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ABSTRACT 
Protein remote homology detection is a key problem in bioinformatics. Currently, the discriminative methods, such as 
Support Vector Machine (SVM), can achieve the best performance. The most efficient approach to improve the perfor- 
mance of the SVM-based methods is to find a general protein representation method that is able to convert proteins with 
different lengths into fixed length vectors and captures the different properties of the proteins for the discrimination. 
The bottleneck of designing the protein representation method is that native proteins have different lengths. Motivated 
by the success of the pseudo amino acid composition (PseAAC) proposed by Chou, we applied this approach for protein 
remote homology detection. Some new indices derived from the amino acid index (AAIndex) database are incorporated 
into the PseAAC to improve the generalization ability of this method. Our experiments on a well-known benchmark 
show this method achieves superior or comparable performance with current state-of-the-art methods. 
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1. Introduction 
Protein remote homology detection, referring to the de- 
tection of evolutional homology in proteins with low 
similarities, is a challenging problem in bioinformatics, 
which has been intensively studied for a decade. Many 
computational methods have been proposed to address 
this problem, which can be split into three groups: pair- 
wise comparison methods, generative models and dis- 
criminative algorithms. Pairwise comparison methods 
measure the pairwise similarities between protein se- 
quences, such as pairwise method [1] and Smith-Water- 
man dynamic programming algorithm [2]. Generative 
models induce a probability distribution over the protein 
family and try to generate the unknown proteins as new 
member of the family from the stochastic model [3]. Re- 
cent methods have applied the discriminative algorithms 
for accurate remote homology detection. Different from 
the generative methods, the discriminative methods lean 
a combination of the features that can discriminate the 
protein families. Among these methods, the top-per- 
forming methods use the support vector machines (SVM) 
[4] to build the discriminative framework. The core 
component in the SVM is the calculation of the kernel  

functions, which measure the difference between any two 
pair of samples. For example, LA kernel [5] measures the 
similarity between a pair of proteins by taking all the 
optimal local alignment scores with gaps between all 
possible subsequences into account. SVM-PDT [6] takes 
the sequence order information of the proteins into account 
by combining the amino acid physicochemical distance 
transformation and different amino acid indices derived 
from the AAIndex database [7]. Some top-performing 
methods employ the evolutional information extracted 
from the profiles. These methods need an additional 
alignment step to generate the profiles by searching 
against a non-redundant database, which leads to higher 
computational cost. For example, Top-n-grams extract the 
profile-based patterns by considering the most frequent 
elements in the profiles [8].  

A key step to improve the performance of the SVM- 
based methods is to find a fast and accurate representa- 
tion of protein sequence. Previous studies show that the 
sequence order effects are relevant for remote homology 
detection [9]. The difficulty to include the sequence order 
information into the prediction is that protein sequence 
lengths vary widely. The pseudo amino acid composition  
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(PseAAC) was proposed by Chou [10]. Motivated by the 
success of PseAAC, we applied this approach for protein 
remote homology detection. Some new indices derived 
from the AAIndex database are incorporated into the 
PseAAC to improve the generalization ability of this 
method. 

2. Methods 
2.1. Benchmark Dataset 
A common benchmark [1] was used to evaluate the per- 
formance of our method for protein remote homology 
detection, which is available at  
http://noble.gs.washington.edu/proj/svm-pairwise/. This 
benchmark has been used by many studies of remote 
homology detection methods [5,9,11], which can provide 
good comparability with previous methods. The bench- 
mark contains 54 families and 4352 proteins selected 
from SCOP version 1.53. These proteins are extracted 
from the Astral database [12] and include no pair with a 
sequence similarity higher than an E-value of 10−25. For 
each family, the proteins within the family are taken as 
positive test samples, and the proteins outside the family 
but within the same superfamily are taken as positive 
training samples. Negative samples are selected from 
outside of the superfamily and are separated into training 
and test sets. 

2.2. Amino Acid Indices 
The Amino Acid Index (AAIndex) [7] is a database of 
numerical indices representing various physicochemical 
and biochemical properties of amino acids and pairs of 
amino acids (http://www.genome.jp/aaindex/). There are 
three sections in the latest version of the database (ver- 
sion 9): AAIndex1, AAIndex2 and AAIndex3. AAIn- 
dex1 contains 544 indices; AAIndex2 has 94 amino acid 
mutation matrices; AAIndex3 has 47 statistical protein 
contact potential matrices. Because AAIndex2 and 
AAIndex3 are matrices, they are not suitable for PseAAC. 
Therefore, the AAIndex1 is selected for protein trans- 
formation step. After removing the incomplete data and 
the indices with all zeros in AAIndex1, 531 indices are 
selected for the physicochemical property distance trans- 
formation.  

2.3. Combining AA Indices with Pseudo Amino 
Acid Composition 

The pseudo amino acid composition (PseAAC) was pro- 
posed by Chou [10], which takes the sequence order in- 
formation into account. PseAAC has been applied to 
successfully solve many important problems in computa- 
tional biology, such as predicting enzymes and their fam- 
ily/sub-family classification [13], protein subcellular 

location prediction [14], predicting protein subnuclear 
localization [15], predicting membrane proteins and their 
types discrimination of outer membrane proteins [16,17], 
identifying proteases and their types [18], predicting 
protein quaternary structural attributes [19,20], fold pat- 
tern prediction [21,22], and many other tasks. 

In this study, we employ the concept of PseAAC for 
protein remote homology detection. In the original Pse- 
AAC, it only uses three indices, including the hydropho- 
bicity index, hydrophilicity index, and side-chain mass 
index. Because protein remote homology detection is a 
more difficult problem, proteins in the dataset only have 
very low sequence similarity. Only these three indices 
are not enough to capture the different properties of var- 
ious proteins. Therefore, we extend the PseAAC by using 
all the meaningful 531 indices extracted from the AAIn- 
dex database, which describe the properties of the 20 
standard amino acids in different aspects. The proposed 
method is called PseAACIndex. 

The detailed process of the PseAACIndex is shown in 
the following. 

Given a protein sequence with L amino acids: 
A1 A2 A3 A4 A5 A6......AL             (1) 

where A1 is the amino acid at protein chain position 1, A2 
is the amino acid at protein chain position 2 and so forth. 
Given an amino acid index j in AAIndex1, each protein 
sequence is converted into a series of numbers by using 
the amino acid index j. 

All the 531 indices are subjected to a standard conver- 
sion by the following equation:  
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where I^(Ai) represents the raw physicochemical property 
value of amino acid Ai in index j, Rm (m = 1, 2, 3, 4, …, 
20) represents the 20 standard amino acids.  

The sequence order information associated with index 
j can be approximately reflected with the order-correlated 
factor as defined below: 
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where λ is the distance between two amino acids along 
the protein chain. 

Let us use the concept of the PseAAC to formulate the 
amino acid composition by using the order-correlated 
factor calculated by Equation (3). Given an index j, the 
protein sequence can be converted into a 20 + λ dimen- 
sional vector: 
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Xj = [x1, x2, …, x20, …, x20+λ]         (4) 
where 
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where fm is the normalized occurrence frequency of the 
20 standard amino acids in a protein, 

j

i∂  is the i-tier 
sequence correlation factor calculated by equation 3. The 
first 20 elements represent the effect of the amino acid 
composition, and the elements from 20 + 1 to 20 + λ 
represent the effect of sequence order. 

In this study, 531 indices are extracted from the 
AAIndex database. Therefore, by using the above ap- 
proach, a protein can be represented as following vector: 

1 2 531[ , ,..., ,..., ]j=X x x x x                (6) 

where Xj is calculated by Equations (4) and (5). There- 
fore, the dimension of the final vector is 531*(20 + λ). 

2.4. Support Vector Machine 
Support vector machine (SVM) is a class of supervised 
learning algorithms first introduced by Vapnik [4]. Given 
a set of labelled training vectors (positive and negative 
input samples), SVM can learn a linear decision boun- 
dary to discriminate the two classes. The result is a linear 
classification rule that can be used to classify new test 
samples. When the samples are linearly non-separable, 
the kernel function can be used to map the samples to a 
high-order feature space in which the optimal decision 
boundary can be found. SVM has exhibited excellent 
performance in practice and has a strong theoretical 
foundation of statistical learning. 

In this study, the publicly available Gist SVM package 
(http://www.chibi.ubc.ca/gist/) is employed. The SVM 
parameters are used by default of the Gist Package ex- 
cept that the kernel function is set as radial basis func- 
tion.  

2.5. Evaluation Methodology 
Because the test sets have more negative than positive 
samples, simply measuring error-rates will not give a 
good evaluation of performance. For the cases in which 
the positive and negative samples are not evenly distri- 
buted, the best way to evaluate the trade-off between the 
specificity and sensitivity is to use a receiver operating 
characteristics (ROC) score [23]. A ROC score is the 
normalized area under a curve that plots true positives 
against false positives for different classification thre- 

sholds. A score of 1 denotes perfect separation of posi- 
tive samples from negative ones, whereas a score of 0 
indicates that none of the sequences selected by the algo- 
rithm is positive. Another performance measure is 
ROC50 score, which is the area under the ROC curve up 
to the first 50 false positives. 

3. Results and Discussion 
3.1. λ Value Has Minior Impact on the 

Performance of PseACC-AAIndex 
In our method, there is a parameter λ, which would im- 
pact on the performance of PseAACIndex (see method 
section for more information). λ can be any integer be- 
tween 1 and L-1, where L is the shortest protein sequence 
in the dataset. The average ROC scores obtained by us- 
ing different λ values are shown in Figure 1. As we can 
see from the figure, the λ value has little impact on the 
performance. PseAACIndex with different λ values show 
similar results. Here, the λ value of 5 is used in this study, 
because of this value, PseAACIndex can achieve the best 
performance with shorter feature vectors and lower 
computational cost. 

3.2. Comparison with Other Sequence-Based 
Methods 

In order to compare the proposed PseAACIndex method 
with other relevant protein remote homology detection 
methods, the PseAACIndex was evaluated on the widely 
used SCOP 1.53 dataset to give an unbiased comparison 
with prior methods that are based on sequence composi- 
tion information. 

Although previous study tuned both the features and 
SVM parameters for each protein family, in order to 
evaluate the robustness and generalization of the 
PseACC vectorization approach, no feature selection was 
performed to select the best features for the proteins or 
 

 
Figure 1. The impact of λ on the average ROC score ob-
tained by PseACCIndex. 
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the families. All the 531 amino acid indices were used 
for predicting each family. 

The predictive results of different sequence-based me- 
thods are listed in Table 1. SVM-Ngram, SVM-Pattern, 
and SVM-Motif are based on three different building 
blocks of proteins. Mismatch method allows a given 
number of mismatches between the substrings of the 
proteins.  SVM-LA is based on the pairwise similarity 
scores. The performance of PseAACIndex is highly 
comparable with SVM-LA and outperforms other me- 
thods in terms of both ROC and ROC50 scores, indicat- 
ing that the proposed PseAACIndex approach is an effi- 
cient method for protein remote homology detection. 

4. Conclusion 
In this study, inspired by the success of PseAAC, we 
combined the PseAAC with various amino acid indices 
extracted from the AAIndex database for protein remote 
homology detection. It took both the sequence-order in- 
formation and the amino acid physicochemical proper- 
ties extracted from the AAIndex database into considera- 
tion. Experimental results demonstrated that this ap-
proach was useful for protein remote homology detection 
and showed better predictive results than the compared 
methods. 
 
Table 1. Results of different methods for protein remote 
homology detection. 

Average ROC and ROC50 scores 
Methods ROC ROC50 Source 
PseAACIndex (λ = 5) 0.880 0.620 This study 
SVM-Ngram 0.791 0.584 [24] 
SVM-Pattern 0.835 0.589 [24] 
SVM-LA(ß = 0.5) 0.925 0.649 [5] 
Mismatch 0.872 0.400 [25] 
SVM-Motif 0.814 0.616 [24] 
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