data sets, iSOM generates two output maps 
named as ),,,( 21

x
H

xx
x φφφ =Φ  and  

),,,( 21
y
H

yy
y φφφ =Φ  for two (or more) data sets, 

where 

 

φh
x and 

 

φh
y are assumed to be multivariate mean 

diffe- rential expression patterns drawn from the same 
mean differential expression 

 

E(xn | ∀xn ∈ φh
x) = E(yn | ∀yn ∈ φh

y) ∈ {µk}    (1) 

We therefore compare 

 

Φx  against 

 

Φy  for each 
neuron to examine whether Equation (1) is satisfied. Ta- 
ble 1 shows this evaluation for five variance values. It 
can be seen that the relationship (the designed topologi- 
cal structure) is well maintained during iSOM modeling. 
The maximum error rate is about 5.6% (=113/2000) for 
simulation with a relatively large s.d. of 5.0=σ . This 
data set revealed no distinct genes. Therefore there is no 
measurement for checking if distinct genes can be well 
revealed. 

The second simulated scenario satisfies the condition

 

X ⊃ Y . The mean differential expression structure is the 
same as above. The X space is composed of all ten diffe- 
rential expression patterns while the Y space is com- 
posed of eight of them (−3, −2, −1, 1, 2, 3, 4, 5). This 
means that the X space has 200 genes which are distinct - 
only occurring in the X space not the Y space. There are 
therefore 1800 data points. In Table 1, we also found the 
error to be small. The maximum error rate is 8.6%. In 
addition to error, we also examined how the distinct 
genes from the X data set can be revealed. Suppose the X 
data set contains some distinct differential expression 
patterns, which are not found from the Y data set. This 
means that some neurons 

 

φh
x contain vectors drawn 

from the mean pattern model, which cannot be found 
 
Table 1. Evaluation on three simulated data sets. “Sigma” 
means standard deviation. “Error” means the number of 
times that Equation (1) is violated. “Distinct” is the per-
centage of distinct genes of one mean differential expression 
from one data set are identified. In the second simulated 
scenario, only one data set has distinct genes, therefore two 
measurements are used. In the third simulated scenario, 
both data sets have distinct genes, therefore we use four 
measurements. 

Sigma 
Error Distinct 

Toy 1 Toy 2 Toy 3 Toy 2 Toy 3 

0.1 0 0 0 100/100 100/100/100/100 

0.2 0 0 0 100/100 100/100/100/100 

0.3 0 24 2 100/100 100/100/100/99 

0.4 23 61 29 100/99 100/98/99/100 

0.5 113 155 35 100/94 100/98/98/100 

from the corresponding neuron from 

 

Φy, i.e. 

 

φh
y. Table 

1 shows the percentages of distinct differential expres- 
sion patterns which were uniquely preserved during 
iSOM learning. It can be seen that iSOM is well adapted 
for this kind of patterns. 

The third simulated scenario satisfies the conditions 

 

(X \ Y) ≠ φ  and φ≠X)\(Y . The mean differential ex- 
pression pattern structure is the same as above. The X 
space is composed of eight differential expression pat-
terns centered at (−5, −4, −3, −2, −1, 1, 2, 3) while for Y 
the patterns are centered around (−3, −2, −1, 1, 2, 3, 4, 5). 
In this case, we have distinct differential expression pat-
terns from both data spaces. In this case, iSOM can still 
discover this kind of dual distinct differential expression 
patterns—Table 1. In addition, the error is still very 
small. Figure 1 shows the distribution of data points of 
the first simulated scenario mapped to the iSOM model. 
A single number in a grid representing the number of 
data points falling into the grid in a grid indicates that the 
neuron is composed of data points as random samples of 
a single mean differential expression value. When there 
are more than one numbers, it means that data points of 
multiple mean differential expression values are mapped 
to the same neuron. Figure 2 shows the distribution of 
data points of the second simulated scenario mapped to 
the iSOM model. We can see that some neurons are uni-
quely occupied by a single data set. 

3.2. Real Data 
We use two data sets downloaded from Gene Expression 
Omnibus (GEO), GSE12630, of breast cancer metastasis 
and liver cancer metastasis. Both data sets contain four 
replicates. Using eBayes with a critical p value of 0.05, 
2359 differentially expressed genes were found for the 
 

 
Figure 1. The distribution of data points of the first data set 
of the third simulated scenario. 
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Figure 2. The distribution of data points of the second data 
set of the third simulated scenario. 
 
breast cancer data set and 19029 differentially expressed 
genes for the liver cancer data set. The two data sets are 
then used for the integrative analysis using iSOM. The 
neuron array is set to be ten by ten (100 neurons).  

Using iSOM, we found seven common differentially 
expressed genes between the breast cancer metastasis and 
liver cancer metastasis datasets. Among them, SRSF1 
(probe set ID 201741_x_at) was an up-regulated gene 
while the six others were down-regulated—Table 2. The 
gene SRSF1 has been studied in relation to breast cancer 
[24] and liver cancer [25]. Some of the down-regulated 
genes have been studied in the context of both breast and 
liver cancer metastasis—Table 2. The number of unique 
differentially expressed genes for breast cancer metasta- 
sis is 773 while the number of unique differentially ex- 
pressed genes for liver cancer metastasis is 297. Figures 
3 and 4 show the differential expression patterns (de-
rived using iSOM) for the breast cancer metastasis data 
and liver cancer metastasis data respectively. Compar- 
ing these two maps, it can be seen that both the number 
of common differentially expressed genes and the num- 
ber of distinct differentially expressed genes are quite 
small. 

4. Conclusion 
We have presented a novel extension to SOM for inte- 
grative studies of microarray expression data sets. The 
proposed integrative SOM (iSOM) is based on the as- 
sumption that the microarray expression data under con- 
sideration has small variance across replicates. This as- 
sumption is reasonable considering recent technology 
improvement in the microarray experimental precision. 
We assume that differential expressions across multiple mi- 
croarray expression data sets with medical or biological 
relevance are random samples from a mean pattern model. 
This mean pattern model is a one-dimension structure of  

Table 2. Six common down-regulated genes between the 
breast and liver cancer metastasis datasets. Relevant refer- 
ences indices are given under ‘breast’ and ‘liver’. 

Probe set ID Gene symbol Breast Liver 

200736_s_at GPX1 [26] [27] 

200872_at S100A10 [28] [29] 

201868_s_at TBL1X [30] n.a. 

202069_s_at IDH3A [31] n.a. 

201150_s_at TIMP3 [32] [33] 

202430_s_at PLSCR1 n.a. [34] 

 

 
Figure 3. Differential expression pattern for breast cancer 
metastasis. 
 

 
Figure 4. Differential expression pattern for liver cancer 
metastasis. 
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mean differential expressions. It is this linear structure 
that shapes the observed differential expressions from 
multiple data sets in a multivariate model. The iSOM 
approach can also be used in cross-omics and cross-spe- 
cies studies. 
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