
Journal of Signal and Information Processing, 2011, 2, 11-17 
doi:10.4236/jsip.2011.21002 Published Online February 2011 (http://www.SciRP.org/journal/jsip) 

Copyright © 2011 SciRes.                                                                                 JSIP 

11 

Evolutionary MPNN for Channel Equalization 
Archana Sarangi1, Bijay Ketan Panigrahi2 & Siba Prasada Panigrahi3 
 

1Department of AEIE, ITER, SOA University, Bhubaneswar, India; 2Department of Electrical Engineering, IIT, Delhi, India; 3 Depart-
ment of Electrical Engineering, KIST, Bhubaneswar, India 
Email: siba_panigrahy15@rediffmail.com 
 
Received December 10th, 2010; revised January 11th, 2011; accepted February 18th, 2011 
 
ABSTRACT 
This paper proposes a novel equalizer, termed here as Evolutionary MPNN, where a complex modified probabilistic 
Neural Networks (MPNN) acts as a filter for the detected signal pattern. The neurons were embedded with optimization 
algorithms. We have considered two optimization algorithms, Bacteria Foraging Optimization (BFO) and Ant Colony 
Optimization (ACO). The proposed structure has the ability to process complex signals also can perform for slowly 
varying channels. Also, Simulation results prove the superior performance of the proposed equalizer over the existing 
MPNN equalizers. 
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1. Introduction 
Channel equalization plays an important role in digital 
communication systems. There are tremendous devel-
opments in equalizer structures since the advent of neural 
networks in signal processing applications. Recent lite-
rature is healthy enough with newer applications of 
neural networks [1-5] and in particular to independent 
component analysis, noise cancellation and channel 
equalization [6-16]. But all of these papers overlooked 
two basic problems encountered. First is to train the 
equalizer how to process complex signal. Second is to 
get a adaptive nature of equalizer for slowly varying 
channels. Authors in [17] have tried to address these two 
problems, through a Modified Probabilistic Neural net-
work (MPNN), and were successful to process complex 
signals and for a slowly varying signal. However, the 
result was sub-optimal in nature, since the neurons were 
not trained with any optimization algorithms. 

This paper takes the similar structure as that of [17]. 
But, novelty in this paper is to use the structure as a 
neural filter for classifying detected signal pattern. Neu-
rons in network in [17] were embedded with stochastic 
gradient, whereas in this paper, each of the neurons in 
the structure is embedded with optimization algorithm 
unlike that of in [17]. 

Recently, Particle Swarm Intelligence (PSO) [18], 
Bacteria Foraging Optimization (BFO) [19-21] and Ant 
colony Optimization (ACO) [22-26] have been used for 
optimization purpose in different fields of research. This 

paper uses BFO and ACO for optimization. Some suc-
cessful applications of these two techniques, i.e. BFO 
and ACO can be found in [27-31]. Novelty in this paper 
can be seen as, application of two known algorithms, 
ACO and BFO, to the problem of channel equalization. 
This underlines the improvement added by the optimiza-
tion algorithms. The proposed schemes outperform the 
existing equalizers. 

2. Problem Statement 
Impulse response of channel & co-channel can be 
represented as:  
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Here ip and ,i ja  are length and tap weights of thi  
channel impulse response. We assume a binary commu-
nication system, which would make the analysis simple, 
though it can be extended to any communication system 
in general. The transmitted symbols ( )ix n , 0 i n≤ ≤  
for channel and co-channel are drawn from a set of in-
dependent, identically distributed (i.i.d) dataset compris-
ing of {± 1} and these are mutually independent. This 
satisfies the condition  

( ) 0iE x n =                    (2) 

( ) ( ) ( ) ( )1 2 1 2i jE x n x n i j n nδ δ  = − −        (3) 

where [ ]E ⋅  represents the expectation operator and  
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The channel output scalars can be represented as  
( ) ( ) ( ) ( )coy n d n d n nη= + +          (5) 

Here ( )d n  desired received signal ( )cod n  is inter-
fering signal and ( )nη  is noise component assumed to 
be Gaussian with variance ( )2 2E n ηη σ  =   and uncor-
related with data. The desired and interfering signal can 
be represented as  

( ) ( )
0 1

0, 0
0

p

j
j

d n a x n j
−

=

= −∑           (6) 

( ) ( )
1

,
1 0

ipn

co i j i
i j

d k a x n j
−

= =

= −∑∑          (7) 

The task of the equalizer is to estimate the transmitted 
sequence ( )0

ˆx n d−  based on channel observation vector 

( ) ( ) ( ) ( ), 1 , , 1
T

y n y n y n y n m= − − +   , where m  is 

order of equalizer and d̂  is decision delay. 
The cost function is the MSE value of ( ), , 1e p q n + . So 

( )21 , , 1
2

J e p q n= +            (8) 

The error generated at the output of equalizer should 
be minimized to give an acceptable solution. The initial 
condition for the equalizer model is derived from the 
Decision Feedback Equalization (DFE) expressions. So, 
determination of the error at interior points the channel is 
essential. This paper assumes, input same as that of de-
sired output. Hence, the total error is the difference between 
output and input of the network model. The cost function 
is the mean of the sum of squares of this error (MSE). 

3. Proposed Equalizer 
The proposed equalizer in this paper shown in Figure 1 
and consists of two basic components, one MPNN filter 
and one optimizer. The purpose of filter is to receive the 
distorted output from the channel and will form two 
separate and independent patterns, one for { }1+  and 
next for{ }1+ . The purpose of the optimizer is to optim-
ize the cost function of (8) and thereby minimizing the 
error. The details of classifier and working algorithms 
for the optimizer are discussed in following two sub- 
sections. 

3.1. MPNN Filter 
First part of the equalizer of this paper, the filter, shown 
in Figure 2, is the same structure as that used in [17]. 
Authors in [17] used the structure for the purpose of 
equalization without any evolutionary optimizing algo-
rithms. Authors in [17], embedded stochastic gradient to 

neural nets. But, in this paper we have embedded opti-
mization algorithm to neural network. This optimization 
algorithm is however, shown separately in the equalizer 
structure and also discussed separately in following sub-
section. 

The MPNN structure is based on Nadaraya-Watson 
Regression estimator [17] given by: 
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  (9) 

Here, x  is input sample. Each training input sample, 
; 1, 2,kx k n=  , form a center in the input space. An 

input vector to be evaluated tx  is weighted exponen-
tially according to its Euclidean distance from the centers. 
The corresponding observed output from each center, 

ky , is averaged to give the estimate ( )Ê Y X . The val-
ue of σ  determines how the network behaves. 

In general, σ  governs the “closeness” between a point 
of interest, say tx , and the centers, ; 1, 2,kx k n=  , in 
the input space. 

For a small σ  value, only the corresponding observed 
values, :ky k a= , of the closest center, ( :kx k a= ) 
appear significant, compare to the contribution from oth-
er centers, ( : 1, ,ky k n k a= ≠ ). In this case, the net-
work does the nearest neighbor search. With a larger 
σ value, more of the observed outputs, ky , are taken 
into account, but with those corresponding to centers 
close to tx  being given more weight. 
 

 
Figure 1. Proposed equalizer structure. 
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Figure 2. MPNN structure. 
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This MPNN structure will be able to process complex 
m-dimensional input vectors and complex outputs im-
plementing a mapping : Nf C C→  [17], if equation (9) 
can be written as: 
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where ( )H⋅ denotes Hermitian operator (or conjugate 
transpose). iZ , is the number of input training vector 
associated with center ic . 

3.2. The Optimizer 
Second part of the equalizer proposed in this paper is an 
optimizer. However, practically, one optimization algo-
rithm, which is discussed in this section, is embedded to 
the neural network that is used as a filter. Embedding 
neurons with optimization algorithms is achieved 
through training the neurons for these algorithms like 
that in [13,27]. We have taken two different optimization 
algorithms, first one Bacteria foraging optimization and 
next with Ant colony optimization. The algorithms are 
discussed in following sections, and for clarity of the 
readers, with different nomenclatures. This paper has not 
tested the structure with any other optimization algo-
rithms and can be seen as one area for future work. 

3.2.1. Bacteria Foraging Optimization 
Natural selection tends to eliminate animals with poor 
foraging strategies and favor the propagation of genes of 
those animals that have successful foraging strategies, 
since they are more likely to enjoy reproductive success. 
After a number of generations, poor foraging strategies 
are either eliminated or shaped into good ones. This ac-
tivity of foraging led the researchers to use it as optimi-
zation process. The E. coli bacteria that are present in our 
intestines also undergo a foraging strategy. The control 
system of these bacteria that dictates how foraging should 
proceed can be subdivided into four sections, namely, 
chemo taxis, swarming, reproduction, and elimination and 
dispersal. We will use following nomenclature for dif-
ferent parameters of BFO. 

S : Number of bacteria to be used for searching the 
total region: 

isN : Number of input sample 
p : Number of parameter to be optimized 

sN : Swimming length after which tumbling of bacte-
ria will be undertaken in a chemotactic loop 

cN : Number of iterations to be undertaken in a che-
motactic loop. Always 

reN : Maximum number of reproduction to be under-
taken 

edN : Maximum number of elimination and dispersal 

events to be imposed over the bacteria. 
edP : Probability with which the elimination and dis-

persal will continue. 
( )C i : Run length unit 

For initialization, we must choose , , , , ,c s reP S N N N  
,ed edN P  and the ( ) , 1, 2,C i i S=  . In case of swarming, 

we will also have to pick the parameters of the cell-to-cell 
attractant functions; here this paper uses the parameters 
given above. Also, initial values for the , 1, 2,i i Sθ =   
must be chosen. Choosing these to be in areas where an 
optimum value is likely to exist is a good choice. Alter-
natively, we may want to simply randomly distribute them 
across the domain of the optimization problem. The al-
gorithm that models bacterial population chemo taxis, 
swarming, reproduction, elimination, and dispersal is 
given here (initially, 0j k l= = = ). For the algorithm, 
note that updates to the iθ automatically result in updates 
to P . Clearly, we could have added a more sophisticated 
termination test than simply specifying a maximum 
number of iterations. 

Elimination-dispersal loop: 1l l= +  
Reproduction loop: 1k k= +  
Chemo taxis loop: 1j j= +  
For 1,2,i S=   take a chemo tactic step for bacte-

rium i  as follows. 
Compute ( ), , ,J i j k l  (i.e., add on the cell-to-cell at-

tractant effect to the nutrient concentration). 
Let ( ), , ,lastJ J i j k l=  to save this value since we may 

find a better cost via a run. 
Tumble: Generate a random vector ( ) Pi R∆ ∈  with 

each element ( ) , 1, 2, ,m i m p∆ =  , a random number on 
[–1, 1]. 

Move 

( ) ( ) ( ) ( )
( ) ( )
11, , , ,i i

t
j k l j k l c i i

i i
θ θ+ = + ∆

∆ ∆
 This 

results in a step of size ( )c i  in the direction of the tum-
ble for bacterium i . 

Compute ( ), 1, ,J i j k l+  and then let, 

( )
( ) ( ) ( )( )

, 1, ,

, 1, , 1, , . 1, ,i
cc

J i j k l

J i j k l J j k l P j k lθ

+ =

+ + + +
 

Swim (note that we use an approximation since we de-
cide swimming behavior of each cell as if the bacteria 
numbered { }1,2 i  have moved and { }1, 2i i s+ +   
have not; this is much simpler to simulate than simulta-
neous decisions about swimming and tumbling by all 
bacteria at the same time): 

Let 0m =  (counter for swim length). 
While sm N<  (if have not climbed down too long) 
Let 1m m= +  
If ( ), 1, , lastJ i j k l J+ <  (if doing better), 
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Let ( ), 1, ,lastJ J i j k l= +  and let 

( ) ( ) ( ) ( )
( ) ( )
11, , , ,i i

t
j k l j k l c i i

i i
θ θ+ = + ∆

∆ ∆
 and 

use this ( )1, ,i j k lθ +  to compute new ( ), 1, ,J i j k l+  

as we did in above step. 
Else, let sm N=  this is the end of the while statement. 
Go to next bacterium ( )1i +  if i S≠  (i.e., go to b) to 

process the next bacterium). 
If cj N≤ , go to step 3. In this case, continue chemo 

taxis, since the life of the bacteria is not over. 
Reproduction: 
For the given k and l, and for each 1,2,i S=  let 

( )1
1 , , ,cNi

health jJ j i j k l+

=
= ∑  be the health of bacterium i  

(ameasure of how many nutrients it got over its lifetime 
and how successful it was at avoiding noxious substances) 
Sort bacteria and chemo tactic parameters ( )c i  in order 
of ascending cost healthJ  (higher cost means lower health). 

The rS  bacteria with the highest healthJ  values die 
and the other rS  bacteria with the best values split (and 
the copies that are made are placed at the same location as 
their parent). 

If reK N≤  go to step 2. In this case, we have not 
reached the number of specified reproduction steps, so we 
start the next generation in the chemo tactic loop. 

Elimination-dispersal: for 1,2,i S=  , with probabil-
ity edP , eliminate and disperse each bacterium (this keeps 
the number of bacteria in the population constant). For 
doing this, if we eliminate a bacterium, simply disperse 
one to a random location on the optimization domain. 

If edI N≤  then go to step 1; otherwise end. 

3.2.2. Ant Colony Optimization 
Ant colony optimization (ACO) is a population-based 
search technique working constructively to solve opti-
mization problems by using principle of pheromone in-
formation. This is an evolutionary approach where several 
generations of artificial agents in a cooperative way 
search for good solutions. These agents are initially ran-
domly generated on nodes, and stochastically move from 
a start node to feasible neighbor nodes. While in the 
process of finding feasible solutions, agents collect and 
store information in pheromone trails. Agents can release 
pheromone online while building solutions. Also, the 
pheromone will be evaporated in the search process to 
avoid local convergence and to explore more search areas. 
Then after, additional pheromone is deposited to update 
pheromone trail offline so as to bias the search process in 
favor of the currently optimal path. The pseudo code of 
ant colony optimization is stated as [20]: 

Procedure: Ant colony optimization (ACO) 
Begin 

While (ACO has not been stopped) do 
Agents_generation_and_activity(); 
Pheromone_evaporation(); 
Daemon actions(); 
End; 

End; 
In this ACO, agents find solutions starting from a start 

node and moving to feasible neighbor nodes in the process 
of Agents_generation_and_activity. While in the process, 
information collected by agents is stored in the so-called 
pheromone trails. In this process, agents can release 
pheromone along with building the solution (online 
step-by-step) or while the solution is built (online de-
layed). An agent-decision rule, made up of the pheromone 
and heuristic information, governs agents_ search toward 
neighbor nodes stochastically. The thk  ant at time t po-
sitioned on node r  move to the next node s with the 
rule governed by 

( )
( ){ } 0arg max

k
ru ruu allowed t

t when q q
s

S otherwise

α βτ η
=

   ≤  = 


  (15) 

where ( )ru tτ  is the pheromone trail at time t , ruη  is 
the problem-specific heuristic information, a is a para-
meter representing the importance of pheromone infor-
mation, β  is a parameter representing the importance of 
heuristic information, q  is a random number uniformly 
distributed in [0, 1], 0q  is a pre-specified parameter 
( 00 1q≤ ≤ ), allowedk(t) is the set of feasible nodes cur-
rently not assigned by ant k  at time t , and S  is an 
index of node selected from allowedk(t) according to the 
probability distribution given by 

( )
( )

( )
( )

( )

0
k

rs rs
kk

rs rurs
u allowed t

t
if s allowed t

tP t

otherwise

α β

β

τ η
τ η

∈


∈= 




∑ (16) 

Pheromone_evaporation is a process of decreasing the 
intensities of pheromone trails over the course of time. 
This process has been used to avoid locally convergence 
and to explore more search space. Daemon actions may 
or may not be used in ant colony optimization, and they 
are often used to collect useful global information by 
depositing additional pheromone. In the original algo-
rithm of [20], there is a scheduling process for the above 
three processes. This is to provide freedom for conduct-
ing how these three processes should interact in ant co-
lony optimization and other approaches. 

4. Simulation Results 
To test the effectiveness of the proposed equalizer, a real 
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symmetric channel impulse response with an impulse 
response considered as: 

( ) 1 20.2887 0.9129 0.2887H z z z− −= + +       (9) 

Transmitted signal constellation was set to {± 1} 
keeping the transmitted power unity. Co-channel Inter-
ference was treated as noise. For simulation the training 
data consisted of 8 random values of p , and 25 random 
values of n  (including 0n = , and 256n = ). 

For the simulations, optimization parameters chosen 
as: 

8S = ; 100isN = ; 8p = ; 3sN = ; 5cN = ; 

30reN = ; 10edN = ; 0.25edP = ; ( ) 0.075C i =  

For the simulations, we considered three cases. In first 
case, detected signal was feedback to classifier for 
weight updating of neurons similar to that in [1]. In 
second case, detected signal was optimized with BFO 
and send back to classifier as feedback signal for updat-
ing the neurons. In third case, detected signal was opti-
mized with ACO and send back to classifier as feedback 
signal for updating the neurons. Figures 2 and 3 respec-
tively shows Mean square Error (MSE) and Symbol Er-
ror Rate (SER) curves for these three cases. 

From Figure 3, it is clear that Mean square Error 
(MSE) is much lower for BFO trained MPNN than that 
of MPNN [17]. Where as, ACO trained MPNN performs 
almost similar to that of MPNN of [17]. 

From Figure 4, it is shown that Equalizer with an op-
timizer outperforms the equalizer [17] without optimizer. 
Also it is interesting to see the comparison between two 
optimization strategies used. Here BFO performs better 
than ACO. 

 

 

Figure 3. MSE for MPNN [17], BFO trained and ACO 
trained equalizer. 

 
Figure 4. SER for MPNN [17], BFO trained and ACO 
trained equalizer. 
 
Table 1. Computational Complexity of different equalizers. 

Equalizer Additions Multiplications 

MPNN N M 

MPNN trained 
with ACO N + M/2 N/2 + M 

MPNN trained 
with BFO 1.6 N 2 M 

 
Though the proposed equalizer outperforms MPNN 

equalizer without optimization, but with affordable in-
crease in computational complexities. This is because of 
accommodating the optimization algorithms. Table 1 
compares this having MPNN as base. It is also seen that 
though BFO performs better than ACO, comes with 
larger complexity. 

5. Conclusions 
This paper proposed a novel equalizer where a hybrid 
structure of two multi-layer neural networks acts as a 
classifier to classify the detected signal pattern. The 
neurons were embedded with optimization algorithms. 
Simulation results prove the superior performance ofthe 
proposed equalizer. Works reported in this paper can also 
be extended to other optimization algorithms like PSO, 
DEPSO etc, also can be tested with hybrid algorithms 
developed using BFO, ACO, PSO etc. 
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