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ABSTRACT 
Biomedical questions are usually complex and regard several different life science aspects. Numerous valuable and he- 
terogeneous data are increasingly available to answer such questions. Yet, they are dispersedly stored and difficult to be 
queried comprehensively. We created a Genomic and Proteomic Data Warehouse (GPDW) that integrates data provided 
by some of the main bioinformatics databases. It adopts a modular integrated data schema and several metadata to de- 
scribe the integrated data, their sources and their location in the GPDW. Here, we present the Web application that we 
developed to enable any user to easily compose queries, although complex, on all data integrated in the GPDW. It is 
publicly available at http://www.bioinformatics.dei.polimi.it/GPKB/. Through a visual interface, the user is only re- 
quired to select the types of data to be included in the query and the conditions on their values to be retrieved. Then, the 
Web application leverages the metadata and modular schema of the GPDW to automatically compose an efficient SQL 
query, run it on the GPDW and show the extracted requested data, enriched with links to external data sources. Per- 
formed tests demonstrated efficiency and usability of the developed Web application, and showed its and GPDW re- 
levance in supporting answering biomedical questions, also difficult. 
 
Keywords: SQL Query Composition; Visual Interface; Integrated Data Extraction; Data Warehousing; Bioinformatics 

Database 

1. Introduction 
A great amount of valuable and heterogeneous biomedi- 
cal molecular data and information is increasingly pro- 
duced thanks to the modern high-throughput technolo- 
gies. It is stored in publicly accessible molecular biology 
databases that are continuously increasing in number and 
coverage of the included biomolecular entities, as well as 
of their described structural and functional biomedical 
features and associated phenotypes [1]. Such databases 
provide extremely valuable information to infer new 
knowledge and potentially answer biomedical questions, 
which are generally complex. To obtain enough evidence 
to support such answers, several different structural, 
functional and phenotypic annotations must be collected 
and comprehensively evaluated. Yet, even the informa- 
tion about a single biomolecular entity is often scattered 
across many different sources. 

Several approaches have been proposed to integrate 
data from multiple heterogeneous data sources and query 
them comprehensively. Data warehousing well supports 
off-line processing to mine the integrated data towards 
knowledge discovery. Yet, the global schemas for bio- 
logical data warehousing that have been proposed are  

quite complex [2-5]. Although they can support a com- 
plete representation of the underlying biological aspects 
described by the integrated data, they make it difficult to 
face the integration challenges of evolving data. Difficul- 
ties arise in both maintaining updated the data warehouse 
that adopts one of such data schemas and in expanding it 
with other data and data types from new sources. 

To overcome such difficulties, we created a Genomic 
and Proteomic Data Warehouse (GPDW) that adopts an 
original metadata-based modular global schema [6]. It 
supports integration of data sources that evolve in data 
content, structure (although limitedly) and number, as the 
biomedical molecular ones do. Thanks to the adopted 
data schema, we easily kept updated and extended pro- 
gressively the numerous genomic, proteomic and pheno- 
typic controlled annotation data of different species inte- 
grated in the GPDW. Here, we describe and discuss the 
original Web application that we developed to easily 
access and search such valuable integrated biomolecular 
knowledge. It leverages the GPDW metadata-based 
modular data schema to enable any user to visually per- 
form queries, although complex, whose extracted data 
can support answering difficult biomedical questions. 
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2. Genomic and Proteomic Data Warehouse 
2.1. Integrative Data Schema 

To integrate heterogeneous data available from many 
different sources, abstraction and generalization of con- 
cepts to be integrated are paramount. As well, modularity 
and customizability of global data schema are vital to 
support easy integration, data schema extension with the 
inclusion of new data types and sources, and mainten- 
ance with respect to data, format and schema evolution 
of the integrated original data sources. With such aims 
and with the goal of creating the GPDW, as illustrated in 
[6], we focused on biomedical molecular entities and 
features described by data to be integrated, provided by 
distinct sources. Briefly, we abstracted and generalized 
such features and defined our integrated relational data 
schema as composed of multiple interconnected modules. 
Each module represents a single feature, whose data are 
provided by one or more of the integrated data sources, 
and it is composed by a number of data tables that de- 
pends on the integrated data. Such tables are hierarchi- 
cally related as shown in the Directed Acyclic Graph 
(DAG) in Figure 1. 

Feature modules can be pair wise associated; such as- 
sociations represent the valuable association/annotation 
data provided by the integrated data sources, which are 
stored in hierarchically related association tables (Figure 
2). 

The feature modules and their associations contained 
in a specific instance/version of our generalized global 
data schema depend on the particular data sources and 
their provided data that are integrated in that specific data 
schema instance. To support the automatic construction 
 

 
Figure 1. Directed acyclic graph of the tables in a GPDW 
feature module. 
 

 
Figure 2. DAG of the association tables between two GPKB 
feature modules. 

and updating of a database adopting such data schema, 
we defined a procedure to register the data sources and 
their feature data to be integrated, and to collect all the 
required metadata information about them and their as- 
sociations. We store these metadata in a specific metada- 
ta schema, useful to seamlessly and transparently access 
all data in the database regardless the specific database 
version. 

2.2. Data Integrated in the GPDW 
The GPDW adopts our defined modular data schema to 
integrate data provided by several of the main bioinfor- 
matics databases, including Entrez Gene, Homologene, 
MINT, IntAct, Expasy Enzyme, GO, GOA, BioCyc, 
KEGG, Reactome, eVOC and OMIM. Currently, data in 
the GPDW regard several features, including DNA se- 
quences, genes, transcripts, proteins, enzymes, protein 
domains, small molecules of biological interest, biologi- 
cal function features (i.e. Gene Ontology biological 
processes, molecular functions and cellular components), 
pathways, gene expression features, genetic disorders, 
clinical synopses and their association. 

Among others, at time of writing the GPDW contains 
9,537,645 genes of 9,631 organisms, 38,960,202 proteins 
of 338,004 species, 19,522 protein domains and 824,797 
protein domains annotations, 28,889 biochemical path- 
ways and 171,372 pathway annotations (77,812 gene and 
93,560 protein annotations), 35,252 Gene Ontology terms 
and 64,185,070 Gene Ontology annotations (1,272,168 
gene and 62,912,902 protein annotations), 10,212 human 
genetic disorders and their 27,705 gene annotations. 
These figures demonstrate the valuable unique characte- 
ristics of the GPDW. 

3. Dynamic Composition and Result 
Visualization of GPDW Data Extraction 
SQL Queries 

To enable any user to easily compose queries, although 
complex, on all data integrated in the GPDW, we devel- 
oped a Web application in Java programming language 
using Servlets and Java Server Pages (JSP) technology. It 
is publicly available at  
http://www.bioinformatics.dei.polimi.it/GPKB/. Through 
a visual interface (Figure 3), the user is only required to 
select, out of the features integrated in the GPDW, the 
ones and their attributes to be included in the query, to- 
gether with the conditions on the data values to be re- 
trieved. All information about the GPDW content re- 
quired to build the visual interface is taken from the 
GPDW metadata. Thus, transparently to the user, the 
visualized features and their attributes automatically 
adapt to the content of the specific GPDW instance. 

Interactive menus, present in the visual interface for  
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Figure 3. User interface for visual composition of a query 
on a single feature. 
 
each feature attribute, enable the user to define filtering 
conditions on the data values to be retrieved. The content 
of each of these menus depends on the data contained in 
the particular attribute to which the menu refers. Fur- 
thermore, the user can also select some general options 
(Search Options) for the query, e.g. make a “distinct” 
SQL query, set the conjunctive logical clause to use for 
the defined filtering conditions (AND/OR), select the 
result counting mode and define how many results per 
page to show. 

3.1. Query Composition Algorithm 
We designed a specific algorithm to automatically com- 
pose a SQL query that can efficiently extract data from 
any instance of the GPDW, according to any combina- 
tion of user selected feature attributes and filters. The 
core of the query composition algorithm leverages the 
metadata and modular structure of the GPDW. It is di- 
vided in two steps: 1) generation of a complete and or- 
dered list of tables to be included in the query and 2) 
generation of the query FROM, JOIN and WHERE 
clauses. 

The first step starts with the identification of the lowest 
common ancestor (LCA) between all the tables that con- 
tain the attributes selected by the user to be included in 
the query. This is performed as shown in Figure 4, ac- 
cording to the DAG structure in Figures 1 and 2. 
Through a recursive function, all the ancestors of each 
table are calculated and the LCA table between all of 
them is found. It completes the list of all tables involved 
in the query, which also includes the tables that contain 
the attributes selected by the user. Then, the tables in the 
list are ordered based on the feature module, or feature 
association they belong to and the order in which the user 
selected the features to query. If the user selected first the 
feature A and then the feature B, the feature A tables will 
be at the top of the list, then the association tables be-  

 
Figure 4. Flowchart of the lowest common ancestor search 
over the list of all ancestor tables of each GPDW table con- 
taining user selected attributes. 
 
tween feature A and feature B, and finally the feature B 
tables. In the list, the order of tables belonging to each 
feature module or association is then defined from top to 
bottom by the order of tables in the DAG of the feature 
module (Figure 1) or of the association (Figure 2). 

In the second step, the query join generation is per- 
formed as follows. The first table of the list is the table 
inserted into the FROM clause of the query and set as 
reference table for the joins with the following tables in 
the list. Then, the ordered table list is scanned from top to 
bottom and each table in the list is evaluated. During this 
scan, when a feature or association table is found, it be- 
comes the reference table for the joins with the following 
tables in the list. If it is a feature table, no join is added 
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into the query. If it is an association table, the two joins 
between this association table and each of the two feature 
tables (if present in the list) that it associates are added 
into the query. If the table is neither a feature nor an as- 
sociation table, the join between this table and the last 
reference table found is added into the query. Finally, all 
filters defined by the user are added to the WHERE 
clause of the query. 

3.2. Query Result Visualization 

The data extracted by the composed query are processed 
to be neatly visualized to the user. Furthermore, ID data 
are enriched with hyperlinks to external resources with 
more detailed information over the entity identified by 
the ID. Each of these hyperlinks is composed of the ID 
itself and a base URL stored in the GPDW metadata. 

Counting of the extracted data is also provided. Since 
the counting query is generally much slower than the 
main data extraction query, initially an approximate 
count is shown to the user. It is obtained by the SQL 
EXPLAIN command, quickly executed over the main 
query, while the real counting query is executed in back- 
ground. When this query ends, in the user interface the 
approximate count is refreshed with the exact one. 

4. System Performance 
Performance of the created Web application was tested 
while running on a TomCat 6.0 Web Server installed on 
a computer with two Intel XEON CPU E5320 1.86 GHz, 
32 GB RAM, and connected to the described GPDW 
instance implemented in a PostgreSQL DBMS. Genera- 
tion of the visual user interface for query composition, 
execution of the composed queries and query result visu- 
alization processing were evaluated. 

4.1. Visual User Interface for Query 
Composition 

The loading times of the visual interface for query com- 
position on a single feature are shown in Table 1. The 
“Servlet Execution Times” are those of a servlet created 
to retrieve from the GPDW metadata schema all the table 
names of the feature selected by the user and to create a 
Web page where showing them. The “JavaScript Execu- 
tion Times” refer to the tasks performed by some created 
AJAX calls to the server or client-side JavaScript rou- 
tines. This JavaScript processing shows the table field 
names in the user interface and populates their interactive 
menus for the definition of the query filtering conditions. 
In the default visualization, only the fields of the feature 
main table (and association table(s) in case of a search on 
more features) are immediately shown. The other table 
fields can be interactively opened by the user. This pena-  

Table 1. Loading times of the visual user interface for single 
feature query composition. 

Feature 
Servlet  

Execution 
Time (ms) 

JavaScript 
Generation 
Time (ms) 

Total Time 
(ms) 

Biological Function Feature 517 416 933 

Clinical Synopsis 155 423 578 

DNA Sequence 65 324 389 

Enzyme 134 351 485 

Gene 334 400 734 

Gene Expression Feature 405 352 757 

Genetic Disorder 226 491 717 

Pathway 114 558 672 

Protein 97 324 421 

Protein Family & Domain 60 589 649 

Small Molecule 69 294 363 

Transcript 58 329 387 

Mean 186.17 404.25 590.42 

Standard Deviation 153.74 96.23 182.52 

 
lizes slightly the total loading time of the query composi- 
tion Web page for a single feature with few tables. Yet, it 
makes the total loading time of the query composition 
Web page much lower in the case of more features, 
which involves many tables. The total loading times are 
always lower than 1 second, which represents an imme- 
diate response to the user according to [7], and show a 
very good performance. 

4.2. Query Execution Performance 
Execution performance of the composed queries was 
tested on a single, two and multiple features. All queries 
got a low execution time, also in the cases where several 
tables were involved and millions of tuples were found. 
For example, a query over the “gene” and “biological 
function feature” associated features, which involved 3 
tables, found 10,647,473 tuples in an execution time of 
753 ms. Besides to the good GPDW data structure and 
indexing, this performance is also due to the created 
query composition algorithm, which generates queries 
with an optimized number of joins. By taking advantage 
of the modular structure of the GPDW, in the generated 
query the algorithm tends not to include all the tables and 
joins which would be required by following the foreign 
key path among the tables that contain all user selected 
feature attributes. Instead, it only includes the minimum 
number of tables and joins needed to return the same 
results. In so doing, the algorithm generates efficient and 
neat queries. 
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4.3. Result Processing and Visualization 
Processing times to visualize enriched the results re- 
turned by a query on the “transcript” feature, which se- 
lects all, or only the default, feature attributes, are re- 
ported in Table 2. As expected, the processing time is 
proportional to the number of attributes requested and 
result rows visualized. For all attributes, until 300 rows, 
the processing time stays under 10 seconds, which is an 
acceptable loading time according to [7] if a feedback to 
the user is shown (as it is). For more rows the time is 
greater, but still under a minute. In any case, the benefit 
of an enriched visualization of result data is much more 
worthy than the time the user has to wait to see the re- 
sults. 

5. Usability Testing 
Usability of the created Web application was tested by 9 
users with 3 different profiles: 4 computer scientists who 
knew the GPDW, 4 computer scientists who did not 
know before the GPDW and 1 biologist. All users were 
observed while doing some significant tasks over the 
Web application and were interviewed about their user 
experience. In the evaluation, for each task, the metrics 
used were the success rate, the time, the number of un- 
do/errors and the time perceived by each user. All users 
completed all tasks, some with assistance (success rate 
80%). This is a strong indication that the Web applica- 
tion does not present any critical issue. The number of 
undo/errors was very low (in few tasks the users did 
 
Table 2. Visualization processing time of data extracted 
with a query on the “transcript” feature. 

Visualized Rows 
All Attribute 

Visualization Time 
(ms) 

All Default Attributea 
Visualization Time 

(ms) 
20 855 356 

30 1101 506 

50 1682 841 

100 3504 1585 

300 9731 4386 

500 16,473 7263 

1000 32,179 14,002 
aDefault attributes for Transcript feature are source_id, source_name, sym- 
bol and taxonomy_id. 

more than 1 undo/error). The perceived time, evaluated 
from 1 to 5, got a mean of 3, demonstrating the intui- 
tiveness of the interface despite of the complexity of 
some tasks. Overall, all users showed satisfaction for 
their user experience. Observing them to perform the 
tasks pointed out some little usability issues, mainly 
about navigation of query composition Web pages and 
results visualization that will be tackled in future work. 
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