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ABSTRACT 

In demanding for repair items or standard products, customers sometimes require multiple common items. In this study, 
the waiting time of demand which requires multiple items under base stock policy is analyzed theoretically and numeri- 
cally. It is assumed that the production time has an exponential distribution and the demand is satisfied under a FCFS 
rule. Each demand waits until all of its requirements are satisfied. An arriving process of demand is assumed to follow a 
Poisson process and the numbers of required items are independent and generally distributed. A method for deriving 
waiting time distribution of demand is shown by using methods for computing MX/M/1 waiting time distribution and 
for deriving the distribution on the order corresponding to the last item the current customer requires. By using the ana- 
lytical results, properties of waiting time distribution of demand and optimal numbers of base stocks are discussed 
through numerical experiments. 
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1. Introduction 

It is important for production and inventory systems to 
attain the minimal inventory and shortage costs. In Zip- 
kin [1] many inventory and production policies are dis- 
cussed. As an inventory policy in production and inven- 
tory systems with stochastic demand, a base stock policy 
is important and well-known. Under this policy, the total 
number of work-in-process and finished items in the sys- 
tem retains constant. That is, when the demand arrives at 
the same amount of products, the demand requires are 
ordered at the same time, and if there are finished items 
enough to satisfy the demand, then it is satisfied, and oth- 
erwise it waits for the completion of processing items. 

The production and inventory system with demand re- 
quiring multiple items under base stock policy has the 
following two types. First is the model in which the de- 
mand is decomposed to multiple units each of which cor- 
responds to each item required, and each unit is satisfied 
immediately when this item is produced. This is the case 
that multiple demands arrive at the system at the same 
time. It is found when a retailer orders items on multiple 
customers and each customer is satisfied when the item 
on his order is produced. The second case is that each  

customer requires multiple items and orders them to the 
system. In this case, the customer is satisfied when all 
items she/he orders are produced. For example, if some 
products fail and repair parts are required, then multiple 
parts are needed for repair.  

In the first case the waiting time for each unit has been 
analyzed. The arrival process is assumed to be a com- 
pound Poisson process, in which the interarrival time of 
demand forms Poisson process and the numbers of arri- 
vals at the same time have the same probability function 
and they are mutually independent. In Feeney and Sher- 
brooke [2], the waiting time distribution of the demand is 
analyzed, and recently in Zhao [3] the network with mul- 
tiple production and inventory systems is analyzed.  

In the second model, Higa et al. [4] derive the waiting 
time distribution of demand when a probability mass 
function of items the demand requires is a geometric dis- 
tribution, which is not practical in many situations. In the 
other model, Ko et al. [5] analyze an approximate lead 
time distribution in an assemble-to-order production sys- 
tem. 

In this study, the waiting time distribution of demand, 
in the second model with a general distribution on the 
numbers of items the demand requires, is analytically 
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derived. The expression of the MX/G/1 waiting time dis- 
tribution with service time distribution in some class, 
which is discussed in Chandhiry and Gupta [6], and the 
probability distribution on the order unit corresponding 
to an item each unit of the demand requires, which is 
obtained in Zhao [3], are used in our analysis. The ana- 
lytical method for deriving the waiting time distribution 
of demand is developed. Through numerical experiments 
properties of the waiting time distributions are discussed. 
It is used for finding the optimal number of base stocks, 
which is a minimal number of base stocks satisfying the 
condition that the fraction of demand who waits for items 
for period less than or equal to a predetermined time 
must be greater than a pre-specified value. 

The organization is as follows. In Section 2, the model 
analyzed in this paper is described. In Section 3, the 
waiting time distribution for each demand is analyzed 
theoretically. In Section 4, the numerical analysis is 
given and Section 5 concludes the paper. 

2. Model Description 

2.1. Model 

A production and inventory system is considered with a 
single product and demands for requiring multiple items. 
The number of items each demand requires is stochastic 
and has distribution pn = P(X = n), n = 1, 2,···, U, where 
U is its maximal size. The expectation is denoted by E[X]. 
The sizes of items which successive demands require are 
mutually independent, and demand arrivals form a Pois- 
son process with rate λ. As a result, the arrival process on 
item requirements forms a compound Poisson process.  

The system follows a base stock policy. Figure 1 illus- 
trates the system. The number of base stock is denoted by 
s. When the demand arrives and requires multiple items, 
the system orders the same number of items for produc- 
tion. At the same time, if there are items enough for the 
demandto require, then it is fulfilled immediately, and it 
receives items and leaves the system. If it is not enough 
or the other demand waits for items, then it waits for all 
items which it will receive to be processed andplaced at 
the inventory. Note that the demand is fulfilled under a 
first come first served rule.  

In the following, it is assumed that each demand con- 
sists of multiple units, each of which requires one fin- 
ished item.Units are numbered 1, 2, ···, n when demand 
takes n order units, and unit 1 means the first unit of the 
demand, unit 2 means the second unit of the demand, and 
so on. The unit n is called the last unit. 

When an order is received, a production process pro- 
duces items. If there are multiple order units, each unit 
waits for production in a queue. The processing time is 
mutually independent and identically exponentially dis- 
tributed with rate μ. Therefore, the units in the production  

 

Figure 1. Production and inventory system under a base 
stock policy (s = 2). 
 
process form an MX/M/1 process with arrival rate λ, the 
batch size distribution pn and exponential service rate μ. 
Here it is assumed that   1E X    , which as- 
sures that the number of orders waiting for process is 
finite almost surely.  

The objective of this paper is to analytically derive the 
waiting time distribution of demand in a steady state, that 
is, the time interval from the demand arrival epoch to the 
finishing epoch of process for all units satisfying this 
demand.  

2.2. Waiting Time of Demand 

The relations among waiting time of demand, interarrival 
time of demand and processing time of items are dis- 
cussed. They are illustrated in Figure 2. Specific demand 
is fulfilled and departs the system when all units on the 
demand are satisfied. The waiting time of the demand is 
defined as the sojourn time of specific demand from its 
arrival to its departure when all units are fulfilled. We 
make attention to the last unit of the demand (which is 
painted in black in Figure 2). This order unit is satisfied 
when the processing of product corresponding to the s-th 
previous unit from this unit is completed, because the 
system is under base stock policy with base stock s.  

The following notations are used: 
W: the waiting time of specific demand in steady state, 

n : the interarrival time from the (n − 1)st demand to 
the nth demand numbered backward from the specific 
demand (n = 1, 2, ···). 

Xn: the batch size of units on the nth demand backward 
before the specific demand, 

,n m : the processing time on the mth unit of the nth 
demand backward from the specific demand. (m = 1, 2, 
···, U, n = 1, 2, ···). 

S

Wq: the time interval from the arrival time of order, 
which includes the s-th previous unit from the last unit of 
the specific demand, to the start of processing on the first 
unit of this order. 

Note that Wq depends only on the arrival process be- 
fore this order arrival, and thus Wq and ,n m  are inde- 
pendent of { i

S
 , i = 1, 2, ···, n}, and from the assumption 

of compound Poisson process, { i , i = 1, 2, ···n} and  
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Figure 2. Relations among waiting time of demand, inter- 
arrival time of demand and processing time of items. 
 
{Xi, i = 1, 2, ···, n} are also mutually independent. 

3. Analysis of Waiting Time of Demand 

The N(k)-th demand backward before the specific de- 
mand includes the order on the item which the k-th unit 
of the specific demand receives, and M(k) denote the 
marked number of this unit in the N(k)-th demand. From 
the total probability law, we have 
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where X0 is the size of units of the specific demand. 
Since W is independent of X0 when M(k) and N(k) are 
given, it follows that 
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As shown in Figure 2, the waiting time of the specific 
demand W is equal to Wq, the waiting time of the corre- 
sponding order which includes the unit which processes 
the product of specific demand, plus the totalservice time 
on requirements in front of this unit, minus the interarri- 
val time between the demand and this order. That is,  
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In the following, this distribution is analyzed theoreti- 
cally.  

3.1. MX/M/1 Waiting Time Distribution 

From the result on MX/M/1 queue waiting time distribu- 
tion analyzed in Chandhiry and Gupta [6], in the model 
of this paper it is derived that 
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If this equation has z pairs of conjugate complex 
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3.2. Analysis of Waiting Time Distribution  

When n = 0, then ,
1

m

n i
i

S

  (1 ≤ m ≤ U) follows the Er- 

lang distribution. Thus for t ≥ 0 
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This leads to the following density function. 
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where if n = 1 the first term on the right hand is zero. 
2) When x<0, it follows that 
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3.3. Probability on Position of the Corresponding  
Order and Unit  

The probability on the position of the corresponding or- 
der and unit satisfying the last unit of the specific de- 
mand can be obtained by Zhao [3], which is given by 
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where  is a probability generating function of 
the k-fold convolution of p(n). 

 k z

From the above equations derived in Sections 3.2 to 
3.3, the waiting time distribution of the demand in the 
steady state can be obtained by Equation (1). 

4. Examples  

In this section waiting times and optimal base stocks are 
illustrated through examples. It is set as = 1  and the 
maximal size is U = 3 through examples. 

Example 1 
P1 = 0.3, P2 = 0.4, P3 = 0.3, E[X] = 2, λ = 0.4, ρ = 0.8; 
Example 2  
P1 = 0.1, P2 = 0.8, P3 = 0.1, E[X] = 2, λ = 0.4, ρ = 0.8; 
Example 3 
P1 = 0.3, P2 = 0.4, P3 = 0.3, E[X] = 2, λ = 0.45, ρ = 0.9; 
Example 4 
P1 = 0.1, P2 = 0.3, P3 = 0.6, E[X] = 2.5, λ = 0.32, ρ = 

0.8. 
The waiting time distributions of demand are derived 

by the analytical method obtained in Section 3 and 
Wolfram Mathematica 8.0. For example, in example 
1with base stock s = 1, the waiting time distribution of 
demand is derived as  

  1.23993

1.238

1.238

= 1 0.94169

0.0016883 cos 0.28344

0.037654 e sin0.28344

t

t

t

P W t e

e

t







 





t , 

where there are other terms such as e−t, te−t, and t2e−t on 

the right hand side but they are removed because their 
coefficients are negligible small as their absolute values 
are less than 10−10. In example 1, the solutions of (2) ex- 
cept zero are −1.23800 + 0.28344i, −1.23800 − 0.28344i 
and −1.23993, where i is a purely imaginary number. In 
example 2, all solutions are real numbers, −1.54098, 
−1.14098 and −0.14098. 

Tables 1 and 2 show the probabilities that the demand 
has no waiting time and those that the waiting time of 
demand is no more than 10, under base stock policies 
with base stocks 1 to 5 in examples 1 to 4, respectively. 

First the result in Example 1 is compared with that in 
Example 2, which has the same expected number of 
items required by each demand, and the same arrival rate, 
but different variances on the numbers of required items. 
As shown in Table 2, if the variance is smaller, then the 
probability that waiting time of demand is no more than 
10 is smaller. This effect is usually seen in inventory and 
queueing processes that more variance of components in 
the process leads to the greater waiting time. As Table 1 
shows, however, when s = 1 the probability that demand 
has no waiting time in Example 1 is greater than that in 
Example 2. The reason is as follows. When s = 1, if the 
unit size of the demand is 2 or 3 then the last unit of de- 
mand is fulfilled by producing the item ordered by the 
former unit of the same order, and so the demand requir- 
ing for multiple items waits for completion of processing 
almost surely. If the unit size of the demand is 1, then the 
demand is satisfied by producing the item ordered by 
some unit of the former demand, so there is a possibility 
that the demand with one unit has no waiting time. Ex- 
ample 1 has the greater probability of the demand with 
one unit than Example 2, and so the probability that the 
demand has no waiting time is greater in Example 1. 

For Example 3, which has the greater arrival rate, the 
above probabilities are much smaller than those in Ex- 
ample 1. Compared with Example 1, Example 4, which 
has the same intensity and more expected items required, 
leads to more waiting time and the above probabilities 
become small. This is because the interarrival times on 
the orders have more variances, and the process on the 
number of finished items in inventory alsoluctuates more. 
Thus Example 4 has more chances that when the demand 
arrives there is no item in inventory and it waits for fin-
ished items.  

Table 3 shows the probabilities that demand with each 
size of units has waiting time no more than 10 for s = 1, 
2, 3 in Example 1. When the size is greater, the probabil- 
ity is smaller, because the demand with more units has to 
wait for completion of the item ordered by recent de- 
mand or the latter unit, compared with the demand with 
one unit. Note that the probabilities for pairs (s, k) are the 
same when the value of s-k is the same. It is because 
when s-k is the same, the last unit of the specified de-  
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Table 1. Probabilities that demand has no waiting time. 

s Example 1 Example 2 Example 3 Example 4

1 0.06000 0.02000 0.03000 0.02102 

2 0.16400 0.18800 0.08350 0.09081 

3 0.28240 0.28240 0.14703 0.24530 

4 0.36608 0.38144 0.19651 0.31880 

5 0.44518 0.46176 0.24601 0.40002 

 
Table 2. Probabilities that demand has waiting time no 
more than 10. 

s Example 1 Example 2 Example 3 Example 4

1 0.72747 0.74702 0.47390 0.70906 

2 0.76126 0.78044 0.50612 0.74460 

3 0.79087 0.80944 0.53638 0.77515 

4 0.81680 0.83462 0.56477 0.80276 

5 0.83951 0.85646 0.59143 0.82672 

 
Table 3. Probabilities that demand which has 1/2/3 units 
has waiting time no more than 10. 

s 1 unit 2 units 3 units 

1 0.76251 0.72890 0.69053 

2 0.79196 0.76251 0.72890 

3 0.81776 0.79196 0.76251 

 
mand with k units requires the same item under the base 
stock policy with s base stocks. For example, demand 
with 2 units requires the item ordered by the last unit of 
its previous demand under s = 2, which is the one that 
demand with 3 units requires under s = 3. 

Table 4 shows the probabilities that the waiting times 
are no more than t for t = 0, 5, 10, 15, 20 in cases s = 1 to 
5 of Example 1. As s increases, the probabilities also 
increase, but the differences are the smaller when t is 
greater. 

Table 5 shows that the optimal number of base stocks 
is also derived in Example 1. In this example the optimal 
number of base stocks means the minimal number of 
base stocks with which the probability that waiting time 
of demand is no more than 10 is greater than 0.8. Table 5 
shows the optimal base stocks s* for various arrival rates. 
This shows that the optimal base stock is small when ρ is 
small, but as arrival rates increase from 0.7 to 0.9 the 
numbers of optimal base stock increase rapidly. This 
shows that the optimal number of bases stocks highly 
depends on the arrival rate when ρ is high.  

It is noted that the computation time for deriving the 
equation on waiting time distribution by using the 
method in Section 3 and Mathematica 8 highly depends 
on the number of base stock. For Example 1, the compu-  

Table 4. probabilities that demand has waiting time no 
more than t(t = 0, 5, 10, 15, 20) in Example 1. 

s P(W ≤ 0) P(W ≤ 5) P(W ≤ 10) P(W ≤ 15) P(W ≤ 20)

1 0.06000 0.49333 0.72747 0.85339 0.92113

2 0.16400 0.55623 0.76126 0.87157 0.93091

3 0.28240 0.61125 0.79087 0.88749 0.93948

4 0.36608 0.65945 0.81680 0.90144 0.94698

5 0.44518 0.70168 0.83951 0.91367 0.95355

 
Table 5. Optimal numbers of base stocks in Example 1. 

  0.5 0.6 0.7 0.8 0.9 

s* 1 1 1 4 17 

 
tation time for deriving the waiting time for s = 1 is about 
10 seconds, but the computation time for deriving the 
waiting time for s = 17 is about 2 hours when it is com- 
puted on a PC with Core i7-2620M (2.7 GHz) and 8 GB 
RAM. This is because when s = 17, there are more than 
1000 terms to be computed for deriving the distribution.  

5. Conclusions 

In this study, the waiting time distribution of demand 
which requires random numbers of items is analyzed 
theoretically under the base stock policy. Using the ana- 
lysis, numerical examples give the properties of the dis- 
tributions, and optimal numbers of base stocks in a sim-
ple problem is discussed. 

This study does not consider the inventory and back- 
log costs on demand, because the analysis of the ex- 
pected amounts on inventory of items and backlogs of 
demand seems difficult. For example, the order unit as- 
signed to a specified item is random, and the unit size of 
the order including this unit is also random. Thus, the 
holding time distribution will be much complicated and 
the analysis of such optimization problems is left in fu- 
ture. The analysis of the process under the other types of 
production/inventory policies is also left for future re- 
search.  
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