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ABSTRACT 

Power-law ( ) and exponential power-law 
( ) functional forms model activity metabo- 
lism ( U ) for fully submerged swimming ani- 
mals, and are special cases of the power-law 
polynomial equation,  
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in which U  is the observed total metabolic 
rate measured at an observed steady swimming 
speed, . The relationship between the meta- 
bolic efficiency of steady swimming and the 
exponents of U  is addressed in this paper to 
establish the use of  (for c ) and  (for 

) as optimal efficiencies for comparing the 
hydrodynamic and muscle metabolic efficien- 
cies among fully submerged animals that en- 
gage in steady swimming activities. The meta- 
bolic efficiency of steady swimming is trans- 
formed into its ideal form (

M
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η ) from which    
the optimal hydrodynamic efficiency ( ) 
and the optimal muscle metabolic efficiency 
(

ˆ
h =η c-1

ˆ =mη -1ψ ) are derived. These optimal efficien- 
cies are therefore ideal metabolic efficiencies 
measured at different optimal steady speeds. 
Subsequently, linear ( ) and exponential 
( ) models are approximations with diver- 
gent optimal muscle metabolic efficiencies 
(  and , respectively), but with a 
similar optimal hydrodynamic efficiency (
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1. INTRODUCTION 

The activity metabolism ( UM ) of a swimming animal  

is the observed rate of total metabolic energy measured 
at an observed steady swimming speed, . The func- 
tional forms that model U

U
M  for a fully submerged 

animal are exponential ( ) and power law ( ) 
[1-7]. Both forms, however, are special cases of the 
power-law polynomial equation [8], 
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  (1) 

in which the coefficients (a, b, c, and  ) are hydrody- 
namical and physiological descriptors (see [7,8] for de-
tails). Note:  

1 1and .b q a      

An important question that has not been addressed in 
the literature is how the swim-speed exponent (c) and the 
metabolic exponent ( ) analytically relate to efficien-  
cies. Experimental evidence suggests that c in 

1UM
 

  

is a useful coefficient for comparing the swimming effi- 
ciency among different animals [9-14]. Papadopoulos [8] 
proposes that c in Equation (1) relates inversely to the 
propulsive (or hydrodynamic) efficiency of steady swim- 
ming and that ψ relates inversely to the metabolic con- 
version (or muscle metabolic) efficiency of steady swim- 
ming. But there is no analytical formulation that explic- 
itly shows how c or ψ relates to efficiency. Although 
there is experimental evidence that suggests an inverse 
association between c and swimming efficiency, the de- 
finitive correspondence should be derived analytically 
from theory. And this also applies to the metabolic ex- 
ponent, ψ.  

This paper addresses the analytical relationship be-
tween the metabolic efficiency of steady swimming and 
the exponents of Equation (1). The analysis confirms that 

1c  (for c ) is the optimal hydrodynamic efficiency 
of an animal in its ideal steady swimming state and that 

1

1   (for 1  ) is the optimal muscle metabolic effi- 
ciency of an animal in its ideal steady swimming state. 
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These optimal efficiencies can be used to compare the  
hydrodynamic and muscle metabolic efficiencies among 
fully submerged animals that engage in steady swimming 
activities. Furthermore, the optimal muscle metabolic 
efficiency ( 1  ) determines the functional form of UM . 

2. RESULTS 

The metabolic efficiency of steady swimming can be 
expressed as 

U
U

U

P

M
                  (2) 

where U  is the rate of useful metabolic energy re- 
quired to swim at U , and U

P
M  is the rate of total 

metabolic energy generated by swimming at U . For 
convenience, let U  be the rate of useful energy re- 
quired to overcome the hydrodynamic drag. Then U  is 
the drag power, which is proportional to the product of 
the power coefficient (

P
P

pC ) and  cubed: U
3

U pP C U  

where pC  for fully submerged animals that engage in 
either sustained steady swimming or burst steady swim- 
ming has been experimentally confirmed to be a power 
law with respect to the Reynolds number (Re) [15-17]: 

Rek
pC                  (3) 

Since Re is proportional to , U

Re U  

and that U  is a constituent of UP M , the drag power 
( ) has the following identity (see [7], Appendix 1): UP

.c
UP bU                 (4) 

In addition to the experimental confirmation of Equa- 
tion (3), power laws conform to standard hydrodynamic 
laws in which the logarithm of U  and the logarithm of 

 are linearly related [7,12,15,16]: 
P

U

log log logUP b c  U  

By substituting Equations (1) and (4) into Equation (2), 

U  then has a stationary value (or a maximum) meas- 
ured at a particular steady speed (see Figure 1): as  
increases from 0

U
0  , U  increases and then reaches 

its maximum, after which U  decreases asymptotically 
towards zero (Figure 1). The steady speed, at which 

U is maximized, can be determined by 'U  (differen-
tiating Equation (2) with respect to ), U ' 0U   (eq- 
uating 'U  to zero), and then solving for : U
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Equation (5), which is an optimal U , is also the 
steady speed at which the metabolic cost of conversion  

 

Figure 1. An example of the actual metabolic efficiency (Equa- 
tion (2)) plotted with respect to the steady swimming speed (U). 
The values of the coefficients used to construct this example 
are as follows: a = 0.05, b = 0.5, c = 2.5, and   = 1.9. Note 

that U  initially increases with increasing U and then reaches 

a maximum at Umc, after which U  decreases asymptotically 

towards zero. 
 
( UH ), 
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is minimized. Swimming at mcU  thus optimizes the 
metabolic efficiency of the muscles used for steady 
swimming. 

Substituting mc  for U  in Equation (2) yields the 
maximum metabolic efficiency of steady swimming: 

U
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    (6) 

Note that Equation (6) is exclusively dependent on the 
metabolic exponent, ψ: as ψ increases, m  decreases. 
This equation, however, is not applicable for comparing 
the optimal muscle metabolic efficiency among different 
animals due to the fact that the equation is not a ho-  
mogenous function of ψ: comparing any two different 
values of m , in which ψ can vary only with respect to 
different animals, is not evenly weighted. Let 1  and 

2 1  be two different values of ψ for two different 
animals. Then  1m   and  2m    are evenly com- 
parable if    1 1m m      such that the weight, 
 , is equivalent to the coefficient, λ. And that is not the 
case with Equation (6). Subsequently, homogenizing m  
would ensure that any two of its different values is 
evenly comparable, which would be applicable for com- 
paring the optimal muscle metabolic efficiency among 
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different animals. This can be accomplished by trans-
forming Equation (1) such that only one functional form 
is associated with metabolic efficiency. By raising the 
left-hand and right-hand side of Equation (1) to the 1   
power and multiplying that result by a  (in which 

11    ), the solution becomes 
1ˆ

U U UM a M a P    .           (7) 

Equation (7) is an important variable: ˆ
UM  is the 

ideal total metabolic rate because it is the sum of a (the 
standard metabolic rate) and U , where a (= 0P M̂ ) de-
scribes the minimum metabolic rate required to sustain 
physiological maintenance [2,3], while  c

UP bU  
describes the rate of useful metabolic energy required to 
overcome the hydrodynamic drag. Since Equation (5) 
must be satisfied, the inequality, 

ˆ
U UM M  

implies that an actual animal could never achieve ˆ
UM  

but only in its ideal steady swimming state, that is, only 
as the limit of UM  as m  approaches 1. By substitut- 
ing ˆ

UM  for UM  in Equation (2), the ideal metabolic 
efficiency of steady swimming, 

ˆ
ˆ
U

U

U

P

M
                   (8) 

can thus be compared with U  (see Figure 2). Notice 
that since ˆ

UM  (for any 1  ) is less than UM , Û  
must be greater than U  (Figure 2). 

Unlike Equation (2), Equation (8) is expressed as one 
functional form, the result of which yield homogeneous 
functions that are suitable for comparing the optimal 
efficiencies among different animals. In particular, sub-
stituting  for U  in Equation (8) yields mcU

1
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Equation (9) is the optimal muscle metabolic effi-
ciency of an animal in its ideal steady swimming state 
(see Figure 2). Specifically, ˆm  is the ideal metabolic 
efficiency measured at the steady speed— mc —at 
which 

U

U  is maximized (or UH  is minimized). As a 
result, ˆm  can be used to compare the optimal muscle 
metabolic efficiency among different animals that engage 
in steady swimming activities. 

The next part to this analysis is to determine the opti-
mal hydrodynamic efficiency of an animal in its ideal 
steady swimming state. The product of the hydrodynamic 
efficiency and muscle metabolic efficiency yields the 
overall (or energetic) efficiency of steady swimming 
[3,9]. An important variable that accounts for the ener-
getic efficiency of steady swimming is the metabolic cost 
of transport ( UF ) [18-20]: 

 

Figure 2. An example of the metabolic efficiency plotted with 
respect to the steady swimming speed (U). The solid line is the 
actual efficiency, U  (= Equation (2)), whereas the dotted line 

is the ideal efficiency, ˆ
U  (= Equation (8)). The values of the 

coefficients used to construct this example are as follows: a = 
0.05, b = 0.5, c = 2.5, and   = 1.9. The optimal metabolic 
efficiency of the muscles used for steady swimming is the ideal 
efficiency measured at Umc. Note that ˆ

U  continually in-

creases asymptotically towards 1. 
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Equation (10) describes the actual total metabolic en- 
ergy generated per unit of distance traveled [18-20], and 
has, like UH , a minimum measured at a particular . 
By differentiating U

U
F  with respect to U , equating UF   

to zero, and then solving for U , the steady speed that 
minimizes Equation (10) is (see [8]) 
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Equation (11), like Equation (5), is an optimal U . 
Thus, swimming at mtU  optimizes the energetic effi-
ciency of steady swimming. It should be noted that Equa-  
tion (11) is traditionally derived by equating 

1UF
 
  to  

zero and then solving for  (see [21]), though ψ is, in 
fact, a coefficient and thus should not be constrained to 
any value [8]. Also, Weihs’ [22] optimal cruising speed, 
in which 

U

pC  is assumed not to vary with  (or Re
3c c   ), is a special case of Equation (11). Such 

simplifying assumptions are not relevant to this paper. 
Substituting  for U  in Equation (8) yields mtU

1
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c
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c
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bU

ca bU

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           (12) 
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Equation (12) is the optimal energetic efficiency of an 
animal in its ideal steady swimming state. Specifically, 
̂  is the ideal metabolic efficiency measured at the 
steady speed— mt —at which UU F  is minimized. 
Therefore, ̂  can be used to compare the optimal en-
ergetic efficiency among different animals that engage in 
steady swimming activities. Since the product of the hy- 
drodynamic efficiency and muscle metabolic efficiency 
yields the energetic efficiency of steady swimming (see 
[3,9]), the optimal hydrodynamic efficiency ( ˆh ) of an 
animal in its ideal steady swimming state can thus be 
determined by the ratio of ̂  to ˆm : 

ˆ 1
ˆ

ˆh
m c





   

where c is the swim-speed exponent. Alternatively, ˆh  
can be derived by differentiating the ideal cost of trans- 
port ( ÛF ), 
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and then substituting  for U  in Equation (8): ˆ
mtU

ˆ 1
ˆ .

ˆ

c
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h c
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bU
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
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As a result, Equation (14) is the ideal metabolic effi- 
ciency measured at the steady speed— —at which ˆ

mtU

ÛF  is minimized, and can thus be used to compare the 
optimal hydrodynamic efficiency among different ani- 
mals that engage in steady swimming activities. 

3. DISCUSSION 

Steady swimming is observed in animals engaging in 
ecologically important activities such as competing for 
limited resources, seeking favorable abiotic conditions, 
and migration [23-27]. During such activities, an animal 
swims at an optimal steady speed to minimize its meta- 
bolic cost. For example, during migration, an animal 
maximizes its distance per unit of total metabolic energy 
by swimming at the steady speed ( mtU ) at which the 
metabolic cost of transport ( UF ) is minimized [22,28]. 
Thus maximizing the distance per unit of total metabolic 
energy is essential for optimizing the steady swimming 
performance during migration. Equally essential, how- 
ever, is optimizing the steady swimming performance 
during activities in which maximizing distance is not 
essential. For example, while competing for limited re-  

sources within a microhabitat, an animal maximizes its 
useful metabolic energy per unit of total metabolic en- 
ergy by swimming at the steady speed ( mcU ) at which 
the metabolic cost of conversion ( UH ) is minimized. 
Hence, an animal can optimize its steady swimming per- 
formance for different activities by swimming at  
(the steady speed at which 

mtU

UF  is minimized) or mcU  
(the steady speed at which UH  is minimized). But there 
is a fundamental difference between these two objectives: 

UH , unlike UF , is dimensionless; the inverse of UH  is, 
in fact, the metabolic efficiency of steady swimming, 

U  (= Equation (2); see Figure 1). A transformation of 

U  is then formulated in order to yield optimal efficien- 
cies that are homogenous functions of c and   of dif-
ferent animals. This is particularly important when com- 
paring the optimal efficiencies among different animals. 
This transformation (see Equation (7)) yields the ideal 
metabolic efficiency of steady swimming, ˆU  (= Equa- 
tion (8); see Figure 2), for which   can be any value 
greater than 1. The ideal steady swimming state of an 
animal can thus be interpreted as a special case of Equa- 
tion (2) in which the maximum metabolic efficiency, m  
(= Equation (6)), approaches 1. 

Substituting mt  (which is the steady speed that op- 
timizes the energetic efficiency of steady swimming) for 

 in 

U

U Û  yields the optimal energetic efficiency of an 
animal in its ideal steady swimming state and is identical 
with Equation (12): 

1
ˆ , 1c

c
 

 ,   

where c and   are the exponents in Equation (1), which 
describes the activity metabolism ( UM ) of a fully sub- 
merged animal engaged in steady swimming. The steady 
speed that optimizes the metabolic efficiency of the mus- 
cles used for steady swimming— mcU —is then substi- 
tuted for  in U Û  to yield the optimal muscle meta- 
bolic efficiency of an animal in its ideal steady swim- 
ming state (see Figure 2), 

1
ˆ , 1m 


,   

which is identical with Equation (9). Since the energetic 
efficiency is the product of the hydrodynamic and muscle 
metabolic efficiencies [3,9], the optimal hydrodynamic 
efficiency ( ˆh ) is simply the ratio of ̂  to ˆm : 

ˆ 1
ˆ , 1

ˆh
m

c
c





 ,    

which can also be derived by substituting into Û  the 
steady speed ( ) that optimizes the hydrodynamic 
efficiency of an animal in its ideal steady swimming state 
(see Equations (13) and (14)). The optimal efficiencies, 

ˆ
mtU

ˆh  and ˆm , can thus be used to compare the hydrody-

Copyright © 2013 SciRes.                                                                    OPEN ACCESS 



A. Papadopoulos / Open Journal of Animal Sciences 3 (2013) 314-320 318 

namic and muscle metabolic efficiencies among fully 
submerged animals that engage in steady swimming ac- 
tivities. Furthermore, the fact that c and   are inde-
pendent of the scale of UM  and U  further validates 
the use of ˆh  and ˆm  as ideal efficiencies for com-
paring the optimal hydrodynamic and optimal muscle 
metabolic efficiencies among different animals. 

It is important to note that neither c nor   can equal 
exactly 1; otherwise, ˆh  or ˆm  is undefined (see 
Equations (5) and (13)). As a result, the first-degree 
power-law functional form of UM  can be only ap-
proximated: 

ˆ 1U mwhen cbUM a   

Also, since the value of   is estimated by fitting 
Equation (1) to activity metabolism,   cannot approach 
infinity, because infinity is not a number. The curve-fit 
estimate of  , however, can be a value much greater 
than 1. And so, the exponential power-law functional 
form of UM  can be only approximated [8]: 

ˆU m   whqU c
e en 1M a  

Notice that the functional form of UM  (= Equation 
(1)) depends on the value of ˆm ; this implies that the 
power-law ( ) and exponential power-law ( ) 
models suggest different biology with regard to the 
metabolic conversion (or muscle metabolic) efficiency of 
steady swimming: a very high value of 

ca bU qUc
ae

ˆm  (i.e., when 
ˆ 1m  ) implies that the activity metabolism of an animal 

is best modeled as a first-degree power-law polynomial, 
whereas a very low value of ˆm  (i.e., when ˆ 1m  ) 
implies that the activity metabolism of an animal is best 
modeled as an exponential power law. Of course, the 
linear form, 

ˆ ˆd U h  bU when 1 an 1mM a       

which is a special case of , is approximated 
when 

cUa b
ˆh  and ˆm  are both very high values. And the 

exponential form, 

ˆ ˆ1qUM a   
c

 U e  when 

ae

 and h 1m  

which is a special case of , is approximated when qU

ˆh  is a very high value and ˆm  is a very low value. In 
essence, the linear form of UM  suggests high hydro-
dynamic and high muscle metabolic efficiencies because 
it has no or little curvature with respect to . The ex-
ponential form of U

U
M , however, suggests that the two 

efficiencies are compensatory: hydrodynamic efficiency 
is very high, while muscle metabolic efficiency is very 
low; a high hydrodynamic efficiency thus compensates 
for a low muscle metabolic efficiency. 

The metabolic efficiency of steady swimming (Equa-
tion (2)) has an intimate connection with activity me-
tabolism. To understand why this is so, consider the fol-

lowing equivalence of ˆ
UM : 

1
ˆ ˆ ˆexp d e ,

ˆ
CU

U U
h

U M M
U




 
  

 
       (15) 

where  1 ln 1 0C    is the constant of integration, 
which is determined by satisfying the condition 0M̂ a . 
The left-hand side of Equation (15) is exclusively in 
terms of efficiency ( Û ) and speed ( )—two basic 
terms in hydrodynamics. Moreover, as Papadopoulos [8] 
noted, Equation (1) can be derived from Equation (15) 
simply by multiplying m

U

̂  (the optimal muscle meta- 
bolic efficiency) by ˆh  (the optimal hydrodynamic effi- 
ciency) or replacing ˆh  with ˆ ˆ ˆh m     (the optimal 
energetic efficiency): 

2
ˆ ˆexp d e ,

ˆ
CU

U UU M M
U




 
  

 
       (16) 

where the constant of integration, , is de- 
termined by satisfying the condition 0

 1
2 lnC a  

M a . Thus, 
Equation (16) is identical with Equation (1): 

 1 1ˆ 1 c
U UM a M a a bU

      

Equations (15) and (16) show analytically the unique 
relationship between activity metabolism and the meta- 
bolic efficiency of steady swimming. And so, with regard 
to efficiency, the difference between the ideal total 
metabolic rate (= Equation (7)) and the actual total meta- 
bolic rate (= Equation (1)) is the optimal muscle meta- 
bolic efficiency, ˆm ; this coefficient is clearly important 
to consider not only because it takes into account muscle 
metabolic efficiency, but also because it determines the 
functional form of UM  [8]. 

4. CONCLUSIONS 

A fully submerged animal that engages in steady 
swimming has an ideal metabolic efficiency ( Û ) from 
which the optimal efficiencies, ˆh  and ˆm , are derived 
(Equations (1)-(14)). The optimal hydrodynamic effi- 
ciency ( ˆh ) and the optimal muscle metabolic efficiency 
( ˆ

m ) are thus ideal metabolic efficiencies measured at 
the optimal steady speeds, U  and mcU , respectively 
(see Figure 2). And from hydrodynamic principles (see 
[3,9]), the product of 

ˆ
mt

ˆh  and ˆm  represents the opti- 
mal overall (or optimal energetic) efficiency ( *̂ ) of an 
animal in its ideal steady swimming state: 

1 1ˆ ˆ ˆ .h m c    
    

Although the coefficients  and 1ˆh c  1ˆm    are 
inverses of the exponents in Equation (1) and thus remain 
constant with respect to U  for any animal, they can 
indeed vary only with respect to different animals. Com- 
paring ˆh  and ˆm  among different animals requires 
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that these optimal efficiencies are homogenous functions 
of c and  : ˆh  and ˆm  are, in fact, homogenous due 
to the transformation of Equation (2) into Equation (8), 
which is the ideal form of U . Furthermore, since ˆh  
and ˆm  are inverses of the exponents in Equation (1), 
the different models of UM  exclusively arise from the 
different values of ˆh  and ˆm . 

5. ACKNOWLEDGEMENTS 

I thank the reviewers for providing comments that improved this 

manuscript. I was employed at Texas Tech University, where I inde- 

pendently wrote this manuscript and derived all of the results. Support 

for this work was provided in part by National Science Foundation 

award DEB-0616942 to Sean H. Rice. 

 

REFERENCES 

[1] Ivlev, V.S. (1960) Active metabolic intensity in salmon 
fry (Salmo salar L.) at various rates of activity. Salmon 
and Trout Comm, Int Counc Explor Sea, Copenhagen, 
213, 1-16. 

[2] Brett, J.R. (1964) The respiratory metabolism and swim- 
ming performance of young sockeye salmon. Journal of 
the Fisheries Research Board of Canada, 21, 1183-1226. 
http://dx.doi.org/10.1139/f64-103 

[3] Webb, P.W. (1974) Hydrodynamics and energetics of fish 
propulsion. Bulletin of the Fisheries Research Board of 
Canada, 190, 109-119. 

[4] O’Dor, R.K. and Webber, D.M. (1991) Invertebrate ath- 
letes: Trade-offs between transport efficiency and power 
density in cephalopod evolution. The Journal of Experi- 
mental Biology, 160, 93-112. 

[5] Hind, A.T. and Gurney, W.S.C. (1997) The metabolic cost 
of swimming in marine homeotherms. The Journal of 
Experimental Biology, 200, 531-542. 

[6] Fish, F.E. (2000) Biomechanics and energetics in aquatic 
and semiaquatic mammals: Platypus to whale. Physiolo- 
gical and Biochemical Zoology, 73, 683-698. 
http://dx.doi.org/10.1086/318108 

[7] Papadopoulos, A. (2008) On the hydrodynamics-based 
power-law function and its application in fish swimming 
energetics. Transactions of the American Fisheries Soci- 
ety, 137, 997-1006. http://dx.doi.org/10.1577/T07-116.1 

[8] Papadopoulos, A. (2009) Hydrodynamics-based functional 
forms of activity metabolism: A case for the power-law 
polynomial function in animal swimming energetics. PLoS 
ONE, 4, e4852. 
http://dx.doi.org/10.1371/journal.pone.0004852 

[9] Webb, P.W. (1993) Swimming. In: Evens, D.H., Ed., The 
Physiology of Fishes, CRC Press, Boca Raton, 47-73. 

[10] Wardle, C.S., Soofiani, N.M., O’Neill, F.G., Glass, C.W. 
and Johnstone, A.D.F. (1996) Measurements of aerobic 
metabolism of a school of horse mackerel at different 
swimming speeds. Journal of Fish Biology, 49, 854-862. 
http://dx.doi.org/10.1111/j.1095-8649.1996.tb00084.x 

[11] Pettersson, L.B. and Hedenström, A. (2000) Energetics, 
cost reduction and functional consequences of fish mor- 
phology. Proceedings of the Royal Society B, 267, 759- 
764. http://dx.doi.org/10.1098/rspb.2000.1068 

[12] Korsmeyer, K.E., Steffensen, J.F. and Herskin, J. (2002) 
Energetics of median and paired fin swimming, body and 
caudal fin swimming, and gait transition in parrotfish 
(Scarus schlegeli) and triggerfish (Rhinecanthus aculea-
tus). The Journal of Experimental Biology, 205, 1253- 
1263. 

[13] Behrens, J.W., Praebel, K. and Steffensen, J.F. (2006) 
Swimming energetics of the Barents Sea capelin (Mallo- 
tus villosus) during the spawning migration period. Jour- 
nal of Experimental Marine Biology and Ecology, 331, 
208-216. http://dx.doi.org/10.1016/j.jembe.2005.10.012 

[14] Ohlberger, J., Staaks, G. and Holker, F. (2006) Swimming 
efficiency and the influence of morphology on swimming 
costs in fishes. Journal of Comparative Physiology B, 
176, 17-25.  
http://dx.doi.org/10.1007/s00360-005-0024-0 

[15] Wu, T.Y. (1977) Introduction to the scaling of aquatic 
animal locomotion. In: Pedley, T.J., Ed., Scale Effects in 
Animal Locomotion, Academic Press, New York. 

[16] Wu, T.Y. and Yates, G.T. (1978) A comparative mech- 
anophysiological study of fish locomotion with implica- 
tions for tuna-like swimming mode. In: Sharp, G.D. and 
Dizon, A.E., Eds., Physiological Ecology of Tuna, Aca- 
demic Press, New York. 

[17] Fung, Y.C. (1990) Biomechanics: Motion, flow, stress, 
and growth. Springer-Verlag, New York. 

[18] Tucker, V.A. (1970) Energetic cost of locomotion in ani- 
mals. Comparative Biochemistry and Physiology, 34, 841- 
846. http://dx.doi.org/10.1016/0010-406X(70)91006-6 

[19] Tucker, V.A. (1975) The energetic cost of moving about. 
American Scientist, 63, 413-419. 

[20] van Ginneken, V., Antonissen, E., Müller, U.K., Booms, 
R., Eding, E., Verreth, J. and van den Thillart, G. (2005) 
Eel migration to the Sargasso: Remarkably high swim- 
ming efficiency and low energy costs. The Journal of Ex- 
perimental Biology, 208, 1329-1335.  
http://dx.doi.org/10.1242/jeb.01524 

[21] Videler, J.J. and Nolet, B.A. (1990) Costs of swimming 
measured at optimum speed: Scale effects, differences 
between swimming styles, taxonomic groups, and sub- 
merged and surface swimming. Comparative Biochemis- 
try and Physiology, 97A, 91-99. 
http://dx.doi.org/10.1016/0300-9629(90)90155-L 

[22] Weihs, D. (1973) Optimal fish cruising speed. Nature, 
245, 48-50. http://dx.doi.org/10.1038/245048a0 

[23] Plaut, I. (2001) Critical swimming speed: Its ecological 
relevance. Comparative Biochemistry and Physiology, 
131A, 41-50. 

[24] Blake, R.W. (2004) Fish functional design and swimming 
performance. Journal of Fish Biology, 65, 1193-1222. 
http://dx.doi.org/10.1111/j.0022-1112.2004.00568.x 

[25] Langerhans, R.B. (2009) Trade-off between steady and 
unsteady swimming underlies predator-driven divergence 
in Gambusia affinis. Journal of Evolutionary Biology, 22, 

Copyright © 2013 SciRes.                                                                    OPEN ACCESS 

http://dx.doi.org/10.1139/f64-103
http://dx.doi.org/10.1086/318108
http://dx.doi.org/10.1577/T07-116.1
http://dx.doi.org/10.1371/journal.pone.0004852
http://dx.doi.org/10.1111/j.1095-8649.1996.tb00084.x
http://dx.doi.org/10.1098/rspb.2000.1068
http://dx.doi.org/10.1016/j.jembe.2005.10.012
http://dx.doi.org/10.1007/s00360-005-0024-0
http://dx.doi.org/10.1016/0010-406X(70)91006-6
http://dx.doi.org/10.1242/jeb.01524
http://dx.doi.org/10.1016/0300-9629(90)90155-L
http://dx.doi.org/10.1038/245048a0
http://dx.doi.org/10.1111/j.0022-1112.2004.00568.x


A. Papadopoulos / Open Journal of Animal Sciences 3 (2013) 314-320 

Copyright © 2013 SciRes.                                                                    OPEN ACCESS 

320 

1057-1075. 
http://dx.doi.org/10.1111/j.1420-9101.2009.01716.x 

[26] Dougherty, E., River, G., Blob, R. and Wyneken, J. (2010) 
Hydrodynamic stability in posthatchling loggerhead (Ca- 
retta caretta) and green (Chelonia mydas) sea turtles. 
Zool, 113, 158-167. 
http://dx.doi.org/10.1016/j.zool.2009.10.001 

[27] Fu, S.-J., Peng, Z., Cao, Z.-D., Peng, J.-L., He, X.-K., et 
al. (2012) Habitat-specific locomotor variation among 

Chinese hook snout carp (Opsariichthys bidens) along a 
river. PLoS ONE, 7, e40791. 
http://dx.doi.org/10.1371/journal.pone.0040791 

[28] Brodersen, J., Nilsson, P.A., Ammitzbøll, J., Hansson, 
L.A., Skov, C., et al. (2008) Optimal swimming speed in 
head currents and effects on distance movement of winter 
migrating fish. PLoS ONE, 3, e2156. 
http://dx.doi.org/10.1371/journal.pone.0002156 

 
 
 
 
 

http://dx.doi.org/10.1016/j.zool.2009.10.001
http://dx.doi.org/10.1371/journal.pone.0040791
http://dx.doi.org/10.1371/journal.pone.0002156

