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ABSTRACT 

In this paper, swarm optimization hybridized with differential evolution (PSO-DE) technique is proposed to solve static 
state estimation (SE) problem as a minimization problem. The proposed hybrid method is tested on IEEE 5-bus, 14-bus, 
30-bus, 57-bus and 118-bus standard test systems along with 11-bus and 13-bus ill-conditioned test systems under dif-
ferent simulated conditions and the results are compared with the same, obtained using standard weighted least square 
state estimation (WLS-SE) technique and general particle swarm optimization (GPSO) based technique. The perform-
ance of the proposed optimization technique for SE, in terms of minimum value of the objective function and standard 
deviations of minimum values obtained in 100 runs, is found better as compared to the GPSO based technique. The sta-
tistical error analysis also shows the superiority of the proposed PSO-DE based technique over the other two tech-
niques. 
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1. Introduction 

An electric power system can be operated in efficient, 
economic and secure manner if the states are known for a 
known network topology and loading conditions [1]. The 
concept of state estimation (SE) was first introduced by 
Schweppe et al. [2] to find the best estimate of the states 
by minimizing or maximizing a selected criterion by us-
ing redundant imperfect power system measurements. 
Thereafter, the volume of research works on SE has 
grown enormously and it has become a basic function in 
power system control centers (ECCs), specified by elec-
tric utilities as a mandatory requirement and supplied by 
all major control centers as a standard software product. 
Although the SE has become a mature, field-proven 
workhorse, various aspects of SE like the solution algo-
rithm [3-6], detection and identification of bad data [7-9], 
topological error detection [10-12], observability analysis 
[13,14] continue to be explored so as to enrich the SE 
software used in ECCs. Conventional SE methods as-
sume that the objective function related to SE is differen-
tiable and continuous. However, considering the nonlin-
ear characteristics of the practical equipments, the objec-
tive function is not always differentiable and continuous, 
and it is difficult to apply the conventional methods prac-
tically. Therefore, a practical SE method considering the 
above-mentioned requirements has been eagerly awaited. 
Modern heuristic algorithms are considered as effective 

tools for nonlinear optimization problems. The algo-
rithms do not require the objective function to be differ-
entiable and continuous. Particle swarm optimization 
(PSO), one of the meta-heuristic algorithms, can be ap-
plied to nonlinear and non-continuous optimization 
problems with ntinuous variables such as in SE. 

Based on the social behavior of birds’ flocking or fish 
schooling, particle swarm optimization (PSO) was de-
veloped by Eberhart and Kennedy in 1995 [15]. PSO is 
biologically inspired computational stochastic search 
method which requires little memory. PSO has fast con-
verging feature and better global searching ability at the 
beginning of the run [16]. But, it has local searching 
problem near the end of the run. It suffers from local 
optima at the end of execution of a program [17]. In or-
der to overcome this local optima problem, many im-
provisations are adopted by the researchers [16-19].  

In 1995, in a pioneer paper, Storn and Prince proposed 
an algorithm [20] based on floating point encoded evolu-
tionary technique for global optimization. This algorithm 
is termed as DE algorithm because in this algorithm, a 
special kind of differential operator is used to create new 
off-springs from parent chromosomes instead of classical 
crossover or mutation. Here, the target vector is mutated 
to find a trial vector using a difference vector which is 
obtained as a weighted difference between randomly 
selected vectors in the population. T. Hendtlass presented 
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a new population based algorithm as a hybrid of PSO and 
DE [21]. A few variants of this hybridization came later 
from various researchers [22,23] for different applica-
tions. 

In this paper, to improve both global and local search-
ing performance of PSO and to avoid suboptimal solu-
tions, hybrid particle swarm-differential evolution opti-
mization (PSO-DE) has been proposed to solve SE as an 
optimization problem. This also improves the error per-
formance analysis based on statistical indices of SE. The 
proposed scheme of SE has been tested on different 
standard IEEE test systems and ill-conditioned systems 
under different simulated operating conditions and the 
results have been compared to those of standard Weighted 
Least Square (WLS) technique and general PSO (GPSO) 
based technique. 

2. Problem Formulation 

2.1. Weighted Least Square Estimation 

In SE, a power system with m-dimensional measurement 
vector z and n-dimensional state vector x may be mod-
eled as, 

 z h x                   (1) 

where  is the m-dimensional vector of non-linear 
power flow equations and 

 .h
  is the m-dimensional noise 

vector with the statistical properties,  

  0;E     E . T R   

where  E  and superscript ‘T’ represent expectation 
operator and transposition of a matrix, respectively. ‘R’ 
is a diagonal matrix and is known as measurement error 
co-variance matrix. The WLS SE determines the esti-
mated value of the state vector x̂  minimizing the per-
formance index 

     1. .
T

f x z h x R z h x       

1

       (2) 

Minimization of (2) yields iterative solution as: 

  11T Tx H R H H R z
    



k

        (3) 

where 1kx x x    and  are known 
as the correction vector and mismatch vector, respec-
tively; k being the index of iteration. 

 kz z h x  

 H h x x



   is 
the Jacobian matrix. Using index notation, (2) can also be 
expressed as an optimization problem with the weighted 
sum of the squares of the residues as objective or fitness 
function . 

   
2

1

m

ii i i
i

f x w z h x


            (4) 

In (4), weighting factor 21/ii iiw  , ii  being the 
standard deviation of the meter error. 

2.2. Particle Swarm Optimization with  
Differential Evolution 

GPSO is biologically inspired computational stochastic 
search method which requires little memory. GPSO ran-
domly initializes the population (swarm) of individuals 
(particles) in the search space. Each particle in GPSO has 
a randomized velocity associated to it, which moves 
through the space of the problem [15,16]. The particle 
velocity is constantly adjusted according to the experi-
ences of the particles and its companions. The velocity 

k
jv  and position k

jh  of particle index ‘j’ of kth popula-
tion in the search space are adjusted by (5)-(7).  

 max max min *
max

cy
w w w w

cy
           (5) 

 
 

, 1 , ,, ,

,, ,

* 1* 1*

                           + 2* 2*

kk k k
j cy j cy j cypbest j cy

k
j cyj gbest cy

w c r xv v x

c r x x

   


   (6) 

, 1 , , 1
k k k
j cy j cy j cyx x v              (7) 

where (6) represents the updated value of w with itera-
tion cycle; , ,

k
pbest j cyx  represents pbest position at cyth 

iteration, i.e., the best position of the particle in the cur-
rent iteration; , ,j gbest cy  denotes the global best position 
gbest, i.e., the best position of the particle in the popula-
tion up to the present iteration and maxcy is the maxi-
mum number of iteration cycles. After obtaining the 
suboptimal values of fitness function for total population 
set, differential evolution (DE) algorithm have been ap-
plied to find the optimal solution. In DE, the initial pop-
ulation is the population obtained from GPSO. The steps 
to incorporate DE algorithm with GPSO are shown be-
low as 

x

i Initialize population of particles (solutions).Set 
GPSO and DE parameters. 

ii Calculate fitness values and find gbest and pbest 
values. 

iii PSO is used to update velocities and positions of 
particles using (6) and (7). 

iv For the total population set, fitness values are cal-
culated according to (4). These suboptimal fitness values 
are termed as . os GPSOC t

v The updated population set is used as the input of 
DE. The donor vector is calculated as, 

    
 

1 21
,

,

1*

                   2*

HJK HJKk k
donor j j j j

cy k
gbest j j

x x F x x

F x x

   

 
       (8) 

where  1HJK  and are indices generated 
within the population, to select the two random vectors 
within the population. 

 2HJK

vi The fitness values are evaluated within the popula-
tion using (4) and is termed as os DonorC t  
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vii Trial vectors Trialx  are formed by random cross-
over of elements of donor vectors and target vectors de-
pending on random number generated within ([0,1]), 
greater or less than a fixed probabilistic crossover ratio 
value (CRR = 0.3, in this case). If CRR is less than the 
random number, is assigned to ,Trial jx ,Donor jx ; otherwise 

is assigned to ,Trial jx jx . 
viii The fitness function is evaluated for each jth trial 

vector using (4) and termed as .  os TrialC t
ix In the Selection stage, either ,Donor j  or ,Trial j is 

selected (
x x

selectx
os

) depending on the minimum value be-
tween DonoC t r

x Using the selected vectors , 
 and .  os TrialC t

Selectx x  and xpbest gbest  
are updated. 

xi Check whether the maximum iteration cycle is 
reached, if yes, then x gbest  is the optimal solution vector. 
Otherwise, go to step iii with the  vectors as the 
input vectors of the GPSO. 

Selectx

2.3. Bad Data Analysis 

For detection and identification of bad data, scheme 
proposed by N.G. Bretas et al. [9] has been adopted in 
this paper for its high efficiency. The idempotent matrix 
is formed as 

 1P T T 1H H R H H R 

z

           (9) 

The measurement residuals are expressed as 

 ˆ IMr z z z P z I P z S              (10) 

Here, S(= IMI P ) is called the residual sensitivity 
matrix. IMI  is the identity matrix with dimension equal 
to the length of Y. e is the complex noise vector. This S 
matrix is the operator that projects I  onto measure-
ment Jacobean space (R(Y) ┴). 

Now for the ith measurement vector, that is, im   

i iM   with  and i[0....1 ....0]i
i  T M  is the magnitude 

of the measurement i, the two components of measure-
ments are found to be 

   R( ) R( )
P  and ( P)i Y i i IM i ii Y

M M M I M    . 

Therefore, the innovative index (II) is calculated as 

R( )R( )i i Y WW
II M M i Y



        (11) 

The largest element (Nth) in II is compared against a 
statistical threshold, , to decide on the exis-
tence of bad data. The index value of the largest element 
gives the index of bad data of measurement. As the 
presence of bad data is detected and indentified, the 
measurements should be recovered from errors. The cor-
rected normalized measurement error is computed using 
the following equation as suggested in [9]. 

 0.250 

2 2 21 1
ime II 

where  is the measurement ith residual measurement. i

In a power system, a sudden large change of load may 
occur. Therefore, it is very important to discriminate be-
tween sudden large change of load and the presence of 
bad data in measurements. For this discrimination, an 
index, called asymmetry index (AI) [8], has been used. 
AI is defined as 

r

3
3,k kAI M                (13) 

where 3,kM  is the third moment of the discrimination at 
time k  and kt   is the standard deviation of the distri-
bution at . If AI is greater than a pre defined value 
(here 

kt

max ), then measurements are with gross errors 
and if AI is less than max , large load change occurred 
is considered. 

3. Simulation Details 

The simulation study has been carried over a period of 30 
time samples by linearly varying the load at each bus 
from 70% to 120%. In addition, the system jitter is rep-
resented by a normally distributed random fluctuation 
with a zero mean and a standard deviation of 2% of the 
trend component. As load variation is not possible for 
ill-conditioned systems, it is not done. The power factor 
is assumed to be constant, so that the reactive power fol-
lowed the active counterpart. The change in total load 
has been distributed among the generators according to 
their participation factors. The true values of active and 
reactive powers are evaluated by successive load flows. 
For ill-conditioned systems, the method of Incremental 
power flow [24] has been used for obvious reasons. The 
simulated measurements are obtained by adding a nor-
mally distributed error function with zero mean and a 
standard deviation of 2% of the true values. Also, simu-
lated bad data of magnitude 15  for the active and 
reactive line flows at the 20th time step for the different 
test systems are as shown in Table 1. Flat voltage start 
has been used for both proposed schemes and the toler-
ance value   is set at 0.00001. The statistical threshold 
  to find the existence of bad data is set at 3. For each 
optimization technique, the maximum cycles (maxcy) 
have been set to 500. The control parameters for the 
GPSO and the PSO-DE are as shown, respectively, in 
Table 2. These parameters are found to be the most suit-
able to get the minimum value of fitness function used in 
the work. 
 

Table 1. Details of events simulation. 

Test System Time sample Bad data Measurements at 

IEEE 5-bus 20 P5,P2-3,Q2-3 

IEEE 14-bus 20 Q10,P4-9,Q4-9 
IEEE 30-bus 20 P15-18, P2-5,Q2-5 
IEEE 57-bus 20 P12, Q12, P14-46,Q14-46 
IEEE 118-bus 20 Q15, P89-92,Q89-92 i ir            (12) 
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Table 2. Control parameters of gpso and pso-de techniques. 

Optimization technique Cognitive Acceleration Factor (C1) Social Acceleration Factor (C2) wmax wmin F1 F2 Crossover Ratio (CRR)

GPSO 2.05 2.05 0.8 0.4 - - - 

PSO-DE 1.6 1.6 0.8 0.4 0.2 0.4 0.3 

 
Performance Assessment 

The performances of the proposed SE techniques have 
been assessed under both the normal operation and bad 
data measurement condition by using different perform-
ance indices and compared with the same of WLS tech-
nique. 

The average absolute state error (AASE) is calculated 
as 

(2* 1)

1

1
( ) ( ) ( ))ˆ

(2* 1)
(

NB
t
ii

i

AASE k k kxx
NB





 
    (14) 

 

where  .x  is the state vector, containing the magni-
tudes and phase angles of complex bus voltages. ˆ( )x k  
and t

ix  are the estimated and the true values of the state 
vector at kth time step, respectively. 

The performance index ( )J k  is calculated as 
Figure1. Comparison of convergence characteristics of 
GPSO and PSO-DE. 

1

1

( ) ( )
( )

( ) ( )

ˆ
m

t

i i
i
m

t

i i
i

k k
J k

k k

z z

z z













          (15)  

each technique has been run 100 times and the values of 
500th optimization cycle are noted. The results are pre-
sented in Table 3. The total range of these values is se-
lected as the difference of maximum values and mini-
mum values. The total range is sub-divided into four 
equal small sub-ranges viz. Range-1, Range-2, Range-3 
and Range-4. The ranges of sub-ranges are shown in Ta-
ble 3. The comparative study of standard deviations 
clearly indicates the superiority of the proposed PSO-DE 
based optimal SE technique. Hence, it can be stated that 
the PSO-DE based SE has better optimization character-
istics of the objective function than the GPSO based SE. 
Frequency of occurrence (FO) indicates the occurrence 
of the fitness values in the sub-ranges at the end of 500th 
optimization cycle. Therefore, the higher FO in the 
Range-1 indicates the superiority of the algorithm. In 
Figures 2(a)-(g), the FO values have been plotted against 
sub-ranges for each test case. From the figure, it is clear 
that the PSO-DE based SE has higher FO in the Range-1 
and lesser FO in other sub-ranges than the same of the 
GPSO based SE technique. This clearly proves the supe-
riority of the PSO-DE based optimal SE method. 

where   and  represent estimated, meas-
ured and true values of the measurements , respectively, 
and m represents the number of measurements used. 

ˆ( ),z k ( )z k ( )tz k

4. Results and Discussions 

The optimized estimators have been tested on all five 
standard and two ill-conditioned test systems extensively 
under different normal and bad data measurement condi-
tions. The choice of explicit results to present is difficult 
as the number of interesting outputs is very large. For the 
sake of brevity the performance of the proposed SE me-
thod has been presented for some of the important results. 
The results, presented here, can be divided in two distinct 
categories; one is based on the optimization characteris-
tics of the algorithms and the other is based on the per-
formance characteristics of SE techniques. 

4.1. The Optimization Characteristics of  
Algorithms 

In Figure 1, the convergence characteristics for IEEE 
118-bus test system have been presented for GPSO and 
PSO-DE based SE. The optimal value of the fitness func-
tion of PSO-DE is much less than that of GPSO. 

4.2. Performance Characteristics of the SE  
Techniques 

In Figure 3, AASE(k) and J(k) indices for 118-bus test 
system are presented. From the figure, it is clear that the 
AASE graph of PSO-DE based technique is the closest to 

In order to check the robustness of the optimization 
algorithms applied to solve state estimation problem,  
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Table 3. Description of ranges of minimum values of objective function and standard deviation of the minimum fitness func-
tion values for different test systems for 100 runs of the algorithms. 

GPSO PSO-DE 

Test Bus 
system 

Minimum 
value of objective 

function 

Maximum 
value of objective 

function 

Range of
sub-range

values 

Standard
deviation

Minimum 
value of objective

function 

Maximum 
value of objective 

function 

Range of 
sub-range 

values 

Standard
deviation

IEEE 5-Bus 0.3453 0.5630 0.0551 0.0417 0.0059 0.0350 0.0072 0.0046 

IEEE 14-Bus 0.3745 0.8372 0.1541 0.1239 0.0099 0.0282 0.0045 0.0029 

IEEE 30-Bus 0.4161 1.5096 0.2733 0.2295 0.0272 0.0414 0.0035 0.0031 

IEEE 57-Bus 0.9642 3.1213 0.5392 0.3413 0.0842 0.2881 0.0509 0.0270 

IEEE 118-Bus 15.4566 32.1037 4.1617 3.7259 1.8485 3.7460 0.4743 0.3110 

11-Bus 5.9385 9.4668 0.8820 0.5958 0.3470 0.8692 0.1305 0.1127 

13-Bus 0.1684 0.2427 0.0185 0.0114 0.0024 0.0035 0.0002 0.0002 

 

       

       

 

Figure 2. Comparison of F.O. of the optimal values of objective function for 100th run of the algorithms the GPSO and the 
PSO-DE based SE. 
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Figure 3. Comparison of AASE(k) and J(k) obtained by WLS, 
GPSO and PSO-DE for IEEE 118-Bus test system. 
 

 

Figure 4. Comparative voltage magnitudes of bus number 
92 of IEEE 118-Bus test system obtained by WLS, GPSO 
and PSO-DE. 
 
zero among the three techniques. So, it is obvious that 
the PSO-DE based technique is more accurate than the 
GPSO based technique and the WLS-SE technique. WLS 
has the J(k) values close to 0.8, whereas the GPSO based  
SE and the PSO-DE based SE provide J(k) values almost 
constant and parallel to x-axis though the load is varied 
from 70% to 120%. The effect of inclusion of bad data 
measurement is overcome in PSO-DE based SE whereas 
both WLS and the GPSO based estimators cannot elimi-
nate the effect of inclusion of bad data measurement. 
This clears the superiority of the PSO-DE based SE over 
the other two techniques. 

The true values of bus voltage magnitudes obtained 
using the standard WLS technique, the GPSO based 
technique and the PSO-DE based technique for load var-
iation of bus number 92 of IEEE 118-bus test system are 
compared and presented in Figure 4. The PSO-DE based 

SE estimates the voltage magnitudes more accurately 
than the other two techniques. The GPSO based SE pre-
dicts the voltage magnitudes slightly better than the 
standard WLS technique. 

5. Conclusions 

In this paper, hybrid PSO-DE based SE algorithm has 
been proposed to find the minimum value of fitness 
function of the SE problem. The proposed method has 
been tested on IEEE 5-bus, 14-bus, 30-bus, 57-bus and 
118-bus standard test systems and 11-bus and 13-bus 
ill-conditioned test systems extensively for different 
normal operating conditions and various combinations of 
bad-data measurement conditions to verify their efficien-
cies. The results are compared with the same of the stan-
dard WLS technique and the GPSO method. From the 
comparison of results, it has been observed that (i) the 
PSO-DE based state estimator minimizes the fitness 
function far better than  both  GPSO based estimator 
and WLS based estimator; (ii) the frequency of occur-
rence of the minimum value near the mean value of the 
solutions for 100 runs of each algorithm is more in case 
of the PSO-DE based SE than the GPSO based SE and 
WLS-SE and (iii) the error analysis study among the 
three techniques, using AASE(k) and J(k) index, proves 
the superiority of the PSO-DE based technique over the 
other two. Comparing all performances, it may thus be 
concluded that the PSO-DE based state estimation tech-
nique shows the best efficiency in state estimation analy-
sis with high accuracy. 
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