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ABSTRACT 

We discuss the solution of Laplace’s differential equation by using operational calculus in the framework of distribution 
theory. We here study the solution of that differential Equation with an inhomogeneous term, and also a fractional dif-
ferential equation of the type of Laplace’s differential equation. 
 
Keywords: Laplace’s Differential Equation; Kummer’s Differential Equation; Fractional Differential Equation; 

Inhomogeneous Equation; Distribution Theory; Operational Calculus 

1. Introduction 

Yosida [1,2] discussed the solution of Laplace’s differen-
tial equation (DE), which is a linear DE with coefficients 
which are linear functions of the variable. The DE which 
he takes up is 

       
   
2 2 1 1

0 0 0,   0,

a t b y t a t b y t

a t b y t t

   

   
       (1.1) 

where l  and l  for  are constants. His 
discussion is based on Mikusiński’s operational calculus 
[3]. 

a b 0,1,2l 

In our preceding papers [4,5], we discuss the ini-
tial-value problem of linear fractional differential equa-
tion (fDE) with constant coefficients, in terms of distri-
bution theory. The formulation is given in the style of 
primitive operational calculus, solving a Volterra integral 
equation with the aid of Neumann series. 

Yosida [1,2] studied the homogeneous Equation (1.1), 
where he gave only one of the solutions by that method. 
One of the purposes of the present paper is to give the 
recipe of obtaining the solution of the inhomogeneous 
equation as well as the homogeneous one, in the style of 
operational calculus in the framework of distribution 
theory. With the aid of that recipe, we show how the set 
of two solutions of the homogeneous equation is attain- 
ed. 

Another purpose of this paper is to discuss the solution 

of an fDE of the type of Laplace’s DE, which is a linear 
fDE with coefficients which are linear functions of the 
variable. In place of (1.1), we consider 

       
     

2
2 2 0 1 1 0

0 0 ,   0,

R Ra t b D u t a t b D u t

a t b u t f t t

     

   
    (1.2) 

for 1   and 1 2  . Here  for  0 RD u t
>0    

is the Riemann-Liouville (R-L) fractional derivative de-
fined in Section 2. We use  to denote the set of all 
real numbers, and 


 :b x x b    . When   is  

equal to an integer >0n ,    0

d

d

n
n
R n

D u t u t
t

 . When  

1  , (1.2) is the inhomogeneous DE for (1.1). We use 
 to denote the set of all integers, and 

 :a n n a      and    , :a b n a n b      for  

,a b  satisfying . We use <a b x    for x , to 
denote the least integer that is not less than x . 

In Section 2, we prepare the definition of R-L frac-
tional derivative and then explain how (1.2) is converted 
into a DE or an fDE of a distribution in distribution the-
ory. A compact definition of distributions in the space 

R  and their fractional integral and derivative are de-
scribed in Appendix A. A proof of a lemma in Section 2 
is given in Appendix B. After these preparation, a recipe 
is given to be used in solving a DE with the aid of opera-
tional culculus in Section 3. In this recipe, the solution is  
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obtained only when  and . When 2 0a  2 0b 
1

2
  ,  

1  is also required. An explanation of this fact is 
given in Appendices C and D. In Section 4, we apply the 
recipe to the DE where 0 , of which special one is 
Kummer’s DE. This is an example which Yosida [1,2] 
takes up. In Section 5, we apply the recipe to the fDE  

0b 

0a 

with 
1

2
  , assuming . 0 0a 

The discussion is done in the style of our preceding 
papers [4,5]. 

2. Formulas 

We use Heaviside’s step function, which we denote by 
 H t . When  f t  is defined on >b ,     f t H t b  

is assumed to be equal to  f t  when  and to  
when . 

>t b 0
t b

2.1. Riemann-Liouville Fractional Integral and 
Derivative 

Let  be locally integrable on . We then 
define the R-L fractional integral b R  of order 

   u t H t b

>0


 tD u

   by 

       11
d ,   ,

t

b R b
D u t t x u x x t b




  

       (2.1) 

where  
 t
 b  

 is the gamma function. The thus-defined 
 is locally integrable on , and 

 if 
b RD u

b RD u
>b

0 1≧ . 
We define the R-L fractional derivative  tb RD u  of 

order >0  , by 

   d
,   ,

d

N
N

b R b RN
D u t D u t t b

t
           (2.2) 

if it exists, where N     , and    0
b RD u t u t  for 

. >t b
We now assume that the following condition is satis-

fied. 
Condition A  is locally integrable on , 

and there exists  for , and 
   u t H t

 0 RD u t


0t≧  0  
for  0, 1N  are continuous and differentiable at 

, where 

n N
RD u t 

n 
> 0t N     . We then assume that there 

exists a finite value 

 1
1 0: k

k Ru D u


 
   0 ,           (2.3) 

for every .  0, 1N

Because of this condition, the Taylor series expansion 
of  is given by 

k 

 0
N

RD u t 

   
1

0
0

,   0,
!

nN
N

R N n
n

t
D u t u w t t

n







 


   



    (2.4) 

where  is a function of  as , so   w t  1No t  0t  

that   1 0Nw t t    as . By comparing (2.2)  0t  

and (2.4), we obtain    0

d

d

N

R N
D u t w t

t
  . 

2.2. Fractional Integral and Derivative of a 
Distribution 

We consider distributions belonging to R . When a 
function  h t  is locally integrable on  and has a 
support bounded on the left, it belongs to 


R  and is 

called a regular distribution. The distributions in R  
are called right-sided distributions. 

A compact formal definition of a distribution in R  
and its fractional integral and derivative is given in Ap-
pendix A. 

Let    f t H t  be a regular distribution. Then 

   D f t H t0 R
   for 0 



 is also a regular distribu-  

tion, and distribution    D f t H t    is defined by 

       0 ,   0.RD f t H t D f t H t             (2.5) 

Let >0N  , and let  h t  be such a regular distri-  

bution that  dn

d n
h t

t



 is continuous and differentiable on  

 , for every 0, 1Nn  . Then  is defined by  ND h t

   d
.

d

N
N

N
D h t h t

t
              (2.6) 

Le t      0

d

d

n
N

Rn
D f t H t

t
  

  ,  fo r  >0   and  

N    
n

, be continuous and differentiable on , for 
every 


0, 1N  . Then 

     0 .RD f t H t D f t H t             (2.7) 

When  h t  is a regular distribution,  D h t  is 
defined for all   . 

Lemma 1 For   Rh t   , the index law: 

  ,D D h t D h t                (2.8) 

is valid for every ,   . 
Dirac’s delta function  is the distribution de-

fined by 
 t

   t DH t  . 

Lemma 2 Let      11
g t t H t
 




 for >0  . 

Then 

    ,g t D t
   0.          (2.9) 

Proof By putting 0b  , >0  , and   1u t   in  

(2.1), we obtain 
 0

1
1

1RD t 



 

 . By (2.5), we then  

have      1

1
D H t t H t


 

 
 D. By applying  to  
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this and using (2.6) and (2.8), we obtain (2.9).  
We now adopt the following condition. 
Condition B  and    u t H t    f t H t

 
 are ex- 

pressed as a linear combination of g t  for > 0 . 
Then  and   u t H t    f t H

   
t  are expressed as 

   
       

ˆ ,   

ˆ .

u t H t u D t

f t H t f D t








           (2.10) 

Lemma 3 Let  exist for  0 RD u t
>0  . Then the  

products    u t H t  and  0 R  D u t H t  belong to R , 

and they are related by 

       

 

0

1

1
0

.

R

k
k

k

D u t H t D u t H t

u D t

 



 
  

 


     

 
     (2.11) 

Proof We obtain (2.11) from (2.4) by multiplying 
 H t  from the right and then applying . We first  ND

note        0
N

RD u t H t D u t      
N

N H t   due to (2.5).  

Applying  to this, we obtain the lefthand side of 
(2.11), and hence from the lefthand side of (2.4). We 
next note that 

D

       

   

d

d

d

d

N
N

N

N

N

D w t H t w t H t
t

w t H t
t

      

 
  
 

 

due to (2.6) and    0

d

d

N

R N
D u t w t

t
   as noted after  

(2.4). Thus we obtain the first term on the righthand side 
of (2.11) from the last term of (2.4). As to the remaining 
terms, we only use (2.9).  

Lemma 4 Let   . Then 

     1 .t D t D t D t
D

      
     


   (2.12) 

The last derivative with respect to  is taken regard- 
ing  as a variable. 

D
D

Proof of Lemma 4 for <0  . Let    , 

>0  . Then by (2.9), we have 

       

   1

1

,

t D t t g t t H t

D t D t
D

 


 




  



  

   
 


  



 

by using (2.9) repeatedly.  
A proof of this lemma for >0   is given in Ap-

pendix B. 
The following lemma is a consequence of this lemma. 
Lemma 5 Let  satisfy Condition B. Then    u t H t

           ˆ ˆ .t u t H t t u D t u D t
D

 
    


 (2.13) 

Lemma 6 

      
   1 .

D t u t H t t D u t H t

D u t H t

 

 

        
  




    (2.14) 

Proof By using (2.10) and (2.13), we obtain 

       

       

       

1

1

ˆ

ˆ ˆ

.

t D u t H t D u D t
D

D u D t D u D t
D

D u t H t D t u t H t

 

 

 



  








       

        
   



      

 

  

3. Recipe of Solving Laplace’s DE and fDE 
of That Type 

We now express the DE/fDE (1.2) to be solved, as fol-
lows: 

     0
0

,   0,
m

l
l l R

l

a t b D u t f t t



        (3.1) 

where 
1

2
   or 1  , and . In Sections 4 and  2m 

5, we study this DE for 1   and this fDE for 
1

2
  , 

respectively. 

3.1. Deform to DE/fDE for Distribution 

Using Lemma 3, we express (3.1) as 

     

       
0

,

m
l

l l
l

a t b D u t H t

f t H t v t H t





   

 

          (3.2) 

where 

       
1

1
1 0

: .
lm

k
l l l k

l k

v t H t a t b u D t


 
  

 
 

 
   

 
    (3.3) 

3.2. Solution via Operational Calculus 

By using (2.10) and (2.13), we express (3.2) as 

       

           

       

0 0

ˆ ˆ

ˆ ˆ

ˆ ˆ ,

m m
l l

l l
l l

a D u D t b D u D
D

A D u D t B D u D t
D

f D t v D t

  

 

 

 

t
      

        

 

 

 (3.4) 

where 

 

   
0

1

0

,

,

m
l

l
l

m
l l

l l
l

A D a D

B D l a D b D



 







 

      




        (3.5) 
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1 1

1
1 1

1 0 0

ˆ

.
l lm

k k
l l k l l k

l k k

v D

a k u D b u D
 

 

       


   
  



 
     
 

  
  (3.6) 

In order to solve the Equation (3.4) for    û D t , 
we solve the following equation for function  û x  of 
real variable x : 

           d ˆˆ ˆ ˆ .
d

A x u x B x u x f x v x
x

        (3.7) 

Lemma 7 The complementary solution (C-solution) of 
Equation (3.7) is given by   1

ˆû x C x   , where  
is an arbitrary constant and 

1C

   
 2

ˆ exp d ,
x B

x C
A


 


 

  
 
            (3.8) 

where the integral is the indefinite integral and  is 
any constant. 

2C

Lemma 8 Let  ˆ x  be the C-solution of (3.7), and 
let the particular solution (P-solution) of (3.7) be  *û x  
when the inhomogeneous part is x   for   . Then 

   
   

 *
3

ˆˆ d ,
ˆ

x
u x x C x

A




 
  



    ̂     (3.9) 

where  is any constant. 3C
Since    f t H t  satisfies Condition B and  v̂ D  is 

given by (3.6), the P-solution  of (3.7) is ex-
pressed as a linear combination of  for 

 û x
*û  x >0   

and  for .  x k *ˆ ku

From the solution  of (3.7),  is obtained 
by substituting 

> 1
 û x u Dˆ

x  by . Then we confirm that (3.4) is 
satisfied by that 

D
 û D  applied to .  t

3.3. Neumann Series Expansion 

Finally the obtained expression of  û D  is expanded 
into the sum of terms of negative powers of , and then 
we obtain the solution  of (3.4). If the ob-
tained  is a linear combination of 

D
   û D t

 û D D   for 

>0 
 u t H

,  is converted to the solution 
 of (3.2) by using (2.10) and (2.9). It becomes 

a solution  of (3.1) for . 

   u D t



ˆ
 t

u t > 0t

3.4. Recipe of Obtaining the Solution of (3.1) 

1) We prepare the data:  f̂ D  by (2.10), and  A x , 
 and  by (3.5) and (3.6).  B x  v̂ D

2) We obtain  ˆ x  by (3.8). If , the C- 

solution of (3.1) is given by 

 ˆ 0v D 

       1
ˆ ,   0.u t H t C D t t     

3) If  or , we obtain  ˆ 0f D   ˆ 0v D   *û x  
given by (3.9). 

4) If   1

0
ˆ 0

m k
kk

v D c D
   


  , the C-solution of (3.1) 
is given by 

           
1

*
1

0

ˆ ˆ ,  0,
m

k k
k

u t H t C D t c u D t t


  
  




      

where  are constants. kc
ˆ5) If   1

0k
kk

f D d D  


  , the P-solution of (3.1) 

is given by 

       *

1

ˆ ,   0,
kk

k

u t H t d u D t t 




   

where >0k   and  are constants. kd

3.5. Solution of (3.1) from the Solution of (3.7) 

In the above recipe, we first obtain the C-solution of 
(3.7), that is    1

ˆû x C x  . It gives the C-solution 
   û D t  of (3.4) and hence the C-solutions 
   u t H t  of (3.2) and  u t  of (3.1). 
We next obtain the P-solution  of (3.7) when 

the inhomogeneous part is 
 *û x

x   for   . As noted 
above, the P-solutions  û x  of (3.7) for  and for f̂ x
 v̂ x , are expressed as a linear combination of  *û x  

for >0   and of  *
ku xˆ  for > 1 , respectively. 

The sum of the P-solutions  of (3.7) for 
k 
û x  f̂ x  

and for  v̂ x  gives the P-solution  of (3.4) 
and hence the P-solution u t  of (3.2). The 
C-solution 

 û D
 H t

 t
 

 u t  of (3.1) comes from the C-solution of 
(3.7) and the P-solution of (3.7) for .  v̂ x

3.6. Remarks 

When we obtain  û D

lb

 at the end of Section 3.2, we 
must examine whether it is compatible with Condition B. 
We will find that if 0  for > 1l m   , the ob- 
tained  û D  is not acceptable. Hence we have to solve 
the problem, assuming that  for all 0l b > 1l m  .  

When 
1

2
   and 2m  , we put . When  2 1 0b b 

1   and 2m  , we put 2 . Discussion of this 
problem is given in Appendices C and D. 

0b 

4. Laplace’s and Kummer’s DE 

We now consider the case of 1  , , 22m  0a  , 

1 0a  , 0 0a   and 2 0b  . Then (3.1) reduces to 

       

 

2

2 1 1 02

d d

dd
,   0.

a t u t a t b u t b u t
tt

f t t

     

 
   (4.1) 

By (3.5) and (3.6),  A x ,  and  are  B x  v̂ x

  
   

2
2 1 2

1 2 0 1

,   

2 ,

A x a x a x a x x

B x b a x b a

   

   


         (4.2) 
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  2 0 1 0ˆ ,v x a u b u                (4.3)       221 1 2

1 2

1

2

0

ˆ 1

,nn

n

x x x x x

x
n

  

 

  




 


  



   

 
  

 


   (4.6) where 1 2a a  . 

4.1. Complementary Solution of (3.7), (3.4) and 
(3.2) 

where 
   1

!

n

n

n n

   
 

 
 for    and > 1n    

In order to obtain the C-solution  ˆ x  of (3.7) by using 
(3.8), we express    B x A x  as follows: 

are the binomial coefficients. Here      1

0

n

n k
a a




  k

 
 

1 2 ,
B x

A x x x

 


 


              (4.4) 

where 

0 01 1
1 2 1 2

2 1 2

2,   1,   1.
b bb b

a a a a
          

1

  (4.5) 

 B x  is now expressed as  

   2 1 2 1 1B x a x a     . 

By using (3.8), we obtain 

for a  and >0n , and .   1a 
0

The C-solution of (3.4) is given by 

       

   

 

2
1 2

1 2

1

1
1

2
1

0

ˆˆ

1

.nn

n

u D t C D t

C D D t

C D
n

 

 

  

 


 

 


  



 

  

 
  

 
 t

     (4.7) 

If 1 2 < 0  , Condition B is satisfied. Then by using 
(2.9), we obtain the C-solution of (3.2): 

 

         

 
 
    

 



 

1 2

1 2

1 2

2 1
1 1

0 1 2

2 1
1

01 2 1 2

1
1 1 1 2 1 2

1 2

1

1

!

1
; ;

nn

n

nn

n n

u t H t C t C t H t
n n

C t
n

C t F t

 

 

 


 

 




   

   
 


  




  



  

 
        


 

    

    
  





 .

t H t

H t





                     (4.8) 

 
Remark 1 In [6,7], Kummer’s DE is given, which is 

equal to the DE (4.1) for 2 1a  , , 1 1a   1b c  and 
. In this case, 0b  

books. 

4.2. Particular Solution of (3.7) a

2 1 2

1

1, 2,

1, 1.

c a c

a

  
 

     
   

       (4.9) 
We now obtain the P-solution of (3.7) when the inhomo-
geneous part is equal to x   for 0 


. 
ˆ xWhen the C-solution of (3.7) is  given by (4.6), 

the P-solution of (3.7) is given by (3.9). By using (4.2) 
and (4.6), we obtain 

We then confirm that the expression (4.8) agrees with 
one of the C-solutions of Kummer’s DE given in those  
 

   
 

 

     

 

21

21

2 21 2 1 2

1 2 1 2

*
311

2

121 1
3

2

2 2 2
3

0 02

2

0 02

ˆˆ d

1 ˆ1 1 d

11 ˆd

11

x

x

xn mn m

n m

n n

n m

u x x x C x
a

x x C x
a

x C x
n ma

x
na




 

     

    

  
  

    

 
   

 






      

 
       

 

 


 

    


     

    
      

   

  
  

 





 

 



2 1

2 1

1 2

* 1
, 1

02

1

1

1
,

m m

n n
n

n

x
m m

C x
a




  


  



  


  

 


 
      

 

              (4.10) 
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where 

1 2

1 1*
,

0 1 2

1 1
.

n

n p p
k

p p
C

k n k n k p p

   
        
    (4.11) 

Lemma 9  defined by (4.11) is expressed as 
1 2

*
,n p pC

   
 1 2

2*
,

1 2 1 2

1
1

1
n n

n p p

n

p
C

p p p p
  

  
.       (4.12) 

Proof Equation (4.10) shows that the P-solution 
 of (3.7) is now expressed as  *û x

 *

02

1
ˆ ,n n

n
n

u x c x
a

1 
 


  



           (4.13) 

where . Substituting this into (3.7), we  
2 1

*
,n nc C    1

obtain an equation which states that a power series of 
1x  is equal to 0. By the condition that the coefficient of 

every power must be 0, we obtain a recurrence equation 
for the coefficients : nc

0
1 2

1
,

1
c

  


  
                     (4.14) 

1
1

1 2

,   .
1n n

n
c c

n

 
   0n 

 
  

   
       (4.15) 

By using this repeatedly, we have 

   
 

1
0

1 2

1
1 ,   

2
n n

n

n

c c
 
   

 
  

  
 0 .n     (4.16) 

By comparing (4.10), (4.13) and (4.16), we obtain 
(4.12).  

4.3. Particular Solution of (3.2) 

Equation (4.10) shows that if the inhomogeneous part is 
 for  D t 0  , the P-solution of (3.2) is given by 

   

   
2 1

*

*
, 1

02

1 1
.

1
n n

n
n

u t H t

C t H t
a n




   






 


 
  

   (4.17) 

By using (4.12) in (4.17), we obtain 

   

   
   

      

*

2 1 2

1

0 1 2

1

1 1

1 1

2 1 !
nn n

n n n

u t H t

t
a

t H t
n





   

 


   






    

 


    

    (4.18) 

   
 

2 1 2

2 2 1 1 2

1

1 1

1 ,1;2 , 1;

t
a

4.4. Complementary Solution of (4.1) 

By (4.3),      2 1 0 2 1 2ˆ 1v x a b u a u       0 . When  

the inhomogeneous part is , the P-solution of 
(3.7) is given by 

 ˆ 0v x 

    *
2 1 2 0 0ˆ ˆ1u x a u u x       .        (4.20) 

By using (4.18) for 0  , we obtain 

         
 

     

 

*
2 1 2 0 0

1
0

0 1 2

0 1 1 1 1 2

1

1

2 !

1 ;2 ;

nn

n n

u t H t a u u t H t

u t
n

u F t H t

 




 

   





     


 

 

     



 .

H t  (4.21) 

Proposition 1 Let 0 0u   and 1
1 2

2

2 < 1
b

a
     .  

Then the complementary solution of (4.1), multiplied by 
, is given by the sum of the righthand sides of (4.8) 

and of (4.21). 
)(tH

Remark 2 As stated in Remark 1, in [6,7], the result 
for 2 1a  , 1 1a   , 1b c  and 0b , is given. In 
this case, 

a 
1  and 2  are given in (4.9), and 

1 1 21 , 2 ,a c 1.               (4.22) 

We then confirm that the set of (4.8) and (4.21) agrees 
with the set of two C-solutions of Kummer’s DE given in 
those books. 

5. Solution of fDE (3.1) for 1 2σ  

In this section, we consider the case of 
1

2
  , 2m  , 

2 0a  , 1 0a  , 0 0a  ,  and 2 1 0b b  0 0b  . 
Then the Equation (3.1) to be solved is 

       1 2
2 0 1 0 0 ,  

 0.
R Ra t D u t a t D u t b u t f t

t

    


  (5.1) 

Then (3.5) and (3.6) are expressed as 

   1 2 1 2 1 2
2 1 2 ,A x a x a x a x x      

  1 2
0 2 1

1
,

2
B x b a a x                 (5.2) 

 ˆ 0,v x                             (5.3) 

where 1 2a a  . 

5.1. Complementary Solution of (3.7) 

By using (5.2),    B x A x  is expressed as 

 .F t H t



   

      


    

       
 (4.19) 

 
 

1 2 1 2
1 2 1 2

,
B x

x
A x x x

 


    

         (5.4) 

where 
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0
1 2 1 2

2 2

1 1
1, , .

2 2

b b

a a
         0     (5.5) 

By (3.8), the C-solution  ˆ x  of (3.7) is given by 

     2
1 1 2

1 2

21 2 1 2

2 2

0

ˆ 1

2
.nn

n

x x x x x

x
n

22   

 

  







  



   

 
  

 


   (5.6) 

5.2. Complementary Solution of (3.2) or (5.1) 

The C-solution of (3.2) is given by 

           

 1 2

1

2 2
1

0

ˆˆ

2
.nn

n

u t H t u D t C D t

C D
n

 

  


 


  



  

 
  

 


By Condition B, we have to require  

0
1 2

2

1 0
b

a
     . 

Then by using (2.9) in (5.7), we obtain 

     

   1 2

1

2 2 1
1

0 1 2

2 1
.

2
nn

n

u t H t C t

C t
n n

 






 


  



 

 
      

 H t
 (5.8) 

The C-solution of (5.1) is equal to this for . > 0t

5.3. Particular Solution of (3.2) or (5.1) 

By using the expressions of  A x  and  ˆ x  given by 
(5.2) and (5.6) in (3.9), we obtain the P-solution of (3.7) 
when the inhomogeneous part is x  : 

t
     (5.7) 

 

   
 

 

     

 

21

21

2 21 2 1 2

1 2 1 2

2* 1 2
31 21 2 1 2

2

2 1 211 2 1 2
3

2

2 22 2 1
3

0 02

2

02

ˆˆ d

1 ˆ1 1 d

2 1 21 ˆd

21

x

x

xn mn m

n m

n

u x x x C x
a

x x C x
a

x C x
n ma

na


 

     

    

  
  

    

 
  







      

 
       

 





    


     

    
      

   
 

 






 



 

2 1

22 2

0 1 2

* 2
2 ,2 2

0

1 2 1

2

2 ,

n n m m

m

n n
n

n

x x
m m

C x




  


 

  




 




 




  
       

 







           (5.9) 

 
where 

2 1

*
2 ,2 2n C     is defined by (4.11) and is given by 

(4.12). 
By using (4.12) in (5.9), we can show that if the in-  

homogeneous part is 
   11

t H t





 for > 0 , the  

P-solution of (3.2) is given by 

       

 
 

 

     

* *

1

02 1 2 1 2

2 1

ˆ

2 21

1 2 2 2

1
.

2

n

n n

n n

u t H t u D t

a

t H t
n

 





 
     








 






    

 
 

     (5.10) 

This  for  gives the P-solution of (5.1),   *u t > 0t

when the inhomogeneous part is 
 

11
t





 for > 0 . 
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Appendix A: Definition of a Distribution in 
 R  

eriv
and Its Fractional Integral and 
ative D

A right-sided distribution   Rh t    is a functional fo
which a number 

r 
,h g  is associated with all   Rg t 

where 
, 

R  is the space of infinitely differentia
tions which is 

ble func-
t bounded defined on s a suppor

 distri

  and ha
on the right. 

A regular right-sided bution   Rh t    is a lo-
grable fun ion on  , which has a support 

bounded on the left, and 
cally inte ct

,h g  is given by 

   , d .h g h t g t t


         (A.1) 

Let  


        

Rg t  . If 0     , the fractional inte-  

gral     is W RD g t 

       11
: dW t

D g t x t g x x



    ,     (A.2) 

f 



and i >0  , th ctional derivative e fra  W RD g t   

is given by 

        (A.3)     ,n n
W W WD g t D D g t        

where n     . We set    0D g t g t , aW nd  

     d
1

d

n
nn

W n
D g t g t

t
   

for n >0 . 

In this place, we can confirm that the index law 

         (A.4) 

lid for e

   W W WD D g t D g t     

is va very ,   . 
For a distribution   Rh t   ,   RD h t    for 

   is defined by 

       , , WD h t g t h t D g t   .      (A.5) 

llows from .4) by (A.5). 
Dira is defined by
The index law (2.8) fo  (A

c’s delta function  t    DH t , 
as stated just below hence Lemma 1, and 

       

       
0

, d 0 .WH t D g t g t t g   
) 

, ,t g t DH t g t 
    (


A.6

It is customary to use the notation: 

         , dt g t t g t t g 



   0 .      (A.7) 

Let   Rh t   and      , Rg t f t g t  . Then 
    Rf t h t   is defined by 

           , , .t h t g t h t f t g t

Appendix B: Proof of Lemma 4 for 

     (A.8) 

>0  

Here we give a proof of Lemma 4 for >0 
 A. 

, with the 
aid of notations explained in Appendix

f

Let >0  , n       Rg t  and . Then 

       
   

   
       

       

1

1

,

, ,

n n
W W

n

D t n D g t t D

n D t g t t D t D



 





 

 

    

   

, ,g t t

,

.

W

n n
W W

n

n

t D t D t g t

t D D t g t

g t

 



 







    

   

 

Using Lemma 4 for 

,n n
WD t D t g t    

W g t

<0n    in the last member, 
we obtain 

   
         
   

1 1

1

,

, ,

, .

n n
W

t D t g t

n D t g t n D t D g

D t g t



 





  

 

  





   

 

 

Formula (2.12) for 

t

>0   follows from this. 

ion of Laplace’s DE (3.1) 
1

Appendix C: Solut
for σ  

We onsider the DE (3.1) for  and 2m  . now c 1 
Then (3.5) and (3.6) are expressed as 

  2
2 1 0 2 ,A x a x a x a a x x            (C.1) 

   2 02a x2
2 1 1,B x b x b b a               (C.2) 

  2 0 2 0 2 1 1 0ˆ ,v x b u x a u b u b u                 (C.3

wher

) 

e 
2

1 1 2 04
.

2

a a a a

a


 
     

2

           (C.4) 

In solving (3.7), we express    B x A x  as 

 
   

0 12

2

,
B x c c xb

A x a A x


      

 and are constants. In Section 4.1, we as-

          (C.5) 

where 
sume that 

0c 1c  
02b   and obtain the C-solution given by 

(4.8) sfies Condition B
first term thand side of 
w  ition B. 
H

Appendix D: Solution of fD

which sat
 on th

i
e righ

. In the presence of the 
(C.5), we will see that 

e cannot obtain a solution satisfying Cond
ence we have to assume b 2 0 . 

E (3.1) for 
1 2σ  

In this section, we consider the fDE (3.1) for 
1

2
    

and 2m  . Then (3.5) and (3.6) are expressed as 
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    1 2 1 2 1 2
2 1 0 2 ,A x a x a x a a x x        (D.1) 

  1 2 1 2
2 1 0 2 1 ,

2
B x b x b x b a a x               

1
(D.2) 

  2 0 1 1 2ˆ ,v x b u b u                          (D.3) 

where   are given by (C.4). 
In g (3.7), we express     solvin B x A x  as 

 
   

1 2
1 2 0 12 1 2 1

2
2 2 2

,
B x c c xb b b a

x
A x a a A xa


  

    
 

 (D.4) 

where and 1c  are constant0

me that 2 1 0b b
c  s. In Section 5.2, we as-

su    and ob olutiotain the C-s n given 
by (5.8) ondition B. In the presence of 
the fi he righthand side of (D.4), w
see th tain a solution satisfying Condition 

 
 

wh
rst two
at 

e 

ich satisfies C
s o

not 
 term n t

we can ob
e will 

B. Henc we have to assume 2 1 0b b  . 
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