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ABSTRACT 

DNA microarray is a widely used technique which 
allows one to identify the genes that are similarly or 
differentially expressed in different cell types or con- 
ditions, to learn how their expression levels change in 
different developmental stages or disease states, and 
to identify the cellular processes in which they par- 
ticipate. This technology produces a large amount of 
complex data, necessitating employment of multiple 
bioinformatics and computational tools and tech- 
niques to provide a comprehensive view of the un- 
derlying biology. This review overviews methods and 
techniques which may be employed to analyze and 
interpret microarray data. The focus is primarily on 
analysis of gene expression matrices to obtain bio- 
logical insights to this end. Both supervised and unsu- 
pervised methods commonly used for expression data 
analysis have been discussed. Data visualization tech- 
niques which may be used to comprehend biological 
relevance of the data has also been discussed in 
brief. 
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1. INTRODUCTION 

DNA microarrays are microscopic arrays in which thou- 
sands of unique DNA molecules (probes) of known se- 
quences are immobilized on a solid substrate. Microar- 
rays are in principle and practice extension of hybridiza- 
tion based methods that have been used for decades to 
identify and quantitate nucleic acids in biological sam- 
ples [1]. However, microarrays are much more efficient 
and convenient to work with than DNA/RNA blotting 
membranes and hence have been widely used to monitor 
patterns of global gene expression. This technique allows 
one to identify the genes that are similarly or differen- 
tially expressed in different cell types, to learn how their 
expression levels change in different developmental 

stages or disease states, and to identify the cellular proc- 
esses in which they participate [2]. Microarray technol- 
ogy produces a large amount of complex data, transform- 
ing this data into knowledge which is a very challenging 
task, necessitating employment of multiple bioinformat-
ics and computational tools and techniques to provide a 
comprehensive view of the underlying biology. Although 
several software and database systems have been devel- 
oped for convenient handling of basic microarray analy- 
sis even without any knowledge of core algorithms or 
computational techniques, however, for proper interpre- 
tation of data, an understanding of these computational 
tools is essential. The goal of this review is to provide an 
overview of methods and techniques which may be em- 
ployed to analyze and interpret microarray data. An at-
tempt has been made to provide biologists an insight into 
the principles behind the computational techniques. The 
focus is primarily on analysis of gene expression matri-
ces, however, normalization and transformation have 
also been briefly discussed. 

The work flow in a microarray experiment encom- 
passes experimental design, procedures, data pre-proc- 
essing, i.e. data transformation from raw microarray data 
to gene expression matrices (Figure 1) and analysis of 
gene expression matrices. The microarray data generated 
by the feature extraction cannot be directly used to an- 
swer scientific questions, it needs to be processed to en- 
sure that the data are of high quality and are suitable for 
analysis. The first step includes data cleaning and trans- 
formation. All bad features, including saturated spots, 
dark spots or spots flagged as unsatisfactory must be 
eliminated. Next step is to subtract the background signal 
from feature intensity. This may produce features with 
negative intensity which is meaningless. One may try to 
use sophisticated (Bayesian) algorithms to rectify this 
problem or more commonly may eliminate these features 
from further calculations. Ratios of expression levels 
between a selected query and reference sample are used 
to find differences in gene expression. But there is a 
problem with using ratios, as they treat up- and down- 
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Figure 1. An overview of microarray experiment and data 
analysis. An experiment is designed according to the biological 
question it seeks to answer one may start with a hypothesis, i.e. 
expression of a particular set of genes may be used to identify a 
certain condition or without any hypothesis and may be ex- 
ploratory in nature. Microarray experiment is carried out, the 
raw data obtained is cleaned, normalized and transformed, gene 
expression matrix is constructed and higher level analysis is 
performed to obtain biological insights. 
 
regulated genes differently. Genes up-regulated by a fac- 
tor of two have an expression ratio of 2, while those 
down-regulated by a factor of 2 have an expression ratio 
of ½ (0.5). As a result, down-regulated genes are com- 
pressed between 1 and 0 while up-regulated genes ex- 
pand to cover the region between 1 and positive infinity, 
hence a logarithimic transformation is used, generally 
the logarithimic base being 2. The advantage of this 
transformation is that it treats up- and down-regulated 
genes equivalently and produces a continuous spectrum 
of values for differentially expressed genes, i.e. log2(2) = 
1 and log2(1/2) = −1. However, before transformation, 
one must first have an accurate method for comparing 
the measured expression levels between query and ref- 
erence samples, and this is done by means of norma- 
lization. Normalization scales one or both of the meas- 
ured expression levels of each gene to make them equi- 
valent, and consequently the expression ratios derive 
from them [2]. Normalization approaches use either the 
complete set of arrayed genes or a control set, generally 
either a set of housekeeping genes or a set of exogenous 
spiked-in controls. The assumption made while using a 
control set is that genes are detected at constant levels in 
all the samples under comparison. However, this requires 
careful quantization of the initial RNA and fails to ac- 
count for any variation-dependent expression level. Nor- 
malization may also be done by using regression algo- 
rithms, i.e. LOWESS regression or ranking ordering and 
distribution normalization [3]. These algorithms rely on 
the core assumption that the majority of genes on the 
microarray are not differentially expressed.   

2. FINDING SIGNIFICANT GENES 

After normalization and transformation the measure- 

ments of expression are combined into a log ratio for 
each sample, which describes numerically the extent to 
which the gene is differentially expressed, and whether it 
is up-regulated or down-regulated. To identify those that 
are consistently differentially expressed across all repli- 
cates under experimental condition one may choose a 
threshold, i.e. 2 fold differential expression and select 
those genes whose average differential expression is 
greater than that of threshold. But from a statistical per- 
spective this is not a good approach because the average 
ratio does not take into account the sample size or vari- 
ability within the sample (replicates or individuals). 
Hence a methodology known as hypothesis test is used 
to determine whether or not a gene is differentially ex- 
pressed. 

A hypothesis test builds a probabilistic model for the 
observed data based on what is known as null hypothesis 
which in this case is that there is no biological effect, i.e. 
The gene is not differentially expressed due to conditions 
under study, but results instead from differences between 
replicates or measurement errors. Using this model, it is 
possible to calculate the probability of observing a statis- 
tic, i.e. average fold change that is at least as extreme as 
the observed statistic in the data. This probability is 
known as p-value [4]. The smaller the p-value, less likely 
it is that the observed data have occurred by chance, and 
the more significant is the result. These hypothesis tests 
may be a t-test (paired or unpaired depending on sample), 
Wilcoxon sign-rank test, Wilcoxon rank-sum test or 
bootstrap test or in case of more complex experiments 
ANOVA or general linear models. Bootstrap analysis has 
the advantage that it does not require the data to be nor- 
mally distributed and are thus robust to noise and ex- 
perimental artifacts and it is also possible to use boot- 
strap for more complex analysis, i.e. ANOVA models and 
cluster analysis [5]. 

One may perform statistical tests on different individ- 
ual genes and conclude whether genes are up or down- 
regulated based on these tests. But in case of microarray 
experiment one has to apply these tests to many genes in 
parallel which has serious consequence known as multi- 
plicity of p-values, for example if the p-value is 0.01, by 
definition of p-value, each gene would have 1 percent 
chance of having p-value of less than 0.01 and thus will 
be significant at the one percent level. If there are 10,000 
genes on an array then there may be 100 significant 
genes at this level. This gives rise to an important ques- 
tion: how does one know that the gene that appears to be 
differentially expressed is truly differentially expressed? 
This is a deep problem in statistic and the p-values must 
be adjusted so as to have an acceptable false possible rate. 
Multiple test correction is made to estimate what fraction 
of the differentially expressed genes called to be signifi- 
cant are false positive. This is called the false discovery 
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rate (FDR) [6], from FDR q-values are calculated which 
is something like a FDR-corrected version of the p-value 
[7]. The q-value for a particular test is the smallest FDR 
for which the test is rejected. Statistical softwares have 
sophisticated algorithms to perform these corrections. 
Application of such statistical filters is a key first step for 
further data mining [8] that is used for finding biological 
patterns in the data. Although statistical filters is not the 
same as biological significance, the genes that have the 
chance of being validated as differentially expressed are 
those which were found to be significant in statistical 
tests.   

3. ANALYSIS OF DATA MATRIX 

The goal of microarray data analysis is to find relation- 
ships and patterns in the data; to make further analysis 
convenient the expression data is represented as a matrix, 
where rows represent genes, columns represent experi- 
mental condition, and each value at each position in the 
matrix characterize the expression level of the particular 
gene under the particular experimental condition. Further 
additional information i.e. gene annotations, function 
descriptions or sample details may also be added to the 
matrix. After organizing the expression data into such 
matrices it can be used for higher level analysis. Current 
methodologies for higher level data analysis may be di- 
vided into two categories: Supervised approaches or 
analysis to determine genes that fit a determined pattern, 
they are used to find a “classifier” that separates data into 
classes; and Unsupervised approaches or analysis to 
characterize the components of a data set without a priori 
input or knowledge of the pattern and is used to find 
groups inherent to the data [9]. 

Most gene expression data analysis algorithms assume 
that the gene expression values are scalars; in these al- 
gorithms the replicates are either treated as separate ex- 
perimental conditions or are replaced by one generalizing 
scalar, i.e. mean or median. Thus information about vari- 
ance and reliability are lost. Another approach is to treat 
expression values as vectors where each gene can be 
considered as a point in m-dimensional space, where m 
is the number of samples. Similarly, each sample can be 
considered as a vector in n dimensional space where n is 
the number of genes. Thus all genes may be represented 
as points in multidimensional space and genes having 
similar expression values will be situated close to each 
other than genes having dissimilar expression values. 
This method provides an intuitive picture of similarity 
and mathematical formulae may be used to calculate 
“distance” between two expression vectors. There are 
varieties of methods for measuring distance, typically 
falling into three general classes: Euclidean, Non-Eu- 
clidean and semimetric [10]. 

When choosing a distance measure to use for further 
analysis, there is no one answers as to what is the best 
measure. Different measures have different strengths and 
weaknesses. Once the distance measure has been applied 
the expression matrix hence formed generally appears 
without any apparent pattern or order. Further analytical 
techniques may be applied to these matrices to re-order 
the rows or columns or both so that the pattern of ex- 
pression becomes apparent. Among unsupervised tech- 
niques most common are—hierarchical clustering, k-means 
clustering, self-organizing maps. 

3.1. Clustering 

Clustering is a very useful technique for exploring ex- 
pression patterns that exist in the data. Clustering results 
in grouping together of samples or genes having similar 
expression profiles. The data is divided into few groups 
thereby reducing the dimensionality in the data and 
making it more amiable for biological interpretation [11]. 
Hierarchical clustering is a commonly used unsuper- 
vised technique that builds clusters of genes with similar 
pattern of expression. This is done by iteratively group- 
ing together genes that are highly correlated in terms of 
their expression measurements, then continuing the pro- 
cess on the groups themselves. Dendrograms are used to 
visualize the resultant hierarchical clustering (Figure 2). 
A dendrogram represents all genes as leaves of a large, 
branching tree. Each branch of the tree links two genes, 
two branches or one of each. Although construction of 
the tree is initiated by connecting genes that are most 
similar to each other, genes added later are connected to 
the branches that they most resemble. Although each 
branch links two elements, the overall shape of the tree 
may be asymmetrical. Branches connecting similar ele- 
ments have shorter branch lengths while longer branches 
represent increasing dissimilarity (Figure 2). Hierarchi- 
cal clustering is particularly advantageous in visualizing 
overall similarities in expression patterns observed in an 
experiment [12]. It is important to note the few disad- 
vantages in their use: hierarchical clustering ignores ne- 
gative association, even when underlying dissimilarity 
measure supports them. It does not result in clusters that 
are globally optimum, in that early incorrect choices in 
linking genes with a branch are not later reversible as the 
rest of the tree is constructed [2]. 

If there is prior knowledge regarding the number of 
clusters that should be represented in the data, K-means 
clustering is a good alternative to hierarchical methods 
[13,14]. In K-means, objects are partitioned into fixed 
number (K) of clusters such that the clusters internally 
are similar and externally are dissimilar. The process 
involved in K-means is conceptually simple but compu- 
tationally intensive. Initially all objects are randomly 
assigned to one of the k clusters. An average expression  
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Figure 2. Hierarchical clustering. Dendrogram and heatmap depicting hierarchically clustered expression data of the first 100 loci on 
chromosome one of Oryzae sativa shoot after treatment with jasmonic acid at different time points (http://ricexpro.dna.affrc.go.jp). 
 
vector is then calculated for each cluster, and this is used 
to compute the distances between clusters. Using an it- 
erative method, objects are moved between clusters, in- 
tercluster distances are measured with each move. Ob- 
jects are allowed to remain in the new cluster only if they 
are closer to it than to their previous cluster. After each 
move, the expression vectors for each cluster are recal- 
culated. The shuffling proceeds until moving any more 
objects would make the clusters more variable (Figure 3) 
[15,16]. 

Self-organizing maps (SOM) are similar to hierar- 
chical clustering, in that they also provide a survey of 
expression patterns within a data set, but the approach is 
quite different [17,18]. Genes are represented as points in 
multi dimensional space, and then genes are assigned to 
a series of partitions based on similarity of their expres- 
sion vectors to reference vectors that are defined for each 
partition. It is the process of defining these reference 
vectors that distinguishes SOMs from k-means clustering. 
Before initiating the analysis, the user defines a geomet- 
rical configuration for the partitions, typically a two- 
dimensional rectangular or hexagonal grid. A map is set 

with the centers of each cluster-to-be (known as cen- 
troids) arranged in the defined configuration. As the me- 
thod iterates, the centroids move towards randomly cho- 
sen genes at a decreasing rate. The method continues 
until there is no further significant movement of these 
centroids. The advantages of SOM include easy two- 
dimensional visualization of expression patterns [19] and 
reduced computational requirements compared with me- 
thods that require comprehensive pair wise compari- 
sons. However, there are several disadvantages as well; 
the initial topology of a SOM is arbitrary and the move- 
ment of the centroids is random, so the final configura- 
tion of centroids might not be reproducible. Similar to 
dendrograms, negative associations are not easily found 
and even after the centroids reach the centers of each 
cluster, further techniques are needed to delineate the 
boundaries of each cluster. 

Most of the clustering methods described above are 
heuristic in the sense that they do not try to optimize any 
scoring function describing the overall quality of the 
clustering. Model-based clustering assumes that the data 
have been generated by some, typically probabilistic 
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Figure 3. K-means clustering. A) Starting with three randomly 
placed centroids (green); B) Next, objects (red) are assigned to 
clusters nearest to them; C) Distance between objects and cen- 
troids is averaged out to move centroids to new location, re- 
sulting in new clusters; D) After each iteration the clusters are 
fed back into the same loop till the centroids converge. 
 
(Bayesian), model and tries to find the clustering corre- 
sponding to the most probable model. They may still be 
heuristic in that they may not guarantee identification of 
the most probable clustering. Although model-based 
clustering has the potential to incorporate a priori knowl- 
edge about the domain in the analysis, it is not easy to 
apply it in a way that produces more meaningful bio- 
logical results than purely heuristic methods. Fuzzy clus- 
tering is not deterministic, i.e. a given object either be- 
longs or does not belong to a given cluster, but rather it 
assigns to each object the probability of belonging to the 
particular cluster [20]. Bayesian methods are often used 
for fuzzy clustering. The “goodness” of a cluster depends 
on how similar its objects are to each other and how dis- 
similar they are from next closest cluster. The most po- 
pular method for assessing the quality of clustering and 
for determining possible cut-off threshold is by shuf- 
fling the data, followed by clustering of shuffled data. 
However the ultimate proof of quality of clustering is the 
production of biologically meaningful results. 

3.2. Principal Component Analysis 

Principal component analysis (PCA) is another way of 
reducing dimensionality in the data. PCA is based on 
finding the direction in multidimensional vector space 
that has largest amplitude in the dispersion of data points 
i.e. greatest variability (Figure 4). This direction than 
serve as new co-ordinate axis and expression profiles are 
recalculated in this new transformed space. If only few 

 

Figure 4. Principal component analysis. Data is divided into 
five clusters (blue) but only one principal component (green) is 
able to depict most of the dispersion. X and Y axis represent the 
gene expression values in two samples. 
 
directions or principal components represent most of the 
variability then other directions are disregarded and 
hence dimensionality in data is greatly reduced. Principal 
components are a set of vectors in this space that de- 
creasingly capture the variation seen in the points. The 
first principal component captures more variation than 
the second, and so on. Often in microarray datasets most 
variability can be accounted for by a small number of 
principal directions [21]. As each principal component 
exists in the same multidimensional space, they are linear 
combination of the genes or samples, the biological sig- 
nificance of these is not directly intuitive. Although prin- 
cipal components might best describe the variation seen 
in an expression data set, they do not describe how to 
best separate groups of genes or samples. Gene shaving 
is a clustering method that uses PCA [22,23]. It is an 
iterative heuristic method that works by alternating PCA 
and identifying the “best” clusters consisting of genes 
responsible for most of the variability in the data. The 
analysis starts by finding the first principal component; a 
mutually inclusive system of clusters is constructed 
starting with genes most similar to first principal com- 
ponent. The quality of clusters is estimated using “gap- 
statistics” [24] and the cluster with highest score is cho- 
sen. Next the gene space is transformed by removing 
component from each gene that is parallel to the first 
principle component. Gene shaving is different from 
other clustering methods discussed in that it does not 
produce exclusive clusters—a gene may belong to se- 
veral clusters. 

Multidimensional scaling (MDS) is a different ap- 
proach to dimensionality reduction. Unlike PCA it does 
not start from the data, but rather uses the distance 
measures. It tries to locate the entities being compared in 
two- or three-dimensional space, as close as possible to 
the distances measured between the entities in the higher 
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dimensional space [25,26]. 

3.3. Class Prediction 

Supervised techniques use prior knowledge right from 
the beginning and try to find properties that support that 
knowledge. Generally here the focus is on finding genes 
that can be used for grouping samples into clinically or 
biologically relevant classes rather than on identifying 
gene functions. This is done by employing classification 
algorithms the simplest of them being linear regression 
and K-nearest neighbor methods. In linear regression 
“least square fit” is used to define a threshold line or 
linear space. Then a new point is classified into groups 
depending upon whether it lies below or above this 
thresh old. The K-nearest neighbor technique can be 
used in both supervised and unsupervised manner but the 
use of this technique in supervised fashion to find genes 
directly with patterns that best match a designated query 
pattern. 

The query pattern may be an ideal gene pattern for a 
given condition, i.e. a group of genes that are highly ex- 
pressed in one condition and expressed at a very low 
level in another condition. All the genes that have been 
measured can then be compared to this ideal gene pattern 
and ranked by their similarity [27,28]. Although this 
technique results in genes that might individually split 
two sets of microarrays, it does not necessarily find the 
smallest set of genes that most accurately splits the two 
sets. In other words, a combination of the expression 
levels of two genes might split two conditions perfectly, 
but these two genes might not necessarily be the top two 
genes that are most similar to the idealized pattern. 

Support vector machines (SVM) address the prob- 
lem of finding combination of genes that better split sets 
of biological samples [29]. Although it is easy to find 
individual genes that splits two sets with reasonable ac- 
curacy owing to the large number of genes (features) 
measured on microarrays, occasionally it is impossible to 
split sets perfectly using individual genes. The support 
vector machines based technique actually further ex- 
pands the number of features available by combining 
genes using mathematical operations (called kernel func- 
tions). For example, in addition to using the expression 
levels of two individual genes A and B to separate two 
sets of biological samples, the combination features A×B, 
A/B, (A×B)2 and others can also be generated and used. 
It is possible even if genes A and B individually could 
not be used to separate the two sets of biological samples, 
together with the proper kernel function, they might suc- 
cessfully separate the two. In this technique each bio- 
logical sample is considered as a point in multidimen- 
sional space, in which each dimension is a gene and the 
coordinates of each point is the expression level of that 
gene in the sample. Using SVM, this high-dimensional 

space gains even more dimensions representing the ma- 
thematical combinations of genes. The goal for SVM is 
to find a plane in this high-dimensional space that per- 
fectly splits two or more sets of biological samples. Us- 
ing this technique, the resulting plane has the largest 
possible margin from samples in the two conditions, 
therefore avoiding data over-fitting [30]. Although within 
this high-dimensional space, it is easier to separate sam- 
ples from two or more conditions, but one problem is 
that the separating plane is defined as a function using all 
the dimensions available. For example, the most accurate 
plane to separate one disease from another might be 
(A×B)2 < 20, where A and B are expression levels of 
genes. SVM might be the most accurate way to separate 
two diseases but the biological significance of such func- 
tions is not always intuitive. 

3.4. Biological Relevance 

All The analytical techniques discussed so far end with a 
list of genes which would be meaningless without a bio- 
logical context, this may be provided by using Gene 
Ontology (GO), an expert-curated  database which as- 
signs genes to various functional categories. GO is de- 
signed as a formal representation of biological knowl- 
edge, as it relates to genes and gene products [31]. It 
consists of three knowledge domains: molecular func- 
tions, biological processes and cellular component [32]. 
GO are based on evidence from literature, homology or 
other computational evidences including gene expression 
analysis, protein-protein interaction data, small nucleolar 
RNA prediction, domain prediction and similar tech- 
niques. GO is constantly expanded and revised in a col- 
laborative manner to incorporate expanding knowledge. 
The analysis has to be carried beyond GO classification 
to delve deeper into the biological relevance of the subtle 
changes in gene expression. This may be done using 
relevance networks, pathway analysis or regulatory net- 
works [32]. Relevance networks allow networks of fea- 
tures to be built, whether they represent genes, pheno- 
typic or clinical measurements [33]. The technique works 
by first comparing measurements of all genes in a pair 
wise manner resulting in a pair wise calculation of mu- 
tual information. Thus each gene is completely con- 
nected to every other gene. Two genes are compared with 
each other by plotting all the samples on a scatter plot, 
using expression levels of the two genes as coordinates. 
A correlation coefficient is then calculated using any 
dissimilarity measure. Then a threshold mutual informa- 
tion is chosen based on permutation analysis and only 
those pairs of genes that have mutual information meas- 
ure greater than threshold are kept. This results in clus- 
ters or more appropriately relevance networks that more 
strongly connected to each other. Relevance networks 
offer several advantages: they allow features of more 
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than one data type to be represented together, features 
can have a variable number of associations, negative 
associations can be visualized as well as positive ones 
[34]. The only disadvantage is the degree of complexity 
seen at lower thresholds, at which many links are found 
associating many genes in a single network. 

Pathway Analysis is used to map genes onto precom- 
piled pathways to visualize whole chains of events indi- 
cated by microarray data [35]. The most relevant or 
tightly associated pathways may be highlighted using 
statistical tests, i.e. binomial, Chi-square tests, Fisher’s 
exact test [36] or hypergeometric distribution test [37]. 
The crucial shortcoming of pathway analysis is that, 
since it is derived from literature or precompiled path- 
ways, it is unable to represent the underlying biological 
process completely. Regulatory networks are more ap- 
propriate in representing biological processes that in- 
volve more than one pathway by interconnecting path- 
ways in a context specific manner [35,38]. In case of 
regulatory networks one must consider transcripts in- 
stead of genes and the associated genomic regulatory se- 
quences (promoter and enhancers) and alternate tran- 
scripts. Several studies have been published [39-44] to 
approach molecular analysis of regulatory networks as 
stand alone or combined with GO and pathway analysis. 
However, application of regulatory to complex biological 
systems remains a complicated task requiring intensive 
preanalysis of sequences and comparative promoter ana- 
lysis.  

4. VISUALIZATION OF EXPRESSION 
DATA 

One of the central features of microarray data is that 
there is a lot of it. No matter which distance measure is 
used one ends up with a high-dimensional data which is 
very difficult to comprehend. Thus to comprehend and 
visualize data it becomes necessary to reduce dimension- 
ality of data through PCA or clustering. However, once 
the dimensionality has been reduced a number of visu- 
alization techniques may be used to find patterns in the 
data. The most popular techniques are heat maps (Fig- 
ure 2), first introduced for gene expression data analysis 
by Michael Eisen [1]. A heat maps is simply a represen- 
tative of the gene expression matrix using color coding, 
where the intensity of color represents the absolute val- 
ues. Heat maps are typically used in association with 
clustering. Another popular way of depicting gene ex- 
pression profiles and cluster of profiles is through the use 
of profile graphs. Profile graphs can be obtained by 
plotting expression values on the vertical axis, samples 
on the horizontal axis, and joining the points corre- 
sponding to the same genes in different samples. Another 
way in which covariance or gene expression datasets has 
been represented is gene expression terrain map. The 

covariance between datasets is calculated in large num- 
bers of experiments using the expression levels of genes. 
The covariance is then represented in two dimensional 
space, such that closely related data are placed together 
and the altitude of the “gene mountain” represents the 
density of the gene at that site [45]. 

Correspondence analysis uses PCA in a chi-square 
distance matrix to allow one to assess which group of 
genes are most important for defining which experimen- 
tal condition (sample) or vice-versa. It visualizes two or 
three principal axes of gene and sample space in the 
same diagram [46]. A rather different visualization ap- 
proach is based on depicting the relationships among 
genes in the form of networks. Graph layout algorithms 
are used for visualizing gene expression networks. Visu- 
alization methods can also be used to combine gene ex- 
pression data with other relevant data. Heat maps can be 
used in combination with gene ontology terms. Grid 
display is used to display gene expression in relation to 
position of the gene on the array [47]. Chromosome 
displays can be used to visualize the expression of genes 
in relation to their position along the chromosome [48]. 

5. RELATING HYPOTHESIS TO  
ANALYTICAL TECHNIQUE  

Wide varieties of supervised and unsupervised methods 
are available for analysis, however, the existent challenge 
is in translating hypotheses into an appropriate bioinfor- 
matics technique. Supervised methods are of much use in 
domains of drug discovery and diagnostic testing, where 
definite answers are needed for specific questions. Un- 
supervised methods are less intuitive, because these start 
with less direct questions. These methods may be used to 
answer questions about the number and type of expres- 
sion responses in a period of time after application of a 
compound. Hierarchical clustering and self-organizing 
maps survey all the genes and cluster them together on 
the basis of their expression patterns. Relevant net- 
works may be used to search for the pairs of genes that 
are more likely to be co-expressed. True genetic regula- 
tory networks might be found using methods such as 
constructing Bayesian networks. Moreover, a combina- 
tion of both supervised and unsupervised methods may 
be used depending upon the answer that one seeks from 
the analysis, i.e. a hierarchical clustering may be used to 
obtain a dendrogram and then supervised learning may 
be used to find the best threshold to cut sub-trees or class 
vectors may be included into gene expression matrix as 
additional dimension and used for clustering. In all of the 
above cases, the analyses are not aimed at providing an 
ideal answer but are rather used as exploratory tools in 
the early discovery process. 

The obvious truth with which one must agree after an 
experience with microarray technique is that the rate- 
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limiting step in functional genomics is neither the actual 
experimental procedure nor the data analysis, but instead 
data interpretation for determining what the results actu- 
ally mean. Detailed functional information might not yet 
be available for genes that have been found to be sig- 
nificant, even though these genes might be very well 
represented in microarray probe sets. The official name, 
predicted protein domains or gene-ontology classifica- 
tion might become available in a few days or might take 
decades. Oligonucleotide sequences that were thought to 
be unique at the time of designing the probe against a 
particular gene might not remain unique as more ge- 
nomic data are collected. Operationally this means that 
one is never done analyzing a set of microarray data. The 
infrastructure has to be developed to reinvestigate con- 
stantly genes and gene information from microarray in- 
formation performed in the past. 
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