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ABSTRACT 

This paper considers a new canonical duality theory for solving mixed integer quadratic programming problem. It 
shows that this well-known NP-hard problem can be converted into concave maximization dual problems without dual-
ity gap. And the dual problems can be solved, under certain conditions, by polynomial algorithms. 
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1. Introduction 

Mixed integer nonlinear programming refers to optimiza-
tion problems which involve continuous and discrete 
variables [8]. In this paper, we consider the following 
constrained mixed integer quadratic programming: 
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Problem of the form (1) has a broad spectrum of ap-
plications, including process industry (process design [2, 
13, 18], production planning [14], supply chain optimiza-
tion [1,3], logistics and so on), management science 
(scheduling problem), financial (portfolio optimization 
problems [22]), engineering (network design [23]), ma-
chine learning (semi-supervised support vector ma-
chines), and computational chemistry /biology (solvent 
design problems). 

Various methods have been proposed for solving 
mixed integer programming, such as branch and bound 
[4,5,19,21,24], cutting plane, branch and cut [16], branch 
and reduce, outer approximation [6,7,15], hybrid meth-
ods, and penalty method [17]. But the difficulty for de-
veloping an efficient method for such mixed integer pro-
gramming lies not only on the nonlinearity of the func-

tions involved, but also on existence of both discrete and 
continuous variables [20]. But if we introduce the ca-
nonical duality with some strategy, we can find global 
optima in polynomial time [10, 11, 12]. 

The rest of paper is arranged as follows. In section 2, 
we demonstrate how to rewrite the primal problem as a 
dual problem by using the canonical dual transformation. 
In section 3, optimality criterions for global solutions are 
discussed. Finally, in the last section, we present some 
conclusions. 

2. Canonical Dual Transformation 

Canonical duality theory [9] is a potentially powerful 
methodology which can be used to solve a large class of 
non-convex and discrete problems in nonlinear analysis, 
global optimization, and computational science.  

Since { 1,1}ny  , one penalty term is added. Let a be 
a penalty factor, the original problem can be formulated 
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We choose the geometrically nonlinear operator 
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then, the canonical function associated with this geomet-
rical operator is 
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sponding to  , we have 

  ( )V a      ,e  

And the Legendre conjugates of the function  V   
defined by 
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Thus the total complementarily function can be de-
fined by 
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By the criticality condition 
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Therefore, the canonical dual problem can be proposed 
as the following: 
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where  e is a vector with all its entry 1. Its dual 
feasible space  is defined as 
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 stands for finding all stationary 
points of dP   


 over . The following theorem 

shows that  is canonically (i.e., with zero duality 
gap) dual to the primal problem  

aS
 dP

 .P

3. Global Optimality Condition 

Theorem 1The problem  is canonical dual to the 
primal problem  in the sense that if 
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Proof. By introducing a Lagrange multiplier 
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From (13), we have 
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Proof. By Theorem 1 and the canonical duality theory, 
we know that vector 
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In this paper, the canonical duality theory n ap-
plied to solve mixed integer pro ramming oblem. The-
orems show that by al dual nsformation, 
primal problems can be converted into canonical dual 
problem. By the fact that the canonical dual function is 
concave on the dual feasible space, so th
can be solved by w
tion methods. 
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