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ABSTRACT 

A wide range of methods for geological reservoir modeling has been offered from which a few can reproduce complex 
geological settings, especially different facies and fracture networks. Multi Point Statistic (MPS) algorithms by apply- 
ing image processing techniques and Artificial Intelligence (AI) concepts proved successful to model high-order rela- 
tions from a visually and statistically explicit model, a training image. In this approach, the patterns of the final image 
(geological model) are obtained from a training image that defines a conceptual geological scenario for the reservoir by 
depicting relevant geological patterns expected to be found in the subsurface. The aim is then to reproduce these train- 
ing patterns within the final image. This work presents a multiple grid filter based MPS algorithm to facies and fracture 
network images reconstruction. Processor is trained by training images (TIs) which are representative of a spatial phe- 
nomenon (fracture network, facies...). Results shown in this paper give visual appealing results for the reconstruction of 
complex structures. Computationally, it is fast and parsimonious in memory needs. 
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1. Introduction 

Static modeling of complex reservoirs calls for more than 
two point statistics. Certain features of these objects such 
as curvilinearity cannot be expressed via two-point rela- 
tions [1]. Multi Point Statistics (MPS) is used to produce 
realistic realizations of complex structures after the pio- 
neer work of Strebelle who applied image processing 
concepts for this purpose [2]. MPS is based on image pro- 
cessing techniques and proposes image construction ap- 
proach. In this approach, the patterns of the final image 
to be constructed (facies, fracture network...) are ob- 
tained from a training image that depicts relevant geo- 
logical patterns expected to be found in the subsurface 
[1]. Furthermore, MPS modeling has the potential to im- 
prove estimation in addition to simulation and the so 
called E-type average value at each node is taken as a 
local estimated value if training image is appropriate [3]. 
  Training Images (TIs) provide spatial relations, exist-
ing patterns and degree of connectivity which must be 
reproduced in the reconstructed images. The goal is not 
to reproduce the training image, but to simulate a model 
that shares some of the multivariate characteristics of the 
true distribution [4]. To achieve the most appropriate IT, 
several challenges were raised like: statistical richness of 

the training image, the scale of the training image, the 
grid definition of the simulated model, and the univariate 
distribution of the training image. In this area, Boisvert 
selects the most data representative TI by comparing the 
distribution of runs and the multiple point density func-
tion from TIs [5]. Boogaart applied variography as an 
auxiliary element to choose TIs which represent the true 
joint distribution of the field under consideration [6].   

The pattern to point SNESIM method is the first algo-
rithm for MPS modeling [7,8]. SNESIM is a combination 
of traditional sequential simulation with a search tree 
concept. Multiple point statistics (observed patterns) of a 
certain size of training images are stored in a tree struc- 
ture; Node properties of realizations are then assigned 
one by one in a search process loop. Search tree is ex- 
tremely memory demanding. Straubhaar proposed a list 
of approach modification of SNESIM [9]. Several case 
studies of successful application of the method are re- 
ported [10-14]. Okabe also modified SNESIM for pore 
network reconstruction [15].  

Pattern-to-pattern methods such as SIMPAT [1] FIL- 
TERSIM [16] and DisPAT [17] are completely isolated 
from two-point statistics and eliminate the probabilistic 
paradigm in MPS algorithms. These methods inherently 
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take the probabilities of the whole multiple point patterns 
conditioned to the same multiple point data event from 
the training image [18]. SIMPAT produces visual ap- 
pealing realizations; however complete search in pattern 
database is needed. This makes the process of finding the 
most similar pattern too complex and CPU time-con- 
suming. FILTERSIM reduces pattern dimensions by ap- 
plying spatial filters and transferring patterns to a lower 
dimensional space. Coded patterns are then clustered and 
a prototype is chosen for each bin. This accelerates the 
search process and decreases run time compared to 
SIMPAT by means of reducing number of analogy loops. 
Structures continuity in FILTERSIM method, however, 
is not preserved as it is in SIMPAT.   

Dimensional reduction in patterns is done by applying 
directional filters [16] or wavelet decomposition on train- 
ing image [19]. Honarkhah proposed a distance based 
algorithm DisPAT and automatic information theory 
based algorithms for selection of optimum template size 
and dimension of patterns target space [17].  

In our previous work [20] one modified FILTERSIM 
algorithm was proposed for unconditional simulation in 
which pattern extraction, persisting and pasting steps are 
modified to enhance visual quality and structures conti- 
nuity in the realizations. Modifications such as optimum 
template size selection and additional search steps have 
considerable improvement in the algorithm performance 
and produced more visual appealing images compared to 
FILTERSIM. These changes add marginal computation 
cost to FILTERSIM because of using pattern frequency 
concept and yet still much faster than SIMPAT. 

In this paper, we propose a novel multiple grid pattern- 
to-pattern algorithm for conditional simulation which is a 
combination of FILTERSIM fastness and SIMPAT ac- 
curacy. Results quality and continuity is far better in our 
proposed algorithm as will be shown shortly. 

2. Training Image Processing 

Processing of training images consists of gridding, scan- 
ning and persisting the corresponding multiple point vec- 
tors in a database as shown in Figure 1. Pattern extrac-  
 

 

Figure 1. Schematic of training image preprocessing steps 
consist of gridding, scanning and pattern extraction (As 
template size increases, pattern stores larger scale spatial 
information). 

tion can be performed by templates in different sizes. 
Template size affects the extracted statistics, CPU time 
and scale of structures in results. A pattern of training 
image is defined as tit (u) and includes a specific multiple 
point vector of tit (u) values within a template T centered 
at node u. 
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where hα vectors define the geometry of the template 
nodes; 1, , Tn    and nT is the template size. Content 
of pattern with a frequency component, based on its oc-
currence frequency in TI, are stored in pattern database 
patdbT as the following vector: 
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Frequency component of patdbT has the advantage of 
accelerating selection of appropriate pattern in simulation 
process. This achieves by elimination of repeated pat- 
terns and consequently repeated calculations. Pattern 
stores larger scale spatial information as the template size 
increases with the cost of simulation uncertainty and 
complexity. To find the optimum template size in a sin- 
gle grid simulation, Shannon’s entropy versus template 
size plot is used [21]. In order to calculate entropy in 
different template sizes, the following equation is ap- 
plied: 

 1 logK
i i iH p p               (3) 

where K = number of possible outcomes of the random 
variable, and pi represents the probability mass function. 
Two different behaviors are expected with increasing the 
template size. In the first stage, entropy will sharply in- 
crease since the average number of nodes needed to 
guess the remaining nodes in the patterns is increased. At 
a later stage, where the template size has passed the op- 
timal range in an elbow that represents the stationary 
features of the training image, entropy would increase 
slowly. This is because the information needed for en- 
coding a large pattern with some stationary features is 
approximately equal the information of the stationary 
feature of the training image itself [17]. Mathematical 
details are discussed extensively by Honarkhah [17]. As 
shown in results of FILTERSIM automation in Figure 2, 
spatial statistics of the results are fixed with the passing 
of the Elbow in entropy plot. 

By applying frequency component and optimum tem- 
plate size concepts, training image is scanned with the 
optimum template size after which the responses of pat- 
terns to six directional filters are measured (Table 1). A  
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Figure 2. Effect of template size on the simulation results 
(where the template size has passed the optimal window, 
stationary features in realizations are approximately equal 
the information of the stationary feature of the training 
image). 

 
Table 1. Directional filters for dimension reduction of pat- 
terns [16]. 

Filter Equation Name 

 1 , 1 , , ,
v

f u v v n n
n

      N-S directional average 

 2 , 1 , , ,
u

f u v u n n
n

      E-W directional average 

 3 ,
v

f u v
n

  N-S directional gradient 

 4 ,
u

f u v
n

  E-W directional gradient 

 5 , 2
v

f u v
n

 1  N-S directional curvature 

 6 , 2
u

f u v
n

 1  E-W directional curvature 

 
sample of pattern transferring to a lower dimensional 
space by measuring the responses of patterns to two di- 
rectional filters is shown in Figure 3. All extracted pat- 
terns are placed with other similar patterns into the speci- 
fied bins. Figure 4 shows the results of applying this step 
on the some face pictures. 

Each filter score is divided into five categories and 
cluster the patterns into 5 ^ 6 bins. For each of which one 
prototype is calculated. Each prototype is binary average 
of patterns in a specific bin. Many of these created bins 
are empty and will be eliminated in the search process 
which is only done on selected prototypes for the filled 
bins. 

Having processed the TI and filled the pattern database 
as just described, reconstruction of realizations can per- 
formed in unconditional and conditional situations. 
Simulation procedures with and without hard data are 
discussed in detail in the next sections. Table 2 lists the 
TI processing steps. 

 

Figure 3. Pattern transferring to a lower dimensional space. 
 

 

Figure 4. Clustering assembles all similar patterns, marked 
by 6 filters, in the related bins. 

 
Table 2. Training image processing steps of the Modified 
FILTERSIM approach. 

Training Image Processing 

1. Load and mesh training image to the desired grid network size Gti

2. Find optimum template size (Entropy plot) 

3. Scan TI and store all patterns in patdb along with the frequency  
of each pattern as the last component of k

Tpat  vector. 

4. Apply filters to patterns and calculate responses. 

5. Cluster patterns according to node scores. 

6. Eliminate empty bins. 

7. Select a prototype for each filled bin. 
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3. Facies Simulation 

Simulation begins by defining a random path on realiza- 
tion nodes. Data event in the template is extracted in each 
node and its similarity to the existing patterns is then 
measured. Data event vector devT (u) is a set of previ- 
ously informed nodes in unconditional simulation while 
hard data is also added to devT (u) in conditional simula- 
tion. Similarity between data event and extracted patterns 
in patdbT is measured by a distance (or difference) func- 
tion ,d x y .We used the following single point man- 
hattan distance function: 

 
 

0, ,

,

Tn
i i i i

i i i a a

d x y d x y

d x y x y



 

 ,
        (4) 

Having the random path defined, a search among the 
prototypes is done for each visited node to select the 
most similar prototype which shows minimum distance 
function ,d x y  with data event as below: 
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The bin of selected prototype contains the most similar 
patterns to the visited data event. FILTERSIM routine is 
to select a random pattern among these patterns and set it 
as realization node. This obviously is not the best proce- 
dure and may lose the feature connectivity as is a known 
drawback of this method. Here we modified the proce- 
dure and performed a second searching step to find the 
most similar pattern to data event in the selected bin 
(Figure 5). Pattern selection in candidate cluster is based 
on the following distance function: 
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Figure 5. Schematic of searching between prototypes in 
Step # 1 and between selected cluster in Step # 2 (Step # 2 in 
FILTERSIM is random). 

Only the pattern nodes with known values are consid- 
ered in the above relation. 
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The pattern with minimum distance function is then 
pasted entirely on realization nodes. If some patterns 
have the same distance to the data event vector, the one 
with the most frequency is selected. Random selection of 
patterns is only allowed when they all have the same 
frequency. This pattern selection strategy has improved 
the FILTERSIM performance and connectivity features 
of reconstructed realizations compare to the original 
method. This will be fully explored in the results section. 
Table 3 shows the stepwise procedure of Modified FIL- 
TERSIM approach described above. 

The last but not the least point is the updatable region 
of pasted pattern on realization nodes which is used for 
the first time by Arpat in SIMAPT [1].The selected pat- 
tern after imposing on the visited node of realization is 
not entirely fixed and some outer parts of it can be re- 
placed by future pasted patterns as shown in part 4 of 
Table 3. This provides the opportunity of superior reali- 
zations with closer features of connectivity to those of TI 
(Figure 6). 

Conditional Simulation Algorithm 

Data obtained from cores, wells and/or other exploration 
 

Table 3. Procedure steps of unconditional Modified FIL- 
TERSIM approach. 

Unconditional Modified FILTERSIM 

1. Training image preprocessing. 

2. Define a random path on Gre grid of realization re. 

3. At every node u, extract the data event devT (u) from realization 
re and find the most similar prototype that minimizes.  

 , k

T Td dev u Prototype  

Once the most similar bin is found, search most similar pattern in 
that bin to maximize similarity  

 , k

T Ts dev u pat ,  

if some patterns have the same distance to the data event vector, 
most frequent of them is selected and if all of them have the same 
frequency, selection will be done randomly. 

4. Paste the entire selected pattern to updatable data event:  
   .+  *

T Tdev u h pat h    

Set inner nodes as fixed and outer nodes as updateable. 

 
5. Move to the next updatable node of the random path and repeat 
the above steps until all grid nodes are fixed. 
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(a)                 (b)                 (c) 

Figure 6. Effect of updatable nodes on structures continuity: 
(a) training image, (b) realization with updatable region, (c) 
realization without updatable region. 

 
sources are considered as hard data. These data are dis- 
tinguished in TI and pattern data bank as hdevT (u). We 
are willing to reproduce hard data exactly in the realiza- 
tions as they are occurred in the initial map. Unlike the 
other methods which are added additional searching steps, 
simulation algorithm we propose for realizations condi- 
tioned to hard data hdevT (u) is the same as unconditional 
simulation algorithm presented above, except to the dis- 
tance function calculations for prototype selection. To do 
this, higher weights Wi, for the hard data are considered 
in distance function calculation while searching between 
prototypes. 
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Hard data weights should be set according to their con- 
fidence level and accuracy. Satisfactory realizations were 
obtained with hard data weights four times bigger than 
the previously informed nodes as will be shown shortly 
in the result section. It is however necessary to set the 
same weights for hard and soft data events during the 
search among the patters within the selected bin to main- 
tain features continuity in the reconstructed realization. If 
pattern data base is rich, hard data will be reproduced 
completely in visual appealing realization, otherwise 
training image is weak and algorithm cannot reproduce 
all the hard data in continuous structures. Simulation 
steps for conditional Modified FILTERSIM approach are 
summarized in Table 4. 

Due to minimal changes in the main algorithm, no sig- 
nificant difference was observed in simulation time of 
conditional and unconditional cases. 

4. Fracture Network Simulation 

In fracture network images, fractures are thin and require 
very fine mesh to capture all spatial statistics. Having 
low CPU usage and continuous fractures, we apply a 
chamfer distance transform to the training image of frac- 
ture network. This transform can detect and extract main 
features of an image as shown in Figure 7. The image 
for this purpose should be a binary image. 

Table 4. Procedure steps of conditional Modified FILTER- 
SIM approach. 

Conditional Modified FILTERSIM 

1. Training image processing. 

2. Define a random path on the grid Gre of realization re. 

3. At every node u, extract the data event devT (u) and hard data 
event hdevT (u) from realization re and find the most similar  
prototype that maximizes  

 , k

T Tdev u Prototype ,  

in this step hard data event weight is set greater than data event. 

4. After selecting the most similar prototype, related bin is searched 
to find the most similar pattern. This time weights for data event 
and hard data event are the same. 

5. If some patterns have the same distance to the data event vector, 
most frequent of them is selected and if all of them have the same 
frequency, selection will be done randomly. 

6. Paste selected pattern to updatable data event  

   .+  *

T Tdev u h pat h    

Set inner nodes as fixed and outer nodes as updateable. Hard data 
event are fixed from the beginning. 

7. Move to the next updatable node of the random path and repeat 
the above steps until all grid nodes are fixed. 

 

 

Figure 7. Skeletonisation using chamfer distance transform. 
 
Consider a binary fracture network image where frac- 

ture and matrix nodes are set to 1 and 0 respectively. 
Chamfer transform creates a continuous figure in which 
its node values reflect their distance to the target objects, 
i.e. fractures in our case. Node values decrease mono- 
tonically from 1 to 0 as their distance increase from frac- 
tures.  

Chamfer transform for each node uα of the training 
image ti is: 

    min ,ti u u ti u d u u              (9) 

where uβ are the nodes within the template T with 
.1, , Tn    Distance of uα to each neighbor node uβ is 

calculated and the value of ti (uβ) is added to this distance 
(which itself is a distance). Value of ti (uα) is set to the 
minimum of these distances. Figure 8 shows the chamfer 
transformed image of fracture network TI. 

Modified FILTERSIM just described in Table 3 can 
now be applied to this transformed image.        

Generated realizations are continuous values ranged 
from 0 to 1 similar to the transformed TI. This need to be 
back transformed to a binary image which simply possi- 
ble by setting all the less than 1 node values to 0.  
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Figure 8. Application of chamfer proximity transform to 
the binary training image. 

 
Figure 9 shows two generated realizations of fracture 

network TI of Figure 8. It is evident that chamfer trans- 
form as we applied considerably enhanced the realization 
and generated closer patters to the TI. 

5. Multiple Grid Approach 

Optimum template size in training image processing con- 
trolls realization richness in different scales. Multiple 
template sizes are however needed to capture geological 
structures with various heterogeneity patterns at several 
scales. To this end, we propose a multi grid approach in 
which the simulations are run for one size greater than, 
equal to, and smaller than the optimum template size. 
Simulation starts by the biggest template size. Node val- 
ues from pervious steps are then considered as updatable 
soft data in the next simulations with smaller template 
sizes. Weights of these informed nodes considered as the 
half of those which informed in the current step for dis- 
tance function calculations. This makes the small scale 
structures to better reconstruct on a large scale back- 
ground as shown in Figure 10. Optimum template size of 
13 is obtained for this TI. Realization with multiple grid 
approach used template sizes of 13, 11 and 9 after each 
other to better capture smaller scale heterogeneities as is 
evident in this figure. 

6. Results and Discussion 

Modifications are made to the original FILTERSIM al- 
gorithm in several ways of optimizing template size, con- 
sidering pattern frequency component in database and 
pattern distance function ranking in candidate bin instead 
of random selection. Performance of this modified algo- 
rithm is investigated by applying the method on 2D train- 
ing images with grid size of 128 × 128. Both uncondi- 
tional and conditional situations are studied. Figure 11 
compares reconstructed realizations of a binary TI at 
with unconditional algorithms of FILTERSIM, SIMPAT 
and Modified FILTERSIM. Better visual continuity of 
the Modified FILTERSIM result is clear. Algorithm Per- 
formance was also investigated by applying the method 
on continuous 2D training image (Figure 12). 

Conditioning to hard data just marginally increases 
computations due to the simple and fast proposed meth-  

 
(a)                         (b) 

Figure 9. Generated realizations (a) without and (b) with 
chamfer transformation ((a) structures are piecemeal, (b) 
have continues fractures and better reproduces the training 
image patterns). 

 

 

Figure 10. Single grid and multiple grid simulation results. 
 

odology. This is not the case for other methods as illus- 
trated in Figure 13 which compares CPU simulation 
times of SIMPAT, original and Modified FILTERSIM 
approaches. Although computationally more expensive 
than FILTERSIM, the Modified FILTERSIM method is 
still far faster than SIMPAT and is superior in perform- 
ance compare to the both methods.  

Modified FILTERSIM performance for conditional 
reconstruction of TI is illustrated in Figure 14. Chanelly 
TI similar to that of Figure 11 is considered with 3 dif- 
ferent hard data distributions. Several conditional reali- 
zations are generated for each hard data distribution. Av- 
eraging the results to E-type maps shows that all hard 
data are exactly reproduced in all realization as they are 
fixed in E-type maps of Figure 14. 

It is worth to mention that parallel generation of sev- 
eral realizations is possible in our proposed algorithm. 
Our developed computer program can start several reali- 
zations simultaneously based on available computation 
cores and hardware characteristics. This considerable 
accelerate the simulations and makes the risk analysis 
and uncertainty management an easy task. 

7. Summary 

We proposed a MPS algorithm to simulate 2D binary and 
continuous stationary structures. Optimum template size 
for each training image is elaborated. This, along with a 

attern frequency component in database and additional  p 
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Figure 11. Simulation results by applying SIMPAT, FILTERSIM and this work method. 
 

 

Figure 12. 2D continuous training image and simulation result (Optimum Template Size is 15). 
 

 

Figure 13. CPU Time Qualitative Comparison of SIMPAT, FILTERSIM and Modified FILTERSIM methods (Minimum 
increase in CPU time due to adding conditionality feature occurs in Modified FILTERSIM). 
 
search among stored patterns in the selected bin, is 
shown to improve the FILTERSIM performance consid- 
erably. Shannon entropy concept was used to infer opti- 
mum template size that can capture local structures in 
each template. Frequency component increases the chance 

of more repeated patterns to be selected; prototypes and 
patterns are chosen based on their minimum Manhattan 
distance function with data events within the realization 
under construction. Several examples showed that our 

roposed algorithm can produce more visual-appealing  p 
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Figure 14. E-Type Realization obtained from 12 realizations by conditional Modified FILTERSIM. 
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