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ABSTRACT 

The computation of the basis inverse is the most time-consuming step in simplex type algorithms. This inverse does not 
have to be computed from scratch at any iteration, but updating schemes can be applied to accelerate this calculation. In 
this paper, we perform a computational comparison in which the basis inverse is computed with five different updating 
schemes. Then, we propose a parallel implementation of two updating schemes on a CPU-GPU System using MAT- 
LAB and CUDA environment. Finally, a computational study on randomly generated full dense linear programs is pre- 
sented to establish the practical value of GPU-based implementation. 
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Architecture 

1. Introduction 

Linear Programming (LP) is the process of minimizing 
or maximizing a linear objective function to a number of 
linear equality and inequality constraints. Simplex algo- 
rithm is the most widely used method for solving Linear 
Programming problems (LPs). Consider the following 
linear programming problem in the standard form shown 
in Equation (1): 

min            

subject to  

                  0

Tc x

Ax b

x




               (1) 

where m nA R ,  ,  nc x R , mbR , and T denotes  

transposition. We assume that A has full rank, rank(A) = 
m, m < n. Consequently, the linear system Ax = b is con- 
sistent. The simplex algorithm searches for an optimal 
solution by moving from one feasible solution to another, 
along the edges of the feasible set. The dual problem 
associated with the linear problem in Equation (1) is 
shown in Equation (2): 

min            

subject to  

                  0

T

T

b w
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s

 


            (2) 

where mwR  and nsR . 
The past twenty years have been a time of remarkable 

developments in optimization solvers. Real life LPs tend 
to be large in size. A growing number of problems de- 
mand parallel computing capabilities. The explosion in 
computational power (CPUs and GPUs) has made it pos- 
sible to solve large and difficult LPs in a short amount of 
time. As in the solution of any large scale mathematical 
system, the computational time for large LPs is a major 
concern. The basis inverse dictates the total computa- 
tional effort of an iteration of simplex type algorithms. 
This inverse does not have to be computed from scratch 
at any iteration, but can be updated through a number of 
updating schemes. All efficient versions of the simplex 
algorithm work with some factorization of the basis ma- 
trix B or its inverse B−1. 

Dantzig and Orchard-Hays [1] have proposed the 
Product Form of the Inverse (PFI), which maintains the 
basis inverse using a set of eta vectors. Benhamadou [2] 
proposed a Modification of the Product Form of the In- 
verse (MPFI). The key idea is that the current basis in-  

verse   1

B
A


 can be computed from the previous in-  

verse   1

BA


 using a simple outer product of two vec-  

tors and one matrix addition. *Corresponding author. 
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LU decomposition produces generally sparser factori- 
zations than PFI [3]. The LU factorization for the basis 
inverse has been proposed by Markowitz [4]. Markowitz 
used LU decomposition to fully invert a matrix, but used 
the PFI scheme to update the basis inverse during sim- 
plex iterations. Bartels and Golub [5] have later proposed 
a scheme to update a sparse factorization, which was 
more stable than using PFI. Their computational experi- 
ments, however, proved that it was more computationally 
expensive. Forrest and Tomlin [6] created a variant of the 
Bartels-Golub method by sacrificing some stability char- 
acteristics causing the algorithm to have a smaller growth 
rate in the number of non-zero elements relative to the 
PFI scheme. Reid [7] proposed two variants of the Bar- 
tels-Golub updating scheme that aim to balance the spar- 
sity and the numerical stability of the factorization. A 
variant of the Forrest-Tomlin update was proposed by 
Suhl and Suhl [8]. Other important updating techniques 
can be found in Saunders [9] and Goldfarb [10]. A full 
description of most of these updating methods can be 
found in Nazareth [11] and Chvátal [12]. 

There have been many reviews and variants of these 
methods individually, but only a few comparisons be- 
tween them that are either obsolete or don’t compare all 
these updating schemes. McCoy and Tomlin [13] report 
the results of some experiments on measuring the accu- 
racy of the PFI scheme, Bartels-Golub method and Forrest- 
Tomlin scheme. Lim et al. [14] provide a comparative 
study between Bartels-Golub method, Forrest-Tomlin 
method and Reid method. Badr et al. [15] perform a 
computational evaluation of PFI and MPFI updating 
schemes. Ploskas et al. [16] compare PFI and MPFI up- 
dating schemes both on their serial and their parallel im- 
plementation. 

Originally, GPUs used to accelerate graphics rendering. 
GPUs have gained recently a lot of popularity and High 
Performance Computing applications have already start- 
ed to use them. The computational capabilities of GPUs 
exceed the one of CPUs. GPU is utilized for data parallel 
and computationally intensive portions of an algorithm. 
NVIDIA introduced Compute Unified Device Architec- 
ture (CUDA) in late 2006. CUDA enables users to exe- 
cute codes on their GPUs and it is based on a SIMT pro- 
gramming model. Any performance improvements in the 
parallelization of the revised simplex algorithm would be 
of great interest. Using GPU computing for solving large- 
scale LPs is a great challenge due to the capabilities of 
GPU architectures. 

Some related works have been proposed on the GPU 
parallelization for LPs. O’Leary and Jung [17] proposed 
a CPU-GPU implementation of the Interior Point Method 
for dense LPs. Their computational results on Netlib Set 
[18] showed that some speedup can be gained for large 
dense problems. Spampinato and Elster [19] presented a 

GPU-based implementation of the Revised Simplex Al- 
gorithm on GPU with NVIDIA CUBLAS [20] and 
NVIDIA LAPACK libraries [21]. Their implementation 
showed a maximum speedup of 2.5 on randomly gener- 
ated LPs of at most 2000 variables and 2000 constraints. 
Bieling et al. [22] also proposed a parallel implementa- 
tion of the Revised Simplex Algorithm on GPU. They 
compared their GPU-based implementation with GLPK 
solver and found a maximum speedup of 18 in single 
precision. Lalami et al. [23] proposed a parallel imple- 
mentation of the standard Simplex on a CPU-GPU sys- 
tems. Their computational results on randomly generated 
dense problems of at most 4000 variables and 4000 con- 
straints showed a maximum speedup of 12.5. Meyer et al. 
[24] proposed a mono and a multi-GPU implementation 
of the standard Simplex algorithm and compared their 
implementation with the CLP solver. Their implementa- 
tion outperformed CLP solver on large sparse LPs. Li et 
al. [25] presented a GPU-based parallel algorithm, based 
on Gaussian elimination, for large scale LPs that outper- 
form the CPU-based algorithm. 

This paper presents a computational study in which the 
basis inverse is computed with five different updating 
schemes: 1) Gaussian elimination; 2) the built-in func- 
tion inv of MATLAB; 3) LU decomposition; 4) product 
form of the inverse; and 5) a modification of the prod- 
uct form of the inverse; and incorporates them with the 
revised simplex algorithm. Then, we propose a parallel 
implementation of PFI and MPFI schemes, which were 
the fastest among the five updating methods, on a 
CPU-GPU System, which is based on MATLAB and 
CUDA. 

The structure of the paper is as follows. In Section 2, a 
brief description of the revised simplex algorithm is pre- 
sented. In Section 3, five methods that have been widely 
used for basis inversion are presented and analyzed. Sec- 
tion 4 presents the computational comparison of the se- 
rial implementations of the updating schemes. Computa- 
tional tests were carried out on randomly generated LPs 
of at most 5000 variables and 5000 constraints. Section 5 
presents the GPU-based implementations of two updat- 
ing schemes. In Section 6, a computational study of the 
GPU-based implementations is performed. Finally, the 
conclusions of this paper are outlined in Section 7. 

2. Revised Simplex Method 

Using a partition (B, N) Equation (1) can be written as 
shown in Equation (3): 

min            

subject to  

                  , 0

T T
B B N N

B B N N

B N

c x c x

A x A x b

x x



 



          (3) 

In the above problem, AB is an mxm non-singular sub- 
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matrix of A, called basic matrix or basis. The columns of 
A belonging to subset B are called basic and those be- 
longing to N are called non-basic. The solution of the 
linear problem 1 , 0B B Nx A b x   is called a basic solu- 
tion. A solution  ,B Nx x x  is feasible iff 0x  ; oth- 
erwise the solution is infeasible. The solution of the lin- 
ear problem in Equation (2) is computed by the relation 

Ts c A w  , where   1T

B Bw c A   are the simplex 
multipliers and s are the dual slack variables. The basis 
AB is dual feasible iff 0s  . 

In each iteration, simplex algorithm interchanges a col- 
umn of matrix AB with a column of matrix AN and con- 
structs a new basis 

B
A . Any iteration of simplex type 

algorithms is relatively expensive. The total work of an 
iteration of simplex type algorithms is dictated by the 
computation of the basis inverse. This inverse, however, 
does not have to be computed from scratch during each 
iteration of the simplex algorithm. Simplex type algo- 
rithms maintain a factorization of basis and update this 
factorization in each iteration. There are several schemes 
for updating basis inverse. In Section 3, we present eight 
well-known methods for the basis inverse. A formal de- 
scription of the revised simplex algorithm [26] is pre- 
sented in Table 1. 

3. Basis Inversion Updating Schemes 

3.1. Gaussian Elimination 

Gaussian elimination is a method for solving systems of 
linear equations, which can be used to compute the in- 
verse of a matrix. Gaussian elimination performs the  

 
Table 1. Revised simplex algorithm. 

Step 0. (Initialization).  

Start with a feasible partition (B, N). Compute   1

BA


 and vec-

tors xB, w and sN. 
Step 1. (Test of optimality). 

if 0Ns   then 

   STOP. The linear problem is optimal. 
else 
    Choose the index l of the entering variable using a pivoting 
rule. 
    Variable xl enters the basis. 
Step 2. (Minimum ratio test). 

Compute the pivot column   1
.l B lh A A


  

if 0lh   then  

    STOP. The linear problem is unbounded. 
else 
    Choose the leaving variable xk = xB[r] using the Equation (4): 

 
   min : 0B r B i

ilB r

il il

x x
x h

h h

     
  

            (4)

Step 3. (Pivoting). 

Swap indices k and l. Update the new basis inverse   1

B
A


, using 

an updating scheme. 
Go to Step 1. 

following two steps: 1) Forward Elimination: reduces the 
given matrix to a triangular or echelon form and 2) Back 
Substitution: finds the solution of the given system. 
Gaussian elimination with partial pivoting requires O(n3) 
time complexity. 

Gaussian elimination has been implemented on MAT- 
LAB using the mldivide operator. In order to find the 
new basis inverse using Gaussian elimination, one can 
use the Equation (5): 

  1
\B BA A I

                  (5) 

3.2. Built-In Function Inv of MATLAB 

The basis inverse can be computed using the built-in 
function of MATLAB called inv, which uses LAPACK 
routines to compute the basis inverse. Due to the fact that 
this function is already compiled and optimized for 
MATLAB, its execution time is smaller compared with 
the other relevant methods that compute the explicit basis 
inverse; time-complexity, though, remains O(n3). 

3.3. LU Decomposition 

LU decomposition method factorizes a matrix as the 
product of an upper U and a lower L triangular factors, 
which can be used to compute the inverse of a matrix. In 
order to compute the U and L factors, the built-in func- 
tion of MATLAB called lu has been used. LU decompo- 
sition can be computed in time O(n3). 

3.4. MPFI 

MPFI updating scheme has been presented by Ben- 
hamadou [3]. The main idea of this method is that the  

current basis inverse   1

B
A


 can be computed from the  

previous inverse   1

BA


 using a simple outer product of 
two vectors and one matrix addition, as shown in the 
Equation (6): 

     1 1 1

.. BB B rr
A A v A

              (6) 

The updating scheme of the inverse is shown in Equa- 
tion (7). 
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The outer product of Equation (7) requires m2 multi- 
plications and the addition of two matrices requires m2 
additions. Hence, the complexity is  2m . 

3.5. PFI 

The PFI scheme, in order to update the new basis   1

B
A


, 

uses information only about the entering and leaving 
variables along with the current basis   1

BA


. The new 
basis inverse can be updated at any iteration using the 
Equation (8). 

   1 1 1 1( )B BB
A A E E A

              (8) 

where E−1 is the inverse of the eta-matrix and can be 
computed by the Equation (9): 
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        (9) 

If the current basis inverse is computed using regular 
multiplication, then the complexity of the PFI is  3m . 

4. Computational Results of Serial 
Implementations 

Computational studies have been widely used, in order to 
examine the practical efficiency of an algorithm or even 
compare algorithms. The computational comparison of 
the aforementioned five updating schemes has been per- 
formed on a quad-processor Intel Core i7 3.4 GHz with 
32 Gbyte of main memory running under Microsoft 
Windows 7 64-bit. The algorithms have been imple- 
mented using MATLAB Professional R2012a. MAT- 
LAB (MATrix LABoratory) is a powerful programming 
environment and is especially designed for matrix com- 
putations in general. All times in the following tables are 
measured in seconds. 

The test set used in the computational study was ran- 
domly generated. Problem instances have the same num- 
ber of constraints and variables. The largest problem 
tested has 5000 constraints and 5000 variables. All in- 
stances are dense. For each instance, we averaged times 
over 10 runs. A time limit of 20 hours was set that ex- 
plains why there are no measurements for some updating 
methods on large instances. It should be noted that in 
MATLAB R2012a multithreading is enabled by default 
thus our implementations are automatically parallelized 
and executed using the available multicore CPU. 

Table 2 presents the results from the execution of the 

above mentioned updating schemes. We have also in- 
cluded the execution time from MATLAB’s linprog 
built-in function, a function for solving linear program- 
ming problems. MATLAB’s linprog function includes 
two algorithms for large-scale and medium-scale opti- 
mization. The large-scale algorithm is based on Interior 
Point Solver [27], a primal-dual interior-point algorithm. 
LIPSOL used a Cholesky-infinity factorization that caus- 
es overhead during the factorization of dense matrices 
and as a result it cannot solve problems with more than 
1500 variables and constraints. Due to this restriction, we 
have used in our comparison the medium-scale algorithm, 
which is a variation of the simplex method. Table 3 in- 
cludes the execution time for the basis inverse of each 
updating scheme, while Table 2 presents the total exe- 
cution time. The execution time of the basis inverse 
and the whole algorithm for each updating scheme is 
also graphically illustrated in Figures 1 and 2, respec- 
tively. 

The MPFI updating scheme has the best performance. 
On the other hand, LU updating method has the worst 
performance. Another significant issue is the perform- 
ance of Gaussian elimination, PFI, function inv and lin- 
prog of MATLAB which are close to each other and the 
results are not quite satisfactory. 

5. Parallel Implementation of PFI and MPFI 
Updating Schemes on a CPU-GPU System 

PFI and MPFI were the fastest updating schemes. In this 
section, we present the GPU-based implementations of 
these updating methods taking advantage of the power 
that modern GPUs offer. The parallel implementations of 
these updating methods are implemented on MATLAB 
and CUDA. The updating methods are built using both 
native MATLAB code and CUDA MEX files. 

Both methods take as input the previous basis inverse 
  1

BA


, the pivot column hl, the index of the leaving 
variable (k) and the number of the constraints (m). 

5.1. GPU-Based MPFI 

Let us assume that we have t gpu cores. Table 4 shows 
the steps that we used to compute the new basis inverse  

  1

B
A


 with the MPFI scheme on the GPU. 

5.2. GPU-Based PFI 

Table 5 shows the steps that we used to compute the new 
basis inverse   1

B
A


 with the PFI scheme on the GPU. 

6. Computational Results of Parallel 
Implementations 

The same randomly generated test set is also used in     
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Table 2. Total time (secs). 

Problem Size Gaussian Elimination inv LU Decomposition PFI MPFI linprog 

1000 871.81 774.15 2314.62 631.22 155.51 171.68 

1250 1269.92 1134.50 2820.17 940.03 216.97 3453.09 

1500 3746.93 3330.55 10351.52 2384.46 509.71 7097.17 

1750 8245.07 7347.78 23153.03 6255.89 1161.56 11682.54 

2000 12875.85 11340.48 36338.81 10140.09 1670.73 19267.61 

2250 23709.13 20453.34 66437.50 18345.68 2798.21 36614.81 

2500 34249.22 22975.68 63775.88 23828.22 3730.49 44998.08 

2750 49312.02 36202.77 - 29762.26 4384.83 - 

3000 62646.43 53472.82 - 43740.40 6242.79 - 

3250 - - - - 14200.80 - 

3500 - - - - 20147.04 - 

3750 - - - - 28776.84 - 

4000 - - - - 34235.18 - 

4,250 - - - - 42196.15 - 

4500 - - - - 51210.67 - 

4750 - - - - 62919.07 - 

5000 - - - - 70058.59 - 

 
Table 3. Basis inverse time (secs). 

Problem Size Gaussian Elimination inv LU Decomposition PFI MPFI 

1000 793.30 702.85 2025.42 555.65 83.36 

1250 1173.10 1036.74 2446.59 845.49 121.18 

1500 3487.13 3075.34 8946.89 2160.71 292.43 

1750 7746.69 6843.46 19905.57 5743.58 680.61 

2000 12157.33 10622.34 31160.31 9411.65 981.08 

2250 22547.04 19288.01 56804.33 17156.07 1667.49 

2500 21209.41 18336.32 59233.99 22266.25 2228.82 

2750 47205.29 34422.09 - 27952.71 2648.20 

3000 60134.08 50964.37 - 41204.74 3762.74 

3250 - - - - 7100.16 

3500 - - - - 8793.45 

3750 - - - - 11785.46 

4000 - - - - 13087.66 

4250 - - - - 19432.13 

4500 - - - - 23344.92 

4750 - - - - 28534.90 

5000 - - - - 32317.85 
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Figure 1. Basis inverse time comparison. 
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Figure 2. Total time comparison.    
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order to test the performance of the GPU-based imple- 
mentations. The computational comparison of the paral- 
lel implementations has been also performed on a quad- 
processor Intel Core i7 3.4 GHz with 32 Gbyte of main 
memory running under Microsoft Windows 7 64-bit and 
NVIDIA Quadro 6000 with 6 Gbyte of memory and 448 
CUDA cores. The mex files have been implemented us- 
ing CUDA 4.2 and Microsoft Visual Studio 2012. Table 
6 presents the results from the execution of the GPU- 
based implementations of PFI and MPFI updating schemes. 
For each implementation, the table shows the CPU time 
for the basis inverse and the total time. 

Table 7 presents the speedup obtained by the GPU- 
based implementations regarding the CPU time for the 
basis inverse and the total time. We now plot the ratios 
taken from Table 7 in Figure 3. The total time is in loga- 
rithmic scale. 

From the results, we observe: 1) the MPFI scheme is 
much faster than PFI both in serial and in GPU-based 
implementation, 2) using PFI scheme, the speedup 
gained from the GPU implementation is around 7 for the 
time of basis inverse and 5.5 for total time when the  

 
Table 4. GPU-based MPFI. 

Step 0. 
Compute the column vector: 

T

1l ml

rl rl rl

h h1
v

h h h

 
   
 

   

Each core computes in parallel m/t elements of v. The pivot ele-
ment is shared between all t cores. 
Step 1. 

Compute the outer product   1

.B r
v A

  with matrix multiplica-

tion. Each core will compute a block of the new matrix.  
Step 2. 

Set the rth row of   1

B
A


 equal to zero. Each core computes in 

parallel t/p rows of   1

B
A


. 

Step 3. 

Add matrix   1

B
A


 with the resulted matrix from step 1. Each 

core will compute a block of the new basis inverse. 

 
Table 5. GPU-based PFI. 

Step 0. 
Compute the column vector: 

T

1 1l ml

rl rl rl

h h
v

h h h

 
   
 

   

Each core computes in parallel m/t elements of v. The pivot ele-
ment is shared between all t cores. 
Step 1. 
Replace the rth column of an identity matrix with the column 
vector v. Each core assigns in parallel m/t elements to the identity 
matrix. This matrix is the inverse of the eta-matrix. 
Step 2. 
Perform a matrix multiplication according to Equation (8). Each 
core will compute a block of the new basis. 

Table 6. Basis inverse and total time of the GPU-based 
implementations (secs). 

 PFI MPFI 

Problem 
size 

Time of basis 
inverse 

Total 
 time 

Time of basis 
inverse 

Total  
time 

1000 149.56 208.57 41.56 101.42 

1250 198.98 275.93 37.50 113.80 

1500 455.32 625.03 65.55 239.37 

1750 1122.77 1509.01 123.63 510.37 

2000 1611.04 2166.60 147.14 704.66 

2250 2868.02 3765.82 230.96 1147.32

2500 3838.33 5043.59 293.38 1512.32

2750 4480.71 5867.20 309.58 1712.80

3000 5846.40 7820.77 405.98 2372.87

3250 - - 702.99 5108.20

3500 - - 775.44 6806.43

3750 - - 938.33 8964.75

4000 - - 1005.20 9923.24

4250 - - 1305.05 11163.00

4500 - - 1409.72 12738.97

4750 - - 1659.01 14139.12

5000 - - 1709.94 14067.99

 
Table 7. Speedup obtained by the GPU-based implementa- 
tions. 

 PFI MPFI 

Problem size Basis inverse Total Basis inverse Total

1000 3.72 3.03 2.01 1.53

1250 4.25 3.41 3.23 1.91

1500 4.75 3.81 4.46 2.13

1750 5.12 4.15 5.51 2.28

2000 5.84 4.68 6.67 2.37

2250 5.98 4.87 7.22 2.44

2500 5.80 4.72 7.60 2.47

2750 6.24 5.07 8.55 2.56

3000 7.05 5.59 9.27 2.63

3250 - - 10.10 2.78

3500 - - 11.34 2.96

3750 - - 12.56 3.21

4000 - - 13.02 3.45

4250 - - 14.89 3.78

4500 - - 16.56 4.02

4750 - - 17.20 4.45

5000 - - 18.90 4.98
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Figure 3. Speedup comparison. 
 
problem size reaches to 3000 × 3000, and 3) using MPFI 
scheme, the speedup gained from the GPU implementa- 
tion is around 19 for the time of basis inverse and 5 for 
total time when the problem size reaches to 5000 × 5000. 

7. Conclusions 

The basis inverse is the most time-consuming step in 
simplex type algorithms, so it is essential to implement a 
fast and numerically stable updating method. In this pa- 
per, we performed a computational comparison of five 
updating schemes and incorporated them to the revised 
simplex algorithm. The results of the computational stu- 
dy showed that MPFI updating scheme is the fastest 
when solving large dense LPs. 

We proposed a GPU-based implementation for PFI 
and MPFI updating schemes, which were the fastest se- 
rial implementations, and implemented on MATLAB and 
CUDA. We performed again a computational study and 
found that GPU-based implementations of PFI and MPFI 
outperform the serial ones. More specifically, the speedup 
for PFI method is up to 7 for the time of basis inverse 
and 5.5 for the total time and the speedup for MPFI 
method is up to 19 for the time of basis inverse and 5 for 
total time. Our approach allows us to solve problems of 
size 10000 × 10000. 

In future work, we plan to implement all the steps of 
the algorithm in order to fully parallelize the revised 
simplex method for GPUs. Moreover, we also plan to test 

sparse LPs and also port our application to a multi-GPU 
architecture. 
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