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ABSTRACT 
In this work, we developed a method to efficiently optimize the kernel function for combined data of various different 
sources with their corresponding kernels being already available. The vectorization of the combined data is achieved by 
a weighted concatenation of the existing data vectors. This induces a kernel matrix composed of the existing kernels as 
blocks along the main diagonal, weighted according to the corresponding the subspaces span by the data. The induced 
block kernel matrix is optimized in the platform of least-squares support vector machines simultaneously as the 
LS-SVM is being trained, by solving an extended set of linear equations, other than a quadratically constrained qua-
dratic programming as in a previous method. The method is tested on a benchmark dataset, and the performance is sig-
nificantly improved from the highest ROC score 0.84 using individual data source to ROC score 0.92 with data fusion. 
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1. Introduction 
Bioinformatics studies often involve analyzing large 
amount of data from various sources. Data fusion, in 
other words, how to combine various data sources in a 
meaningful way, is crucial to the success of extracting 
and selecting useful information and features for classi- 
fication and prediction. Recent advances in kernel based 
methods have made them a tool of choice for many bio- 
informatics tasks. Although the latest developments show 
that kernel based methods can be amicable to combining 
data in straightforward ways, optimized data fusion in a 
kernel based framework remains challenging. 

In [1], a statistical framework is presented for genomic 
data fusion. Specifically, the method is based on the al- 
gebra of kernels [2] to form a linear combination of indi- 
vidual kernels that characterize pairwise relationship of 
proteins from different data sources, such as sequence 
similarity, hydropathy profile, and protein interactions. 
These data sources contain different and thus partly in- 
dependent and complementary information about pro- 
teins, and combining them is expected to further enhance 
the total information. Kernel method offers a very con- 
venient way to resolve one key issue in data fusion: how 
to deal with heterogeneous data in various formats. As 
pointed out in [1], despite of various different formats— 
expression data as vectors or time series, sequence data 
as strings of 20 alphabet, and protein-protein interactions 
expressed as graphs—evaluating the kernel on all pairs  

of data points yields asymmetric, positive semi-definite 
matrix known as the kernel matrix or the Gram matrix. 
Intuitively, a kernel matrix can be regarded as a matrix of 
generalized similarity measures among the data points. 
Ref. [1] shows that a linear combination of kernel matric- 
es, each derived from a different data source, offers an 
effective way for data fusion, formalizing the meta- 
learning task for the optimal weights as a quadratically 
constrained quadratic programming problem. Like Ref. 
[1], Ref. [3] uses weighted averaging to combine mul-
tiple kernels but develops faster algorithms relying on 
quadratically constrained linear programming. Ref. [4] 
treats a mix of base kernels as transformation learning 
from a mixture of transformations and solves the result-
ing non-convex with a semidefinite relaxation for an ap-
proximate global solution. 

In this work, we developed an alternative approach to 
data fusion by forming an integrated kernel as a weighted 
direct sum of the individual kernels in the framework of 
Least-Square Support Vector Machine (LS-SVM), with 
the advantage of combining the model training and 
weight optimization altogether as solving a set of linear 
equations. Tested on a benchmark dataset of transmem- 
brane proteins, we demonstrate that our novel method 
improves the classification performance significantly 
from individual kernels, up to a ROC score 0.92, compa- 
rable to what is reported in [1], and yet with the capa- 
bility of removing the constraint requiring all individual 
kernel matrices to have the same dimension. 
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2. Method 
As mentioned in the introduction, work in [1] bases its 
method on the fact that basic algebraic operations such as 
addition, multiplication and exponentiation preserve the 
key property of positive semi-definiteness for kernels [2].  
Therefore, for a given set of kernels K1, K2, ..., Km, the 
linear combination 

                   (1) 

also forms a kernel. 
The authors in [1] show that this kernel can be opti- 

mized by minimizing with respect to µi under additional 
trace and positive semi-definiteness constraints: 
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In this work, we develop an alternative approach by 
forming an integrated kernel as a weighted direct sum of 
the individual kernels in the framework of Least-Square 
Support Vector Machine, with the advantage of combin- 
ing the model training and weight optimization altogether 
as solving a set of linear equations. Another benefit is 
that, unlike Equation (1), direct sum does not require all 
individual kernels to have the same dimension. 

Suppose there are n examples with a binary classifica- 
tion, kx , yk for k = 1,..., n, where yk, which can be +1 or 
−1, is the label for example k, and kx  is an m -dim 
vector of attributes characterizing the example. The sup- 
port vector machines (SVM) method solve the classifica- 
tion problem with a linear model, 
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where wi are the weights and b is the bias, the x is classi-
fied as the sign of ( )h x . 

In least-squares SVMs [5], the weights and bias are 
fixed by optimizing the margin 
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subject to the equality constraints for the training exam- 
ples: 
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where ek is the slack variable and γ is a parameter regula-
rizing the contribution from the “margin” term and the 
“error” term in Equation (4). 

The optimization can be solved by introducing the 
following Lagrangian 
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where αk are Lagrangian multipliers. The conditions for 
optimality can be derived from the stationary of the La-
grangian as the following. 
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Now suppose the vector for example k is a weighted 
direct sum of m vectors characterizing the example from 
m different data sources: 
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where βi, for i = 1 to m, are the weights. Note that these 
m vectors do not have to have the same dimension. Let di, 
for i = 1 to m, are the dimensions for these m vector 
spaces, m = Σi=1 to m di. And the dot product in the direct 
sum vector space is thus induced as direct product 
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we replace the dot product in each of the m vector spaces 
with its corresponding kernel function Ki, and we intro- 
duce the weights 2

i iµ β=  for summation of the individ- 
ual kernels. Therefore, the final kernel matrix K is com- 
posed of kernel matrices from individual sub vector 
spaces in diagonal blocks, as vector components from 
different data sources do not mix with one another in the 
direct product. A schematic illustration for the block 
kernel is shown in Figure 1. It is worth noting that al- 
though direct sum, as a way of data integration, is fre- 
quently used as concatenation of vectors from various 
data sources, a kernel defined directly on the total vector 
space is different from the block kernel, where it may 
include non-zero values for off-diagonal blocks, which 
indicate how “similar” the vectors from data sources 
compare to one another. The block kernel introduced 
here instead does not prescribe how to directly compare 
data from different sources for integration. 
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Figure 1. Schematic illustration of blocked kernel induced 
from direct sum of sub vector spaces. 

 
By plugging the above two equations back into the La-

grangian, we obtain the following set of linear equations. 
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These linear equations are solved using standard pro- 
cedures such as QR decomposition; the solution opti- 
mizes both the weights in the data fusion kernel and the 
α’s, which together give rise to the maximum margin in 
the support vector machine. Note that, in Craig and Liao 
(2007) [6], an adaptive kernel is learned from weighted 
dot product, namely, each component of the vector is 
individually weighted. Here, instead, all components 
from the sub vector space receive the same weight. 

3. Results 
The method is tested with a benchmark dataset as used in 
[1], primarily for the sake of convenient comparison. The 
dataset comprises proteins from the MIPS Comprehen- 
sive Yeast Genome Database (CYGD) [7]. The CYGD 
assigns 1125 yeast proteins to particular complexes, of 
which 138 participate in the ribosome. The remaining 
approximately 5000 yeast proteins are unlabeled. Simi- 
larly, CYGD assigns subcellular locations to 2318 yeast 
proteins, of which 497 belong to various membrane pro- 
tein classes, leaving 4000 yeast proteins with uncertain 
location. The data sources include sequence similarity 
from BLAST, sequence similarity from Smith-Waterman, 
Pfam domains, Hydropathy profile with FFT, PPI with 
linear kernel, PPI with Diffusion kernel, and gene ex- 
pression with radial basis kernel. The individual kernels, 
which are centrally normalized by a procedure used in 
[1], are listed in Table 1. 

Table 1. Kernels and data sources. 

Kernel Data Similarity measure 

Ksw Protein sequences Smith-Waterman 

KB Protein sequences BLAST 

KPfam Protein sequences Pfam HMM 

KFTT Hydropathy profile FFT 

KD Protein interactions Diffusion kernel 

KE Gene expression Radial basis kernel 

 
The sequence-based kernel matrices are generated us- 

ing the BLAST [8] and Smith-Waterman (SW) [9] pair- 
wise sequence comparison algorithms, as first described 
Liao and Noble [10]. Both algorithms use gap opening 
and extension penalties of 11 and 1, and the BLOSUM 
62 matrix. Because matrices of BLAST or Smith-Wa- 
terman scores are not necessarily positive semi-definite, 
we represent each protein as a vector of scores against all 
other proteins. The similarity between proteins is then 
computed as the inner product between the score vectors. 
The Gram matrix thus obtained for a set of n proteins is 
proved to be a valid kernel matrix [11]. The Pfam kernel 
matrix KPfam is defined similarly as the KB and KSW but 
by replacing the pairwise similarity scores with expecta- 
tion values derived from hidden Markov models (HMMs) 
in the Pfam database [12]. Details about these kernels 
and other kernels can be found in [1]. Each data source is 
first used individually for training a LS-SVM using their 
corresponding kernel functions and then used in data 
fusion mode as described above, namely, forming a 
block kernel matrix. All trained models are tested with a 
ten-fold cross validation scheme. The performance is 
measured by the receiver optical characteristics (ROC) 
score, which is the normalized area under a curve that 
plots the number of the true positives as the number of 
false positives as predicted by the trained LS-SVM when 
a moving cutoff score scans from −1 to +1 [13]. The 
ROC score is 1 for a perfect performance, whereas a 
random predictor, which will uniformly mix up positives 
and negatives, is expected to get a ROC score of 0.5. 

Table 2 shows the ROC scores for classifying mem- 
brane protein category using the various data sources and 
the corresponding kernels, individually versus when all 
are combined together by data fusion (ALL). It is easy to 
see that the data fusion increases the performance, 
achieving a ROC score 0.917, which is a significant jump 
from the best ROC 0.835 using only one data source 
Pfam domain. This performance is very close to the best 
performance ROC 0.926 reported in [1]. Note that the 
ROC score varies from individual data sources, and some 
of them are significantly lower than their counterparts in 
[1]. While the exact causes for such discrepancies are not  
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Table 2. ROC scores. 

Kernel ROC 

Ksw 0.613 

KB 0.478 

KPfam 0.835 

KFTT 0.561 

KD 0.446 

KE 0.470 

All 0.917 

 
known, one possibility may be that these individual ker- 
nels are fine tuned for the regular SVMs, which use a 
margin defined differently from the least-square SVMs. 
Given the poor ROC scores from individual data sources, 
it is even more remarkable how well the data fusion ker-
nel performs. 

4. Conclusion 
We developed a method for combining data of various 
different sources in the framework of least-squares sup- 
port vector machines. The method allows for weighting 
the various data sources for optimized learning with an 
induced block kernel matrix. By formulating the induced 
kernel as weighted by the corresponding subspaces, we 
can optimize the weights simultaneously as the LS-SVM 
is being trained, by solving an extended set of linear equ- 
ations. The results from a set of benchmark data show 
significant improvement in classification performance 
from the integration, and are comparable to those from a 
similar approach based on quadratically constrained qua- 
dratic programming as a special case of semi-definite 
program. 
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