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ABSTRACT

This paper considers a new canonical duality theory for solving mixed integer quadratic programming problem. It
shows that this well-known NP-hard problem can be converted into concave maximization dual problems without dual-
ity gap. And the dual problems can be solved, under certain conditions, by polynomial algorithms.
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1. Introduction

Mixed integer nonlinear programming refers to optimiza-
tion problems which involve continuous and discrete
variables [8]. In this paper, we consider the following
constrained mixed integer quadratic programming:

(P,) min P(x,y)=f(x)+c’y (1)
s.t. g(X)+wW'y<0,

-1<y<],
xeR",yeR"™
where, f(x)=1/2xTAx,g(x)=1/2x"Bx—bx—-d, c, w,
b are given vectors, d is a given scalar, and A,B >0,
c<0. X, isa feasible space defined by

X, ={xeRn,yeRrly, e{-L1},i=1...n} (2)

Problem of the form (1) has a broad spectrum of ap-
plications, including process industry (process design [2,
13, 18], production planning [14], supply chain optimiza-
tion [1,3], logistics and so on), management science
(scheduling problem), financial (portfolio optimization
problems [22]), engineering (network design [23]), ma-
chine learning (semi-supervised support vector ma-
chines), and computational chemistry /biology (solvent
design problems).

Various methods have been proposed for solving
mixed integer programming, such as branch and bound
[4,5,19,21,24], cutting plane, branch and cut [16], branch
and reduce, outer approximation [6,7,15], hybrid meth-
ods, and penalty method [17]. But the difficulty for de-
veloping an efficient method for such mixed integer pro-
gramming lies not only on the nonlinearity of the func-
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tions involved, but also on existence of both discrete and
continuous variables [20]. But if we introduce the ca-
nonical duality with some strategy, we can find global
optima in polynomial time [10, 11, 12].

The rest of paper is arranged as follows. In section 2,
we demonstrate how to rewrite the primal problem as a
dual problem by using the canonical dual transformation.
In section 3, optimality criterions for global solutions are
discussed. Finally, in the last section, we present some
conclusions.

2. Canonical Dual Transformation
Canonical duality theory [9] is a potentially powerful

methodology which can be used to solve a large class of
non-convex and discrete problems in nonlinear analysis,
global optimization, and computational science.
Since y € {—1,1}", one penalty term is added. Let a be
a penalty factor, the original problem can be formulated
(P)minP(x,y)=f(x)+cT y+%a(yé y—e)2
s.t.g(x)+wry<0
yg-e=0
XxeRn,yeR".
We choose the geometrically nonlinear operator
E=A(Y)=yoy

then, the canonical function associated with this geomet-
rical operator is

Let £ eR" be the canonical dual variable corre-
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sponding to &, we have
=V (&)=a-e),

And the Legendre conjugates of the function V (5)
defined by

V(O ={ECV(E):C =W (@) =3 0L

Thus the total complementarily function can be de-
fined by
E(X, y,g,a,r)
=f(X)+cy+&E¢-V (&) +o(yey—e)
+7(g(x)+wry)=0.
By the criticality condition
5,2(x,Y,5,0,7) =0,
We obtain
_ —(c+7w)
2({+0)

Therefore, the canonical dual problem can be proposed
as the following:

(P) maxPd(¢,0,7)

3
s.t.(g,0,7) €S, ®
and
Pd(g,0,7)
= —%ﬂbT (A+7B)" b-zd )
1(c+ew) 1
4 (c+o) PR CRS

where a =10, e is a vector with all its entry 1. Its dual
feasible space S, is defined as

S,={¢eR,o0eR",reRlt20,6+0=0}. (5)
The notation sta{} stands for finding all stationary
points of Pd¢(g,0,7) over S,. The following theorem

shows that (P?) is canonically (i.e., with zero duality
gap) dual to the primal problem (P).

3. Global Optimality Condition

Theorem 1The problem (P?) is canonical dual to the
primal problem (P) in the sense that if (é’ ,G, F) is a
KKT point of (P¢),then (X,¥) defined by

C+TW

X=7(A+7B) b,y =—— W 6
X=7(A+7B)"'b,y 2(§+5) (6)

is a KKT point of (P), and
P(X,y)=Pd4(¢,5.7) (7)
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Proof. By introducing a Lagrange multiplier
(€,6)eRnxRr(Rn:={c e R <0}),

the Lagrangian L:S,xR"xR" — R associated with the
problem (P?) is

L(g,d,f,f,f): pd (g,a,z’)—fTO'—§TT.

The criticality conditions

lead to
{=a(yey-e). ®)
€=V, Pi(3,5,T)=YF -V, )
£=V, P4(5,5,7)=VeéV-V, (10)
and the KKT conditions
0<&Le=0, (11)
0<7L<&=0, (12)

where y=1/2Diag(g+&) (c/2-7w), the notation
sét=(st,S,t,,...,5,t,) denotes the Hadamard product
for any two vectors S,teR" . This shows that if
(¢,6,7) is a KKT point of the problem (P?), and then
(X,¥) isaKKT point of the primal problem (P).

By using the equations (6) we have

o_Pd M_E
a

Pe = —e, (13)
o 4c+a)
ops = XN g (14)
4(c +0)?
(c+7w)w
o.Pd =— "<, (15)
2(g+0)
and
c(yey-e)=0,
s(vey—e) 16)
7(g(X)+wW'y)-0
So, in terms of
X=7(A+7B) b, y=——="_ (17

we have
pd (E,E,f) :%x_fo +r(%YT BX —x_fb—dj
e
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voy=Z+e (18)
a
Therefore
(vw):‘—%iuea —Sa(yey-e). (19)
Due to the fact that y;, e {-1,1},i=1,...,n, we have
P¢(£.5.7)=P(X.9). (20)

This proves the theorem.

This theorem shows that there is no duality gap be-
tween the primal problem and its canonical dual. In order
to identify the global minimize, we need to introduce a
useful feasible space

={(¢,0.7)eS|s+0 >0} 1)

be a subset of S, , and we have the following theorem.

Theorem 2 Suppose that the vector (5,5,7) is a
critical point of the canonical dual function P9 (g,0,7).
Let

(c+7w)
2(¢+5)

If ($,6,7)eS;, then (5,5,7) is a global maxi-
mize of Pd(g,0,7) on S;, the vector (X,y) is a
global minimize of P(X,y) on R",and

X =7(A+7B) b, V=— (22)

P(X’ V) - (x,yr)Eli?xR” (x,yr)lglglxR” P (X’ y)

= max max Pi(g,0,7) (23)

(g‘,o‘,r)eSér (g,o’,r)ESg
=Pi(£,5.7)
Proof. By Theorem 1 and the canonical duality theory,

we know that vector (QT, 5,?) €S, is a KKT point of
the problem (P¢) ifand only if (X,y) defined by

- C+7TwW
X=7(A+7B) b, y=——x——
F(A+TB) b, 7 2(+5)
is a critical point of the problem (P), and
P(X,y)=Pd¢($,5.7)

By the fact that the canonical dual function P¢ (
is concave on S}, the critical point ({ ,0,T

i
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global maximize of Pd¢(g,0,7) over Sj,
the statement (23).

This theorem provides a sufficient condition for a
global minimizer of the primal problem.

this proves

4. Conclusions

In this paper, the canonical duality theory has been ap-
plied to solve mixed integer programming problem. The-
orems show that by the canonical dual transformation,
primal problems can be converted into canonical dual
problem. By the fact that the canonical dual function is
concave on the dual feasible space, so the dual problem
can be solved by well-developed deterministic optimiza-
tion methods.
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